首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three major subunits (α, β and γ) of the coupling factor, F1 ATPase, of Escherichia coli were separated and purified by hydrophobic column chromatography after the enzyme was dissociated by cold inactivation. The ability to hydrolyze ATP was reconstituted by dialyzing the mixture of subunits against 0.05 M Tris-succinate, pH 6.0, containing 2 mM ATP and 2 mM MgCl2. A mixture containing α, β and γ regained ATP hydrolyzing activity. Individual subunits alone or mixtures of any two subunits did not develop ATPase activity, except for a low but significant activity with α plus β. The reconstituted ATPase had a Km of 0.23 mM for ATP and a molecular weight by sucrose gradient density centrifugation of about 280,000.  相似文献   

2.
1. Stimulation of the Escherichia coli ATPase activity by urea and trypsin shows that the ATPase activity both in the membrane-bound and the solubilized form is partly masked.2. A protein, inhibiting the ATPase activity of Escherichia coli, can be isolated by sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified ATPase. The inhibitor was identified with the smallest of the subunits of E. coli ATPase.3. The molecular weight of the ATPase inhibitor is about 10 000, as determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis and deduced from the amino acid composition.4. The inhibitory action is independent of pH, ionic strength or the presence of Mg2+ or ATP.5. The ATPase inhibitor is heat-stable, insensitive to urea but very sensitive to trypsin degradation.6. The Escherichia coli ATPase inhibitor does not inhibit the mitochondrial or the chloroplast ATPase.  相似文献   

3.
A myosin-like protein was purified from amoebae of the cellular slime mold Dictyostelium discoideum. The purification utilized newly discovered solubility properties of actomyosin in sucrose. The amoebae were extracted with a 30% sucrose solution containing 0.1 m-KCl, and actomyosin was selectively precipitated from this crude extract by removal of the sucrose. The myosin and actin were then solubilized in a buffer containing KI and separated by gel filtration.The purified Dictyostelium myosin bears a very close resemblance to muscle myosin. The amoeba protein contains two heavy chains, about 210,000 molecular weight each, and two classes of light chains, 16,000 and 18,000 molecular weight. Dictyostelium myosin is insoluble at low ionic strength and forms bipolar thick filaments. The myosin possesses ATPase activity that is activated by Ca2+ but not EDTA, and is inhibited by Mg2+; under optimal conditions the specific activity of the enzyme is 0.09 μmol P1/min per mg myosin.Dictyostelium myosin interacts with Dictyostelium actin or muscle actin, as shown by electron microscopy and by measurements of enzymatic activity. The ATPase activity of Dictyostelium myosin, in the presence of Mg2+ at low ionic strength, exhibits an average ninefold activation when actin is added.  相似文献   

4.
Calcium-Dependent Myosin from Insect Flight Muscles   总被引:2,自引:0,他引:2       下载免费PDF全文
Calcium regulation of the insect actomyosin ATPase is associated with the thin filaments as in vertebrate muscles, and also with the myosin molecule as in mollusks. This dual regulation is demonstrated using combinations of locust thin filaments with rabbit myosin and locust myosin with rabbit actin; in each case the ATPase of the hybrid actomyosin is calcium dependent. The two regulatory systems are synergistic, the calcium dependency of the locust actomyosin ATPase being at least 10 times that of the hybrid actomyosins described above. Likewise Lethocerus myosin also contains regulatory proteins. The ATPase activity of Lethocerus myosin is labile and is stabilized by the presence of rabbit actin. Tropomyosin activates the ATPase of insect actomyosin and the activation occurs irrespective of whether the myosin is calcium dependent or rendered independent of calcium.  相似文献   

5.
Dog myocardial myosin preparations, purified according to the procedures presented here, utilizing either one or two (NH4)2SO4 fractionations, contained no major contaminants which could be detected by disc gel electrophoresis, and exhibited high myosin ATPase activity. The low molecular weight components (light chains) were dissociated from the rest of the molecule by denaturing with urea; the chains were further purified by column chromatography. Procedures were a modification of those used for purification of skeletal muscle myosin light chains. According to immunoanalyses the two myocardial myosin light chains showed antigenic specificity.  相似文献   

6.
Reconstituted actomyosin (ATP phosphohydrolase, EC 3.6.1.3) (0.400 mg F-actin/mg myosin) in 10.0 muM ATP loses 96% of its specific ATPase activity when its reaction concentration is decreased from 42.0 mug/ml down to 0.700 mug/ml. The loss of specific activity at the very low enzyme concentrations is prevented by the addition of more F-actin to 17.6 mug/ml. It is concluded that at low actomyosin concentrations the complex dissociates into free myosin with a very low specific ATPase activity and free F-actin with no ATPase. The dissociation of the essential low molecular weight subunits of myosin from the heavy chains at very low actomyosin concentrations may be a contributing factor. Actomyosin has its maximum specific activity at pH 7.8-8.2. The Km for ATP is 9.4 muM, which is at least 20-fold greater than myosin's Km for ATP. The actin-activated ATPase of myosin follows hyperbolic kinetics with varying F-actin concentrations. The Km values for F-actin are 0.110 muM (4.95 mug/ml) at pH 7.4 and 0.241 muM (10.8 mug/ml) at pH 7.8. The actin-activated maximum turnover numbers for myosin are 9.3 s-1 at pH 7.4 and 11.6 s-1 at pH 7.8. The actomyosin ATPase is inhibited by KCl. This KCl inhibition is not competitive with respect to F-actin, and it is not a simple form of non-competitive inhibition.  相似文献   

7.
SYNOPSIS. Ultracentrifugal and electrophoretic experiments arereported on the subunit composition of myosin from skeletalmuscle of a benthic fish, Coryphaenoides species. Coryphaenoidesmyosin undergoes extensive association in concentrated KGI solutionsat neutral pH, but sedimentation equilibrium experiments indicatethe presence of a small fraction (3%) of monomeric myosin withmolecular weight approximately 440,000. At pH 11, some of theaggregated myosin is dissociated, and monomeric myosin is itselfdissociated into a heavy component (410,000 mol wt) and a lightcomponent (14,000 mol wt) that comprises 5–7% of the protein.The lialkali component of Coryphaenoides myosin yields a singlepredominant band on cellulose acetate electrophoresis and SDS-ureaelectrophoresis in 9% acrylamide gel. The stoichiometric evidenceindicates that Coryphaenoides myosin contains two heavy chains(205,000 mol wt) and two light chains (14,000 mol wt) that areequivalent with respect to net electrostatic charge and molecularweight. Preparations of myosin obtained by direct extractionfrom muscle mince and by dissociation of actomyosin extractedfrom muscle mince also contain 5% of a 47,000 mol wt componentpresumably actin), traces of 34–36,000 mol wt component,and about 5.7% of low molecular weight material (10,000–15,000)that probably represents contaminant protein, although the possibilityof denatured nivosin subunits cannot be excluded.  相似文献   

8.
G Vogel  R Steinhart 《Biochemistry》1976,15(1):208-216
A simple procedure for the purification of Mg2+-stimulated ATPase of Escherichia coli by fractionation with poly(ethylene glycols) and gel filtration is described. The enzyme restores ATPase-linked reactions to membrane preparations lacking these activities. Five different polypeptides (alpha, beta, gamma, delta, epsilon) are observed in sodium dodecyl sulfate electrophoresis. Freezing in salt solutions splits the enzyme complex into subunits which do not possess any catalytic activity. The presence of different subunits is confirmed by electrophoretic and immunological methods. The active enzyme complex can be reconstituted by decreasing the ionic strength in the dissociated sample. Temperature, pH, protein concentration, and the presence of substrate are each important determinants of the rate and extent of reconstitution. The dissociated enzyme has been separated by ion-exchange chromatography into two major fragments. Fragment IA has a molecular weight of about 100000 and contains the alpha, gamma, and epsilon polypeptides. The minor fragment, IB, has about the same molecular weight but contains, besides alpha, gamma, and epsilon, the delta polypeptide. Fragment II, with a molecular weight of about 52000, appears to be identical with the beta polypeptide. ATPase activity can be reconstituted from fragments IA and II, whereas the capacity of the ATPase to drive energy-dependent processes in depleted membrane vesicles is only restored after incubation of these two fractions with fraction IB, which contains the delta subunit.  相似文献   

9.
A preparation of ATPase from the membranes of Micrococcus lysodeikticus, solubilized and more than 95 %. pure, showed two main bands in analytical polyacrylamide gel electrophoresis. They did not correspond to isoenzymes because one band could be converted into the other by exposure to a mildly alkaline pH value. The conversion was paralleled by changes in molecular weight, circular dichroism and catalytic properties. Denaturation by pH at 25 °C was followed by means of circular dichroism, ultracentrifugation and polyacrylamide gel electrophoresis. A large conformational transition took place in the acid range with midpoints at about pH = 3.6 (I = 10?4 M), 4.3 (I = 0.03 M) and 5.3 (I = 0.1 M). The transition was irreversible. Strong aggregation of the protein occurred in this range of pH. The final product was largely random coil, but even at pH 1.5 dissociation into individual subunits was not complete. However, partial dissociation took place at pH 5 (I = 0.028 M). At this pH value the enzyme was inactive, but 20–30 % of the activity could be recovered when the pH was returned to 7.5.In the alkaline region the midpoint of the transition occurred near pH = 11 (I = 0.028 M). The pK of most of the tyrosine residues of the protein was about 10.9. The unfolding was irreversible and the protein was soon converted into peptide species with molecular weights lower than those determined for the subunits by gel clectrophoresis in the presence of sodium dodecyl sulphate. Conventional proteolysis did not account for the transformation.  相似文献   

10.
Mitochondrial ATPase and myosin ATPase have been localized in the muscle fibers of the rat diaphragm. The principal fiber type possesses a structure favorable for making this cytochemical separation with the light microscope. This small red fiber has numerous large, nearly spherical, mitochondria (ca. 1.5 µ) which are aggregated beneath the sarcolemma. In the interior of the fiber, smaller paired filamentous mitochondria (ca. 0.2 µ diameter) are aligned with the I band. Distribution of mitochondria was determined by sudanophilia, succinic dehydrogenase activity, and by direct examination with the electron microscope. ATPase activity at pH 7.2 is located in the large peripheral mitochondria and in the smaller mitochondria associated with the I band. The alignment of the small mitochondria results in a discrete cross-striated appearance in fibers stained for this enzymic activity. This mitochondrial ATPase does not cleave adenosine diphosphate or adenosine monophosphate; it is not sulfhydryl dependent and, in fact, is enhanced by the mercurial, p-hydroxymercuribenzoate. It requires magnesium ion and is stimulated by dinitrophenol. It is inhibited after formol-calcium fixation, but the residual activity is demonstrable by lengthening the incubation time. At pH 9.4 the ATPase is myofibrillar in origin and is located in the A bands. This myosin ATPase activity is sulfhydryl-dependent. Mercurial at this high pH has an interesting dual effect: it suppresses myosin ATPase but evokes mitochondrial ATPase activity. A third type of ATPase activity can be demonstrated, especially in the large white fibers. This activity occurs at pH 7.2 in the presence of cysteine. Its position is manifested cytochemically as a fine reticular pattern which surrounds individual myofibrils. The distribution suggests that it may originate in the sarcoplasmic reticulum.  相似文献   

11.
《The Journal of cell biology》1983,96(6):1761-1765
Tomato activation inhibiting protein (AIP) is a molecule of an apparent molecular weight of 72,000 that co-purifies with tomato actin. In an assay system containing rabbit skeletal muscle F-actin and rabbit skeletal muscle myosin subfragment-1 (myosin S-1), tomato AIP dissociated the acto-S-1 complex in the absence of Mg+2ATP and inhibited the ability of F-actin to activate the low ionic strength Mg+2ATPase activity of myosin S-1. At a molar ratio of 5 actin to 1 AIP, a 50% inhibition of the actin-activated Mg+2ATPase activity of myosin S-1 was observed. The inhibition can be reversed by raising the calcium ion concentration to 1 X 10(-5) M. The AIP had no effect on the basal low ionic strength Mg+2ATPase activity of myosin S-1 in the absence of actin. The protein did not bind directly to actin nor did it cause depolymerization or aggregation of F-actin but appeared, instead, to interact with the actin binding site on myosin S-1. Since AIP is a potent, reversible inhibitor of the rabbit acto-S-1 ATPase activity, it is postulated that it may be responsible for the low levels of actin activation exhibited by tomato F-actin fractions containing the AIP.  相似文献   

12.
Ribulose Diphosphate Carboxylase from Autotrophic Euglena gracilis   总被引:11,自引:6,他引:5       下载免费PDF全文
Ribulose 1,5-diphosphate carboxylase (RUDPcase) from autotrophically grown Euglena gracilis was purified to homogeneity as measured by analytical ultracentrifugation, polyacrylamide gel electrophoresis, and immunoprecipitation reactions. The enzyme represented about 9% of total protein and 24% of soluble protein in the autotrophic cell. Light-grown, heterotrophic cells seemed to contain considerably less RUDPcase. Native carboxylase from autotrophic Euglena showed an s20, w at low protein concentrations of 17 to 17.5, suggesting a molecular weight of >500,000 daltons. Upon denaturation, the enzyme dissociated into two subunits having different amino acid compositions and molecular weights of 59,000 and 12,000 daltons. Based upon the amino acid mass ratios, a quaternary organization of 7 to 8 large and 8 to 10 small subunits per native enzyme molecule was indicated.  相似文献   

13.
Purified actin does not stimulate the adenosine triphosphatase (ATPase) activity of Limulus myosin greatly. The ATPase activity of such reconstituted preparations is only about one-fourth the ATPase of myofibrils or of natural actomyosin. Actin preparations containing tropomyosin, however, activate Limulus myosin fully. Both the tropomyosin and the actin preparations appear to be pure when tested by different techniques. Tropomyosin combines with actin but not with myosin and full activation is reached at a tropomyosin-to-actin ratio likely to be present in muscle. Tropomyosin and actin of several different animals stimulate the ATPase of Limulus myosin. Tropomyosin, however, is not required for the ATPases of scallop and rabbit myosin which are fully activated by pure actin alone. Evidence is presented that Limulus myosin, in the presence of ATP at low ionic strength, has a higher affinity for actin modified by tropomyosin than for pure actin.  相似文献   

14.
Actin and Myosin in pea tendrils   总被引:12,自引:2,他引:10  
Ma YZ  Yen LF 《Plant physiology》1989,89(2):586-589
We demonstrate here the presence of actin and myosin in pea (Pisum sativum L.) tendrils. The molecular weight of tendril actin is 43,000, the same as rabbit skeletal muscle actin. The native molecular weight of tendril myosin is about 440,000. Tendril myosin is composed of two heavy chains of molecular weight approximately 165,000 and four (two pairs) light chains of 17,000 and 15,000. At high ionic strength, the ATPase activity of pea tendril myosin is activated by K+-EDTA and Ca2+ and is inhibited by Mg2+. At low ionic strength, the Mg2+-ATPase activity of pea tendril myosin is activated by rabbit skeletal muscle F-actin. Superprecipitation occurred after incubation at room temperature when ATP was added to the crude actomyosin extract. It is suggested that the interaction of actin and myosin may play a role in the coiling movement of pea tendril.  相似文献   

15.
We studied the effect of deuterium oxide (D2O) on contraction characteristics and ATPase activity of single glycerinated muscle fibers of rabbit psoas. D2O increased the maximum isometric force P0 by about 20%, while the force versus stiffness relation did not change appreciably. The maximum shortening velocity under zero load Vmax did not change appreciably in D2O, so that the force-velocity (P-V) curve was scaled depending on the value of P0. The Mg-ATPase activity of the fibers during generation of steady isometric force P0 was reduced by about 50% in D2O. Based on the Huxley contraction model, these results can be accounted for in terms of D2O-induced changes in the rate constants f1 and g1 for making and breaking actin-myosin linkages in the isometric condition, in such a way that f1/(f1+g1) increases by about 20%, while (f1+g1) remains unchanged. The D2O effect at the molecular level is discussed in connection with biochemical studies on actomyosin ATPase.  相似文献   

16.
1. The current assumption that the low ATPase activity of relaxed myofibrils is represented by the ATPase activity of myosin which has been set free during the dissociation of actomyosin was investigated. For this purpose, the ATPase activity of relaxed skeletal myofibrils of the rabbit and of the crab Maia squinado has been compared with the activity of contracted fibrils and of purified rabbit myosin in conditions of varying ionic strength, pH and concentrations of MgATP (i.e. MgATP2− + MgHATP) and Mg2+.

2. Contraction and relaxation of the fibrils was induced by changing the concentration of Ca2+ from about 5×10−5 to below 1×10−8 M.

3. In all conditions studied, the ATPase activity of relaxed fibrils was about 6–8 times less than that of the contracted fibrils, but it remained a typical actomyosin ATPase.

4. Quantitatively and qualitatively, this ATPase differs from the ATPase of myosin. For instance, its dependence on pH is the reverse of that of the myosin ATPase.

5. Calculation showed that the fibrils are dissociated by 90% in conditions of relaxation. Since the ATPase activity of myosin was merely some 2% of the actomyosin activity, the major part of the ATPase of fibrils, even at a dissociation of 90%, is bound to show the properties of the ATPase of actomyosin.

6. However, a dissociation of 90% cannot be distinguished from a dissociation of 100% by means of physical methods (viscosity, superprecipitation, resistance to stretch, etc.). This explains why physical methods indicate a “full” dissociation of actomyosin although, enzymatically, the ATPase is still of the actomyosin type.

7. The possible reasons are discussed for the discrepancy between the 100-fold increase in the ATP turnover and the 1000-fold increase in energy turnover of the living muscle during the transition from relaxed to active state. The most probable explanation seems to be an ATPase activity of myosin which is too high by a factor of ten as compared to the energy turnover of living muscle at the resting state. This high activity cannot be caused by a contamination of the myosin by Ca2+-insensitive actomyosin.  相似文献   


17.
The preparation and characterization of a Ca2+-sensitive actomyosin from chicken gizzard is described. The pH curve of the Mg2+ ATPase activity of the actomyosin was dominated by the activity of the myosin component, and this gave rise to the acid and alkaline optima. Skeletal muscle myosin showed a similar curve. Both the activation of myosin ATPase by actin, and the Ca2+ sensitivity were confined to the neutral pH region. The subunit composition of the Ca2+-sensitive actomyosin was interesting in that no components corresponding to skeletal muscle troponin were obvious. It is suggested that the activity of gizzard actomyosin is regulated by a protein on the thin filaments with a subunit weight of ~130,000.  相似文献   

18.
We tested the hypothesis that slowing of shortening velocity generated by type IIB fibers from hindlimb-unweighted (HU) rats resulted from a reduced ATPase activity and/or a reduction in the relative content of myosin light chain 3f isoform content (MLC3f). After 2, 3, and 4 wk of HU, maximal unloaded shortening velocity (Vo) of single permeabilized semimembranosus muscle fibers was determined by the slack test. Subsequently, the myosin heavy chain and the relative content of MLC were determined by SDS-PAGE. The ratio of MLC3f to MLC2f was determined by densitometric analysis. In addition, myofibrils were prepared from permeabilized fibers (soleus and semimembranosus muscles) and assayed for resting myosin ATPase and Ca2+-activated myosin ATPase. After HU, Vo declined by 28–40% and the MLC3f/MLC2f ratio decreased by 32 to 48%. A significant correlation between the relative amount of MLC3f and Vo was found (r = 0.48, P < 0.05). Resting myosin ATPase rates were not different between myofibrils prepared from corresponding muscles of control and HU rats (P = 0.86). Ca2+-activated myosin ATPase activities also were not different between myofibrils prepared from corresponding muscles of control and HU rats (P = 0.13). These data suggest that the slowing of maximal unloaded shortening velocity in type IIB fibers with HU is, at least in part, due to a relative change in the essential light chain composition, a decrease in the relative amount of MLC3f and most likely a concomitant increase in MLC1f. However, this reduction in Vo is independent of myosin ATPase activity. unloading shortening velocity; myosin light chain 3f  相似文献   

19.
Membranes enriched in ATP-dependent proton transport were prepared from suspension cultures of tomato cells (Lycopersicon esculentum Mill cv VF36). Suspension cultures were a source of large quantities of membranes from rapidly growing, undifferentiated cells. Proton transport activity was assayed as quench of acridine orange fluorescence. The activity of the proton translocating ATPase and of several other membrane enzymes was measured as a function of the cell culture cycle. The relative distribution of the enzymes between the 3,000, 10,000, and 100,000g pellets remained the same throughout the cell culture cycle, but yield of total activity and activity per gram fresh weight with time had a unique profile for each enzyme tested. Maximal yield of the proton translocating ATPase activity was obtained from cells in the middle logarithmic phase of growth, and from 50 to 90% of the activity was found in the 10,000g pellet. The proton translocating ATPase activity was separable from NADPH cytochrome c reductase and cytochrome c oxidase on a sucrose gradient. Proton transport activity had a broad pH optimum (7.0-8.0), was stimulated by KCl with a Km of 5 to 10 millimolar, stimulation being due to the anion, Cl, and not the cation, K+, and was not inhibited by vanadate, but was inhibited by NO3. The activity is tentatively identified as the tonoplast ATPase.  相似文献   

20.
Myosin was isolated from rat atrial and ventricular myocardium and examined during post-natal development and senescence. The post-natal increase of Ca2+-ATPase activity of myosin from rat atria did not run in parallel with changes of ATPase activity of myosin from the ventricles. Ca2+-ATPase of both atrial and ventricular myosin was activated at pH 9.5, when compared with the assay performed at pH 7.5. The myosin light-chain subunits in the ventricles were different from the light-chain subunits in the atria, when characterized by SDS-polyacrylamide gel electrophoresis and the pattern remained practically unchanged during development, with the exception of atrial myosin from new-born and very old rats which contained an additional protein of low molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号