首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: There is considerable confusion in the literature concerning impermeability of seeds with 'hard' seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. METHODS: The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. KEY RESULTS: A germination valve and a water channel are formed in the hilum-micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. CONCLUSIONS: Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae.  相似文献   

2.
BACKGROUND AND AIMS: Disruption of one or both of the bulges (water gap) in the seed coat adjacent to the micropyle is responsible for breaking physical dormancy (PY) in seeds of Ipomoea lacunosa and other taxa of Convolvulaceae. Hitherto, neither ontogeny of these bulges nor onset of PY together with anatomical development and maturation drying of the seed had been studied in this family. The aims of this study were to monitor physiological and anatomical changes that occur during seed development in I. lacunosa, with particular reference to ontogeny of the water gap. METHODS: Developmental anatomy (ontogeny) of seed coat and dry mass, length, moisture content, germinability and onset of seed coat impermeability to water were monitored from pollination to seed maturity. Blocking/drying and dye-tracking experiments were done to identify site of moisture loss during the final stages of seed drying. KEY RESULTS: Physiological maturity of seeds occurred 22 d after pollination (DAP), and 100 % of seeds germinated 24 DAP. Impermeability of the seed coat developed 27-30 DAP, when seed moisture content was 13 %. The hilar fissure was identified as the site of moisture loss during the final stages of seed drying. The entire seed coat developed from the two outermost layers of the integument. A transition zone, i.e. a weak margin where seed coat ruptures during dormancy break, formed between the bulge and hilar ring and seed coat away from the bulge. Sclereid cells in the transition zone were square, whereas they were elongated under the bulge. CONCLUSIONS: Although the bulge and other areas of the seed coat have the same origin, these two cell layers underwent a different series of periclinal and anticlinal divisions during bulge development (beginning a few hours after pollination) than they did during development of the seed coat away from the bulge. Further, the boundary between the square sclereids in the transition zone and the elongated ones of the bulge delineate the edge of the water gap.  相似文献   

3.
Seeds with a water‐impermeable seed coat and a physiologically dormant embryo are classified as having combinational dormancy. Seeds of Sicyos angulatus (burcucumber) have been clearly shown to have a water‐impermeable seed coat (physical dormancy [PY]). The primary aim of the present study was to confirm (or not) that physiological dormancy (PD) is also present in seeds of S. angulatus. The highest germination of scarified fresh (38%) and 3‐month dry‐stored (36%) seeds occurred at 35/20°C. The rate (speed) of germination was faster in scarified dry‐stored seeds than in scarified fresh seeds. Removal of the seed coat, but leaving the membrane surrounding the embryo intact, increased germination of both fresh and dry‐stored seeds to > 85% at 35/20°C. Germination (80–100%) of excised embryos (both seed coat and membrane removed) occurred at 15/6, 25/15 and 35/20°C and reached 95–100% after 4 days of incubation at 25/15 and 35/20°C. Dry storage (after‐ripening) caused an increase in the germination percentage of scarified and of decoated seeds at 25/15°C and in both germination percentage and rate of excised embryos at 15/6°C. Eight weeks of cold stratification resulted in a significant increase in the germination of scarified seeds at 25/15 and 35/20°C and of decoated seeds at 15/6 and 25/15°C. Based on the results of our study and on information reported in the literature, we conclude that seeds of S. angulatus not only have PY, but also non‐deep PD, that is, combinational dormancy (PY + PD).  相似文献   

4.
No study has yet been carried out on seed development in a cold desert sand dune papilionoid legume. Thus, our primary aims were to (i) monitor seed development in the cold desert sand dune species Eremosparton songoricum from the time of pollination to seed maturity, and (ii) compare seed development in this species with that in other species of papilionoid legumes. Fruit and seed size, mass and seed moisture content, and seed imbibition, germination, desiccation tolerance and water retention during development (pollination to seed maturity) were monitored in the papilionaceous shrub E. songoricum in the Gurbantunggut Desert of northwest China. The duration of seed development was 40 days. Seeds reached physiological maturity 28 days after pollination (DAP), at which time 58% of them germinated and they had developed desiccation tolerance. Seeds became impermeable 36–40 DAP, when their moisture content was about 10%. The final stage of maturation drying occurred via loss of water through the hilum. The developmental stages and their timing (DAP) in seeds of E. songoricum are generally similar to those reported for other papilionaceous legumes with a water‐impermeable seed coat (physical dormancy). In general, the developmental features of seeds with water‐impermeable coats at maturity do not appear to be specific to habitat or phylogeny.  相似文献   

5.
  • This study investigated seed germination of Cardiospermum halicacabum, a medicinally important invasive species.
  • We compared mass, moisture content (MC), dormancy and dormancy‐breaking treatments and imbibition and germination of scarified and non‐scarified seeds of C. halicacabum from a low‐elevation dry zone (DZ), low‐elevation wet zone (WZ1) and mid‐elevation wet zone (WZ2) in Sri Lanka to test the hypothesis that the percentage of seeds with water‐impermeable seed coats (physical dormancy, PY) decreases with increased precipitation.
  • Seed mass was higher in WZ2 than in DZ and WZ1, while seed MC did not vary among the zones. All scarified DZ, WZ1 and WZ2 and non‐scarified DZ and WZ1 seeds imbibed water, but only a few non‐scarified WZ2 seeds did so. When DZ and WZ1 seeds were desiccated, MC and percentage imbibition decreased, showing that these seeds have the ability to develop PY. GA3 promoted germination of embryos excised from fresh DZ and WZ1 seeds and of scarified WZ2 seeds.
  • At maturity, seeds from DZ and WZ1 had only physiological dormancy (PD), while those from WZ2 had combinational dormancy (PY+PD). Thus, our hypothesis was not supported. Since a high percentage of excised embryos developed into normal seedlings; this is a low‐cost method to produce C. halicacabum plants for medicinal and ornamental purposes.
  相似文献   

6.
The seed coat of Pisum elatius is normally impermeable to water. When seeds are dried in the absence of oxygen their coats are totally permeable to water. Structural differences are observed between permeable and impermeable seed coats. In the genus Pisum, species with normally impermeable seed coats have a high content of phenolics and of catechol oxidase, while seed coats of P. sativum contain very little catechol oxidase and have a very low content of phenolics. Such differences are not noted in the cotyledons. We hypothesized that during dehydration of seeds, oxidation of phenolic compounds in seed coats through catalysis of catechol oxidase in presence of O2 might render the seed coats impermeable to water.  相似文献   

7.
Patterns and kinetics of water uptake by soybean seeds   总被引:1,自引:0,他引:1  
Soybean [Glycine max (L.) Merr.] plants produce some seeds (called stone or impermeable seeds) that do not take up water for long periods of time. The present investigation confirmed that the stone seed trait is a feature of the seed coat: isolated embryos from both stone and permeable seeds took up water equally quickly. A whole, permeable seed typically imbibed water initially through its dorsal side, forming wrinkles in the seed coat and delivering water to the underlying cotyledons. Later, some lateral movement of water through the coat occurred, presumably through the air spaces of the osteosclereid layer. Imbibition by seeds was a two-phase process, the first dominated by hydration of the seed coat and the second by hydration of the cotyledons, which was rate-limited by the coat. When hydrated, coats of stone seeds were permeable to water but their hydraulic conductivity, as measured with a pressure probe, was smaller than that of coats from permeable seeds by a factor of five. Hydrated coats of both permeable and stone seeds showed weak osmometer properties.  相似文献   

8.
  • The seed coat composition of white (JS 335) and black (Bhatt) soybean (Glycine max (L.) Merr) having different water permeability was studied.
  • Phenols, tannins and proteins were measured, as well as trace elements and metabolites in the seed coats.
  • The seed coat of Bhatt was impermeable and imposed dormancy, while that of JS 335 was permeable and seeds exhibited imbibitional injury. Bhatt seed coats contained comparatively higher concentrations of phenols, tannins, proteins, Fe and Cu than those of JS 335. Metabolites of seed coats of both genotypes contained 164 compounds, among which only 14 were common to both cultivars, while the remaining 79 and 71 compounds were unique to JS 331 and Bhatt, respectively.
  • Phenols are the main compounds responsible for seed coat impermeability and accumulate in palisade cells of Bhatt, providing impermeability and strength to the seed coat. JS 335 had more cracked seed coats, mainly due to their lower tannin content. Alkanes, esters, carboxylic acids and alcohols were common to both genotypes, while cyclic thiocarbamate (1.07%), monoterpene alcohols (1.07%), nitric esters (1.07%), phenoxazine (1.07%) and sulphoxide (1.07%) compounds were unique to the JS 335 seed coat, while aldehydes (2.35%), amides (1.17%), azoles (1.17%) and sugar moieties (1.17%) were unique to Bhatt seed coats. This study provides a platform for isolation and understanding of each identified compound for its function in seed coat permeability.
  相似文献   

9.
The relationship between seed phenolics and appearance of seed coat–imposed dormancy during seed development in Cynoglossum officinale L. was studied. Up to 24 days after anthesis, seeds failed to germinate upon imbibition in Petri dishes at 25°C. At 44 days after anthesis, seeds were fully germinable; removal of seed coats did not improve their germination or O2 uptake. At 72 days after anthesis, mature seeds at the base of the cyme did not germinate unless their coats were removed. Removal of seed coat also stimulated O2 uptake at this harvest date. The methanol-soluble phenolic content of the seeds increased during the early stages of seed development, in both the seed coat and the embryo. As seed development continued, the methanol-soluble phenolic content of the embryo stabilized, but that of the seed coat declined. This decline was associated with an increase in the thioglycolic acid–soluble phenolics, presumably lignins, in the seed coat. These results suggest that polymerization of methanol–soluble phenolics into lignins in the seed coat during later stages of seed development renders the seed coat of C. officinale impermeable to 03, and thus keeps the seed dormant.  相似文献   

10.
Background and Aims: The water gap is an important morphoanatomical structure inseeds with physical dormancy (PY). It is an environmental signaldetector for dormancy break and the route of water into thenon-dormant seed. The Convolvulaceae, which consists of subfamiliesConvolvuloideae (11 tribes) and Humbertoideae (one tribe, monotypicHumberteae), is the only family in the asterid clade known toproduce seeds with PY. The primary aim of this study was tocompare the morphoanatomical characteristics of the water gapin seeds of species in the 11 tribes of the Convolvuloideaeand to use this information, and that on seed dormancy and storagebehaviour, to construct a phylogenetic tree of seed dormancyfor the subfamily. Methods: Scanning electron microscopy (SEM) was used to define morphologicalchanges in the hilum area during dormancy break; hand and vibratomesections were taken to describe the anatomy of the water gap,hilum and seed coat; and dye tracking was used to identify theinitial route of water entry into the non-dormant seed. Resultswere compared with a recent cladogram of the family. Key Results: Species in nine tribes have (a) layer(s) of palisade cells inthe seed coat, a water gap and orthodox storage behaviour. Erycibe(Erycibeae) and Maripa (Maripeae) do not have a palisade layerin the seed coat or a water gap, and are recalcitrant. The hilarfissure is the water gap in relatively basal Cuscuteae, andbulges adjacent to the micropyle serve as the water gap in theConvolvuloideae, Dicranostyloideae (except Maripeae) and theCardiochlamyeae clades. Seeds from the Convolvuloideae havemorphologically prominent bulges demarcated by cell shape inthe sclereid layer, whereas the Dicranostyloideae and Cardiochlamyeaehave non-prominent bulges demarcated by the number of sub-celllayers. The anatomy and morphology of the hilar pad follow thesame pattern. Conclusions: PY in the subfamily Convolvuloideae probably evolved in theaseasonal tropics from an ancestor with recalcitrant non-dormantseeds, and it may have arisen as Convolvulaceae radiated tooccupy the seasonal tropics. Combinational dormancy may havedeveloped in seeds of some Cuscuta spp. as this genus movedinto temperate habitats.  相似文献   

11.
A method for direct identification and quantitative measurementsof mixed or pure gases diffusing through seed coats was devisedto test the hypothesis that the dormancy of Xanthium pennsylvanicumseeds is caused by oxygen-impermeable seed coats. The diffusionof oxygen through seed coats of X. pennsylvanicum was shownto obey Fick's first law. Oxygen diffused through the lowerand upper seed coats at the same rate. Imbibed lower and upperseeds showed essentially equal oxygen uptake rates before radicleemergence. This uptake was lower than the rate at which oxygencan diffuse into the seed. Therefore upper seeds are not dormantbecause of seed coat restriction of oxygen diffusion. The relationshipsof oxygen with other factors involved in seed dormancy are discussed.  相似文献   

12.

Background and Aims

The Sapindaceae is one of 17 plant families in which seed dormancy is caused by a water-impermeable seed or fruit coat (physical dormancy, PY). However, until now the water gap in Sapindaceae had not been identified. The primary aim of this study was to identify the water gap in Dodonaea petiolaris (Sapindaceae) seeds and to describe its basic morphology and anatomy.

Methods

Seed fill, viability, water-uptake (imbibition) and other characteristics were assessed for D. petiolaris seeds. The location and structure of the water gap were investigated using a blocking experiment, time series photography, scanning electron microscopy and light microscopy. Dodonaea petiolaris seeds with PY also were assessed for loss of PY at four ecologically significant temperatures under moist and dry conditions. Seeds of three other species of Sapindaceae were examined for presence of a water gap.

Key Results

The water gap in D. petiolaris seeds was identified as a small plug in the seed coat adjacent to the hilum and opposite the area where the radicle emerges. The plug was dislodged (i.e. water gap opened = dormancy break) by dipping seeds in boiling water for 2·5 min or by incubating seeds on a moist substrate at 20/35 °C for 24 weeks. Layers of cells in the plug, including palisade and subpalisade, are similar to those in the rest of the seed coat. The same kind of water gap was found in three other species of Sapindaceae, Diplopeltis huegelii, Distichostemon hispidulus and Dodonaea aptera.

Conclusions

Following dormancy break (opening of water gap), initial uptake of water by the seed occurs only through the water gap. Thus, the plug must be dislodged before the otherwise intact seed can germinate. The anatomy of the plug is similar to water gaps in some of the other plant families with PY.  相似文献   

13.
The phenolic acids and abscisic acid (ABA) of sugar pine ( Pinus lambertiana Dougl.) seeds coats, separated by high-pressure liquid chromatography, were analyzed during 90 days stratification of the seeds. Although levels of seed coat phenolic acids and ABA declined significantly during, stratification, this decrease did not appear to be responsible for the loss of dormancy due to stratification. Lack of improved germination following washing, cracking, or removal of the seed coats, plus additional evidence, did not support a significant role for the seed coat in the dormancy of sugar pine seeds.  相似文献   

14.
红松种子休眠与种皮的关系   总被引:11,自引:0,他引:11  
本文探讨红松(Pinus koraiensis)种子休眠与其种皮之间的关系。夹破中种皮后,种子萌发率很低。在离体胚培养基中外加 ABA 及经 ABA 溶液浸泡种子的萌发实验表明,ABA也不是导致休眠的关键因素。试验确认红松种子存在透气障碍,即中、内种皮对氧气的进入都有阻碍作用。经低温砂藏后,种皮的阻碍作用明显减小。种皮的透气性障碍可能是诱导休限的主导因素。  相似文献   

15.

Background and Aims

Physical dormancy (PY) occurs in seeds or fruits of 18 angiosperm families and is caused by a water-impermeable palisade cell layer(s) in seed or fruit coats. Prior to germination, the seed or fruit coat of species with PY must become permeable in order to imbibe water. Breaking of PY involves formation of a small opening(s) (water gap) in a morpho-anatomically specialized area in seeds or fruits known as the water-gap complex. Twelve different water-gap regions in seven families have previously been characterized. However, the water-gap regions had not been characterized in Cucurbitaceae; clade Cladrastis of Fabaceae; subfamilies Bombacoideae, Brownlowioideae and Bythnerioideae of Malvaceae; Nelumbonaceae; subfamily Sapindoideae of Sapindaceae; Rhamnaceae; or Surianaceae. The primary aims of this study were to identify and describe the water gaps of these taxa and to classify all the known water-gap regions based on their morpho-anatomical features.

Methods

Physical dormancy in 15 species was broken by exposing seeds or fruits to wet or dry heat under laboratory conditions. Water-gap regions of fruits and seeds were identified and characterized by use of microtome sectioning, light microscopy, scanning electron microscopy, dye tracking and blocking experiments.

Key Results

Ten new water-gap regions were identified in seven different families, and two previously hypothesized regions were confirmed. Water-gap complexes consist of (1) an opening that forms after PY is broken; (2) a specialized structure that occludes the gap; and (3) associated specialized tissues. In some species, more than one opening is involved in the initial imbibition of water.

Conclusions

Based on morpho-anatomical features, three basic water-gap complexes (Types-I, -II and -III) were identified in species with PY in 16 families. Depending on the number of openings involved in initial imbibition, the water-gap complexes were sub-divided into simple and compound. The proposed classification system enables understanding of the relationships between the water-gap complexes of taxonomically unrelated species with PY.  相似文献   

16.
  • Seed dormancy is the key driver regulating seed germination, hence is fundamental to the seedling recruitment life-history stage and population persistence. However, despite the importance of physical dormancy (PY) in timing post-fire germination, the mechanism driving dormancy-break within seed coats remains surprisingly unclear. We suggest that seed coat chemistry may play an important role in controlling dormancy in species with PY. In particular, seed coat fatty acids (FAs) are hydrophobic, and have melting points within the range of seed dormancy-breaking temperatures. Furthermore, melting points of saturated FAs increase with increasing carbon chain length. We investigated whether fire could influence seed coat FA profiles and discuss their potential influence on dormancy mechanisms.
  • Seed coat FAs of 25 species within the Faboideae, from fire-prone and fire-free ecosystems, were identified and quantified through GC–MS. Fatty acid profiles were interpreted in the context of species habitat and interspecific variation.
  • Fatty acid compositions were distinct between species from fire-prone and fire-free habitats. Fire-prone species tended to have longer saturated FA chains, a lower ratio of saturated to unsaturated FA, and a slightly higher relative amount of FAs compared to fire-free species.
  • The specific FA composition of seed coats of fire-prone species indicated a potential role of FAs in dormancy mechanisms. Overall, the distinct FA composition between fire-prone and fire-free species suggests that chemistry of the seed coat may be under selection pressure in fire-prone ecosystems.
  相似文献   

17.
A decreased germination capacity of the seeds ofChenopodium bonus- henricut collected at high altitude is not due to an embryo dormancy. It is caused by a seed coat inhibition. The seed coats contain large amount of strongly oxidisable phenolic compounds which deprive the embryo of oxygen.  相似文献   

18.
Dormancy of Kosteletzkya virginica (L.) Presl. seeds is primarily due to the impermeability of the seed coat to water. The impermeable structure is assumed to be, in other Malvaceae, the palisade layer of the seed coat. The percentage of seeds capable of imbibition and germination increased with increasing time of storage at low temperatures, but the release from dormancy was not accompanied by decreased seed coat resistance to pressure. Under natural conditions, mechanical damage to the seed coat due to changes in temperature and/or abrasion may render the seeds water permeable. It is not clear what causes water permeability during storage under laboratory conditions. During seed maturation and drying, the inner epidermis of the tegmen partly separates from the rest of the seed coat and an air space, which makes the seed buoyant, is formed around the region of the chalazal cleft. The optimal temperature for germination of K. virginica seeds is between 28 and 30 C in light or darkness.  相似文献   

19.
In alpine species the classification of the various mechanisms underlying seed dormancy has been rather questionable and controversial. Thus, we investigated 28 alpine species to evaluate the prevailing types of dormancy. Embryo type and water impermeability of seed coats gave an indication of the potential seed dormancy class. To ascertain the actual dormancy class and level, we performed germination experiments comparing the behavior of seeds without storage, after cold-dry storage, after cold-wet storage, and scarification. We also tested the light requirement for germination in some species. Germination behavior was characterized using the final germination percentage and the mean germination time. Considering the effects of the pretreatments, a refined classification of the prevailing dormancy types was constructed based on the results of our pretreatments. Only two out of the 28 species that we evaluated had predominantly non-dormant seeds. Physiological dormancy was prevalent in 20 species, with deep physiological dormancy being the most abundant, followed by non-deep and intermediate physiological dormancy. Seeds of four species with underdeveloped embryos were assigned to the morphophysiologial dormancy class. An impermeable seed coat was identified in two species, with no additional physiological germination block. We defined these species as having physical dormancy. Light promoted the germination of seeds without storage in all but one species with physiological dormancy. In species with physical dormancy, light responses were of minor importance. We discuss our new classification in the context of former germination studies and draw implications for the timing of germination in the field.  相似文献   

20.
In contrast to previous reports, the endocarps ("seed coats") of Sambucus species are not impermeable to water; thus, the seeds do not have physical dormancy. Seeds of the North American species Sambucus canadensis and S. pubens and of the European species S. racemosa have spatulate shaped embryos that are ~60% fully developed (elongated) at seed maturity. The embryo has to extend to the full length of the seed to germinate. Embryos in freshly matured seeds of S. canadensis and in those of S. pubens grew better at 25°/15°C than at 5°C, whereas the rate of embryo growth in S. racemosa was higher at 5°C than at 25°/15°C. Seeds of all three species germinated to significantly higher percentages in light (14-h photoperiod) than in darkness. Fresh seeds of neither species germinated during 2 wk of incubation over a range of thermoperiods. Warm followed by cold stratification broke dormancy in seeds of S. canadensis and in those of S. pubens. Thus, seeds of these two North American species have deep simple morphophysiological dormancy (MPD). In comparison, seeds of the European species S. racemosa required a cold stratification period only for dormancy break, and thus they have intermediate complex MPD. GA(3) was much more effective in breaking dormancy in seeds of S. racemosa than it was in those of S. canadensis or S. pubens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号