首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mangroves are essential for maintaining local biodiversity and human well-being, and mangrove structure and functioning depend on the macrobenthos. Although exotic cordgrass, Spartina alterniflora, is an increasing threat to the mangrove wetlands (including the associated unvegetated shoals) of China, its effects on the macrobenthic fauna in such wetlands is poorly understood. The macrobenthic faunal communities were compared in (1) an Avicennia marina monoculture vs. an S. alterniflora-invaded A. marina stand (a mixture of A. marina and S. alterniflora) and in (2) an unvegetated shoal vs. an S. alterniflora-invaded shoal that had rapidly become an S. alterniflora monoculture in Zhanjiang, China. S. alterniflora invasion significantly increased plant density regardless of invaded habitat but significantly increased the contents of total carbon, organic matter, and total sulfur in the sediment only in the unvegetated shoal. The presence of S. alterniflora had little influence on indices of the macrobenthic faunal community in the A. marina monoculture, but significantly decreased the density and biomass of macrobenthic faunal community in the unvegetated shoal. These results indicate that the effects of S. alterniflora on the macrobenthic faunal community depend on which type of mangrove habitat is invaded. The composition of the macrobenthic faunal community was more similar between the invaded and non-invaded A. marina stand than between the invaded and non-invaded unvegetated shoal. Overall, the differences in the macrobenthic faunal community between invaded and non-invaded habitats were associated with increases in the sediment organic matter content and plant density.  相似文献   

2.
The bacterial diversity in a Brazilian non-disturbed mangrove sediment   总被引:1,自引:0,他引:1  
The bacterial diversity present in sediments of a well-preserved mangrove in Ilha do Cardoso, located in the extreme south of São Paulo State coastline, Brazil, was assessed using culture-independent molecular approaches (denaturing gradient gel electrophoresis (DGGE) and analysis of 166 sequences from a clone library). The data revealed a bacterial community dominated by Alphaproteobacteria (40.36% of clones), Gammaproteobacteria (19.28% of clones) and Acidobacteria (27.71% of clones), while minor components of the assemblage were affiliated to Betaproteobacteria, Deltaproteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. The clustering and redundancy analysis (RDA) based on DGGE were used to determine factors that modulate the diversity of bacterial communities in mangroves, such as depth, seasonal fluctuations, and locations over a transect area from the sea to the land. Profiles of specific DGGE gels showed that both dominant (‘universal’ Bacteria and Alphaproteobacteria) and low-density bacterial communities (Betaproteobacteria and Actinobacteria) are responsive to shifts in environmental factors. The location within the mangrove was determinant for all fractions of the community studied, whereas season was significant for Bacteria, Alphaproteobacteria, and Betaproteobacteria and sample depth determined the diversity of Alphaproteobacteria and Actinobacteria.  相似文献   

3.
We compared the mollusc assemblages of planted mono-specific Rhizophora mangroves of known different ages. As forest age increased, there was a shift in species composition, abundance and biomass of mollusc assemblages for all faunal types (infauna, epifauna and arboreal fauna). This shift was correlated with the changes in vegetation (increasing forest cover and above-ground biomass) and sediment characteristics (increasing organic matter and decreasing sand content). Some species dominate in young plantations (<10 years old; Pirenella cingulata) and in intermediate plantations (10–15 years old; Nerita polita), while other species only occur in mature plantations and natural mangrove stands (>15 years; Terebralia sulcata, Nerita planospira). The two former groups of species are mostly species of infaunal and epifaunal habitats, while the latter group is mainly composed of arboreal species. The shift in mollusc species composition and dominance may serve as a useful indicator of restoration patterns in planted mangroves.  相似文献   

4.
Primary successions of glacier forelands are unique model systems to investigate community dynamics and assembly processes. However, successional changes of plant and insect communities have been mainly analysed separately. Therefore, changes in plant–insect interactions along successional gradients on glacier forelands remain unknown, despite their relevance to ecosystem functioning. This study assessed how successional changes of the vegetation influenced the composition of the flower-visiting insect assemblages of two plant species, Leucanthemopsis alpina (L.) Heyw. and Saxifraga bryoides L., selected as the only two insect-pollinated species occurring along the whole succession. In addition, we investigated the links between reproductive output of these plants and pollinator abundance through experimental exclusion of pollinators. Plant community structure changed along the succession, affecting the distribution and the abundance of insects via idiosyncratic responses of different insect functional groups. L. alpina interacted with ubiquitously distributed pollinators, while S. bryoides pollinators were positively associated with insect-pollinated plant species density and S. bryoides abundance. With succession proceeding, insect assemblages became more functionally diverse, with the abundance of parasitoids, predators and opportunists positively related to an increase in plant cover and diversity. The reproductive output of both plant species varied among successional stages. Contrary to our expectation, the obligate insect-pollinated L. alpina showed a reproductive output rather independent from pollinator abundance, while the reproductive output of the self-fertile S. bryoides seemed linked to pollinator abundance. Observing ecological interactions and using functional traits, we provided a mechanistic understanding of community assembly processes along a successional gradient. Plant community diversity and cover likely influenced insect community assembly through bottom-up effects. In turn, pollinators regulate plant reproductive output through top-down control. We emphasise that dynamics of alpine plant and insect communities may be structured by biotic interactions and feedback processes, rather than only be influenced by harsh abiotic conditions and stochastic events.  相似文献   

5.
Macrocystis integrifolia and Lessonia trabeculata form vast kelp beds providing a three-dimensional habitat for a diverse invertebrate and fish fauna off northern Chile. Habitat modifications caused by the El Niño Southern Oscillation (ENSO) are likely to alter the inhabiting communities. The aim of this study was to reveal relationships between distinct habitat structures of a M. integrifolia kelp bed, a dense L. trabeculata kelp bed and L. trabeculata patches colonizing a barren ground, and the associated dominant macrobenthic key species. Seasonally 15 sampling units (10 m2 each) of any of the three habitats were monitored by SCUBA divers, which counted sporophytes and macroinvertebrates living between the latter. Furthermore, samples of plants were analysed in the laboratory to measure the morphological variables: total plant length, maximal holdfast diameter, stipe number, number of dichotomies per stipe, frond width and total drained wet mass. Multivariate analysis showed that the L. trabeculata kelp bed is denser, with a higher number of dichotomies per stipe, whereas sporophytes of M. integrifolia are longer with more stipes and wider fronds. Sporophytes of L. trabeculata patchily present on barren ground are shorter and have more stipes compared with those in the dense L. trabeculata kelp bed. Thus, the habitats provide different three-dimensional structures. The associated macrobenthic communities show a variable degree of overlapping; however, key faunal assemblages were distinguished for each habitat. Our study provides evidence that habitat diversity drives species diversity, the more homogeneous, monospecifically composed kelp bed habitats show comparatively low diversity, mainly caused by the dominance of the ascidian P. chilensis and T. tridentata in the M. integrifolia bed, and the mussel A. ater only present in the L. trabeculata bed. Species richness and diversity is highest in the heterogeneous habitat where L. trabeculata patches interrupt the barren ground. Our study revealed morphological differences between M. integrifolia and L. trabeculata kelp beds reflected in stipe number, plant length, dichotomies per stipe, and wet mass, which influence the composition of the associated characteristic fauna and its functional relations i.e. T. niger and T. tridentata.  相似文献   

6.
This study was carried out on the “Faro/Ancão” artificial reef (AR), located off Faro, deployed in May 2003. We aimed to characterise early macrobenthic community colonisation of two concrete AR groups located at different depths (16 m and 20 m depth) and to test the effect of reef structure on these communities. The non-colonial organisms were counted; barnacles and colonial species were quantified using biomass. Multivariate analyses indicated that early macrobenthic communities (6 months of immersion) were affected by depth, and that barnacles and colonial species were also affected by reef structure. Univariate analyses showed that the biomass of barnacles and colonial species was significantly different among reefs and layers of modules. Both AR groups were characterised by the species Balanus amphitrite, Gregariella subclavata, Musculus cf. subpictus, Paleanotus cf. bellis and Syllidia armata. Jassa marmorata and Bugula neritina were characteristic species at 16 m depth, particularly on the AR Upper layer of modules, whereas Anomia ephippium was particularly common at 20 m, especially on the Lower layer of modules.  相似文献   

7.

Key message

High root productions, especially in the fine roots, estimated by ingrowth cores were confirmed in mangrove forests. The zonal variation in root production was caused by inundation regime and soil temperature.

Abstract

Mangrove forests have high net primary productivity (NPP), and it is well known that these trees allocate high amounts of biomass to their root systems. In particular, fine root production (FRP) comprises a large component of the NPP. However, information on root production remains scarce. We studied FRP in three zones (Avicennia, Rhizophora, and Xylocarpus) of a mangrove forest in eastern Thailand using ingrowth cores (0–30 cm of soil depth). The root biomass and necromass were periodically harvested from the cores and weighed during the one-year study. The FRP was determined by summation of the fine root biomass (FRB) and root necromass. The results showed that the FRB clearly increased in the wet and cool dry seasons. Magnitude of FRB in the Rhizophora and Xylocarpus zones was 1171.07 and 764.23 g/m2/30 cm, respectively. The lowest FRB (292.74 g/m2/30 cm) was recorded in the Avicennia zone locating on the river edge where there is a greater frequency of inundation than the other zones. Root necromass was high in the Rhizophora and Xylocarpus zones, and accumulated noticeably when soil temperatures rapidly declined during the middle of the wet season to cool dry season. However, root necromass in the Avicennia zone varied within a small range. We attributed the small accumulation of root necromass in the Avicennia zone to the relative high soil temperature that likely caused a high root decomposition rate. The average FRP (3.403–4.079 ton/ha/year) accounted for 74.4, 81.5, and 92.4 % of the total root production in the Avicennia, Rhizophora, and Xylocarpus zone, respectively. The root production and causative factors (i.e., soil temperature and inundation regime) are discussed in relation to the carbon cycle of a mangrove forest.
  相似文献   

8.
Intertidal mudflats are unique, highly productive ecosystems. Boleophthalmus pectinirostris and Periophthalmus magnuspinnatus are common fish species that are distributed in the intertidal mudflats of the Yangtze Estuary in China. They perform important ecological functions and have different feeding strategies. Herein, we studied the intestinal microbial diversity and structure of wild B. pectinirostris and P. magnuspinnatus with different sexes and feeding strategies during their breeding season. Gut samples of B. pectinirostris and P. magnuspinnatus individuals (female:male ratio?=?1:1) were collected and subjected to high-throughput DNA sequencing. The results showed Proteobacteria was the most dominant phylum in all the four sample groups: 73.5% in the males and 52.6% in the females of B. pectinirostris and 40.2% in the males and 40.9% in the females of P. magnuspinnatus. Aeromonas, Shewanella, Halomonas, and Acinetobacter of the phylum Proteobacteria were dominant genera in all the sample groups and accounted for 62.13% of the ten dominant genera. The diversity of the intestinal microflora in the omnivorous P. magnuspinnatus was significantly higher (P?<?0.05) than that in the herbivorous B. pectinirostris. Beta diversity, including PCoA and UPGMA of unweighted UniFrac distances, showed that B. pectinirostris samples were clustered together, and P. magnuspinnatus samples were clustered together, implying the effect of the feeding habits on the microbial community structure is more considerable than that of sex.  相似文献   

9.
In 2011 and 2013, a field experiment was conducted in a winter wheat field at Adenstedt (northern Germany) to investigate biocontrol and interaction effects of important members of the soil food web (Lumbricus terrestris, Annelida; Folsomia candida, Collembola and Aphelenchoides saprophilus, Nematoda) on the phytopathogenic fungus Fusarium culmorum in wheat straw. Therefore, soil fauna was introduced in mesocosms in defined numbers and combinations and exposed to either Fusarium-infected or non-infected wheat straw. L. terrestris was introduced in all faunal treatments and combined either with F. candida or A. saprophilus or both. Mesocosms filled with a Luvisol soil, a cover of different types of wheat straw and respective combinations of faunal species were established outdoors in the topsoil of a winter wheat field after harvest of the crop. After a time span of 4 and 8 weeks, the degree of wheat straw coverage of mesocosms was quantified to assess its attractiveness for the soil fauna. The content of Fusarium biomass in residual wheat straw and soil was determined using a double-antibody sandwich (DAS)-ELISA method. In both experimental years, the infected wheat straw was incorporated more efficiently into the soil than the non-infected control straw due to the presence of L. terrestris in all faunal treatments than the non-infected control straw. In addition, Fusarium biomass was reduced significantly in all treatments after 4 weeks (2011: 95–99%; 2013:15–54%), whereupon the decline of fungal biomass was higher in faunal treatments than in non-faunal treatments and differed significantly from them. In 2011, Fusarium biomass of the faunal treatments was below the quantification limit after 8 weeks. In 2013, a decline of Fusarium biomass was observed, but the highest content of Fusarium biomass was still found in the non-faunal treatments after 8 weeks. In the soil of all treatments, Fusarium biomass was below the quantification limit. The earthworm species L. terrestris revealed a considerable potential as an effective biocontrol agent contributing to a sustainable control of a Fusarium plant pathogen in wheat straw, thus reducing the infection risk for specific plant diseases in arable fields.  相似文献   

10.
Macrophytes are common inhabitants of lotic environments and, depending on their morphological traits, possess adaptations that provide shelter to aquatic invertebrates against strong river flow and predators. They may also be used as a food source by macroinvertebrates. The main goal of this study was to determine the relationship between the red alga Paralemanea mexicana and its role as a shelter and/or food source for lotic macroinvertebrates. We also conducted research on the role of microhabitat and morphological variations of the alga in determining macroinvertebrate taxon abundance, diversity, and functional group composition in a high-current velocity river. Results showed that changes in cover and morphology of P. mexicana were mostly correlated with river current velocity, irradiance, and seasonal variation. In turn, these were related to changes in abundance and diversity of the associated macroinvertebrate community. In addition, six macroinvertebrate functional feeding groups were evaluated for associations with the red alga: filtering and gathering collectors, piercers, scrapers, herbivore shredders, and predators. The results showed that the Trichoptera Hydroptilidae genera Ochrotrichia and Metrichia use P. mexicana as a food source and case-building material. The Trichoptera Glossosomatidae Mortoniella uses the alga as a substrate. The biotic interactions between P. mexicana and associated macroinvertebrates reveal the importance of macrophytes as purveyors of substrate, as food and shelter for macroinvertebrates, and also as promoters of macroinvertebrate community diversity. In addition, it was shown that macroinvertebrate herbivory likely facilitates vegetative propagation of the red alga through increased release and germination of carpospores and new gametophytes.  相似文献   

11.
The species composition and spatial and trophic structures of the macrobenthos communities of the Ermolinskaya Bay were studied, and the main changes that had occurred since previous explorations (the 1960s) were analyzed. The most significant changes in the spatial structure of the macrobenthos community (species diversity, population density and biomass, and similarities of the species’ distribution) were observed with regard to the sea level zone: the most pronounced at the upper littoral, followed by the middle littoral, lower littoral, and sublittoral. The longitudinal gradient of the community structure (from the innermost area seaward) was pronounced less strongly. Altogether, four macrobenthos communities can be identified in Ermolinskaya Bay; they differ in species composition, diversity, population density and biomass, and trophic structure: (1) community of the upper littoral with the dominance of collecting deposit feeders, Hydrobia ulvae, and scrapers, Littorina saxatilis; (2) community of the middle littoral with the prevalence of deposit feeders, Hydrobia ulvae and Macoma balthica, seston feeders, Mya arenaria, and, to a lesser extent, Mytilus edulis; (3) community of the lower littoral with the domination of the filtering organisms, Mytilus edulis, to a lesser extent collecting deposit feeders, Hydrobia ulvae and Macoma balthica, and scrapers, Littorina littorea; and (4) community of the sublittoral, where the leading positions belong to the group of collecting deposit feeders, Macoma balthica, to a lesser extent also Hydrobia ulvae (in the innermost area) and Capitella capitata, Arenicola marina (in the marine part of the bay). The gradual siltation of the bay and the reduction of its connection to the sea have led to the development of a littoral complex of species in the sublittoral, whereas the species typical at the sublittoral in the 1960s are now mainly found at the outlet of the bay.  相似文献   

12.
The effect of altitude and season on abundance and diversity of the culturable heterotrophic bacterial and yeast community was examined at four forest sites in the Italian Alps along an altitude gradient (545–2000 m). Independently of altitude, bacteria isolated at 0 °C (psychrophiles) were less numerous than those recovered at 20 °C. In autumn, psychrophilic bacterial population increased with altitude. The 1194 bacterial strains were primarily affiliated with the classes Alpha-, Beta-, Gammaproteobacteria, Spingobacteriia and Flavobacteriia. Fifty-seven of 112 operational taxonomic units represented potential novel species. Strains isolated at 20 °C had a higher diversity and showed similarities in taxa composition and abundance, regardless of altitude or season, while strains isolated at 0 °C showed differences in community composition at lower and higher altitudes. In contrast to bacteria, yeast diversity was season-dependent: site- and altitude-specific effects on yeast diversity were only detected in spring. Isolation temperature affected the relative proportions of yeast genera. Isolations recovered 719 strains, belonging to the classes Dothideomycetes, Saccharomycetes, Tremellomycetes and Mycrobotryomycetes. The presence of few dominant bacterial OTUs and yeast species indicated a resilient microbial population that is not affected by season or altitude. Soil nutrient contents influenced significantly abundance and diversity of culturable bacteria, but not of culturable yeasts.  相似文献   

13.
Here, we investigated the patterns of microbial nitrogen cycling communities along a chronosequence of soil development in a salt marsh. The focus was on the abundance and structure of genes involved in N fixation (nifH), bacterial and archaeal ammonium oxidation (amoA; AOB and AOA), and the abundances of genes involved in denitrification (nirS, nirK, nosZ). Potential nitrification and denitrification activities were also measured, and increases in nitrification were found in soils towards the end of succession, whereas denitrification became maximal in soils at the intermediate stages. The nifH, nirK and nirS gene markers revealed increases in the sizes of the respective functional groups towards the intermediate stage (35 years), remaining either constant (for nifH) or slightly declining towards the latest stage of succession (for nirK and nirS). Moreover, whereas the AOB abundance peaked in soils at the intermediate stage, that of AOA increased linearly along the chronosequence. The abundance of nosZ was roughly constant, with no significant regression. The drivers of changes in abundance and structure were identified using path analysis; whereas the ammonia oxidizers (AOA and AOB) showed patterns that followed mainly N availability, those of the nitrogen fixers followed plant diversity and soil structure. The patterns of denitrifiers were group-dependent, following the patterns of plant diversity (nirK and nirS) and belowground shifts (nosZ). The variation observed for the microbial groups associated with the same function highlights their differential contribution at different stages of soil development, revealing an interplay of changes in terms of niche complementarity and adaptation to the local environment.  相似文献   

14.
Declines in biodiversity can be caused by intense land-use or by land abandonment. Traditional plant-gathering in Japan has declined or has often been abandoned in recent decades. However, little is known about how traditional plant-gathering affects the diversity, productivity, and composition of plant communities. Traditionally, bracken (Pteridium aquilinum subsp. japonicum) served as a natural resource in Japan, and people continue to harvest it in some places. We conducted a 4-year field experiment in a cool-temperate grassland on the Sugadaira Plateau, Nagano Prefecture, comparing a continuous harvesting treatment of the dominant Pteridium with a non-harvested control. We wanted to determine whether Pteridium harvesting would alter plant species richness, total productivity, and plant community composition. Local people harvested Pteridium shoots in a 1800 m2 treatment area each year from 2011 to 2014. By 2014, species richness and diversity (Shannon index) had significantly increased while Pteridium abundance (number of shoots and biomass) had decreased in the harvest treatment when compared with the control. Total productivity, measured as combined aboveground biomass of all vascular plant species, was similar between the treatment and control; however, community composition differed. Harvested plots had a higher biomass of erect-formed, invasive and native species, but lower biomass of small-formed species when compared with the control. Our results suggest that traditional plant-gathering, such as periodic Pteridium harvesting can result in increases in plant diversity while total productivity is maintained. However, long-term monitoring is recommended to detect any subsequent undesirable changes in the community, such as increases in invasive species populations.  相似文献   

15.
Diet composition and feeding habits of the burrowing fish Parapocryptes serperaster were investigated on different fish sizes across dry and wet seasons in the Mekong Delta, Vietnam. The gut length was positively related to fish length; the gut length was 1.57 ± 0.30 times the total length, which is in the range for omnivore (1–3). Detritus, algae and copepods were the main food items in the foregut. The diet composition showed seasonal and intraspecific variations in all fish sizes. The diet diversity varied with fish size and the dry-wet season pattern, and small fish had a higher diet diversity than large fish. The diet evenness index and Costello graphic analysis indicate that this goby is a generalist feeder and feeds mainly on detritus, followed by diatoms, and could obtain food from the bottom and the water column. The feeding intensity of P. serperaster was higher in the wet season than in the dry season, but was not significantly affected by fish size. The P. serperaster fed on Navicula spp. in the wet season, but on Nitzschia spp. in the dry season. The understanding of food and feeding habits of P. serperaster contributes to our knowledge on feeding adaptation of small-bodied bottom-dwelling gobies to the mud flat habitats in tropical monsoonal regions.  相似文献   

16.
The canopy of forests has been considered “the last biotic frontier,” and study of its elements is very important in explaining the global functionality in ecosystems. Epiphytic plants and arthropods are essential elements in canopy habitats, and their relationships have been studied in order to understand the high diversity in tropical forests. Nevertheless, there are few studies on this development in temperate forests. The arthropod community was studied during the rainy and dry seasons at two altitudes, and a total of 240 T. violacea plants of three sizes were collected from Abies religiosa and Quercus spp. host trees. A total of 163,043 arthropods were collected and about 200 morphospecies identified. The highest abundance was obtained during the dry season, while high diversity was found during the rainy season. There was a significant effect of plant size, host trees and collecting season on abundance and diversity, and there were seasonal variations in community composition. The community hosted on A. religiosa epiphytes showed higher abundance and density than that of Quercus.  相似文献   

17.
Antarctic benthos has been a main target in Antarctic research, but very few quantitative studies have been carried out in the littoral zone, which may be seasonally covered by macroalgae. In this work, we studied (1) cover and biomass of the macroalgae Iridaea cordata and Adenocystis utricularis, and (2) composition of macrobenthic assemblage associated with these macroalgal species at three locations at King George Island: Mareograph Beach (1 M), Tank’s Bay (2R) and Ardley Bay (3R). Iridaea cordata was collected by completely detaching the algae from the substrate, while A. utricularis was scraped. Adenocystis utricularis covered more than 80 % of the substrate at all locations, while coverage of Iridaea cordata was below 53 % or absent (3R). Fresh biomass of I. cordata was 0.8–61.4 g/individual and 4.7–93.0 g/100 cm2 for A. utricularis. The assemblage associated with both macroalgae differed significantly between sites. The studied fauna was composed mainly of amphipods, gastropods and bivalves. Species diversity was higher in the community associated with A. utricularis. A total of ~27 ind/g DW were found associated with I. cordata, while ~112 ind/g DW were found associated with A. utricularis. The most abundant groups associated with I. cordata were amphipods at 1 M (57 %) and gastropods at 2R (46 %). Both groups were responsible for the dissimilarity between localities (62.50 %). The most abundant groups associated with A. utricularis were the gastropods at all localities reaching up to 82 % at 1 M. This study provides a first baseline on the diversity and abundance of benthic assemblages associated with intertidal macroalgae in the southwest of King George Island.  相似文献   

18.
The intentionally introduced Pontogammarus robustoides is the most successful amphipod invader of Lithuanian inland waters and has become established in large lakes. Its impact on littoral invertebrate communities was studied by comparing similar habitats across lakes that harbour or are devoid of the invader. In habitats where P. robustoides is well established and numerous, it significantly reduces species richness and community diversity. Moderate pontogammarid density in habitats that can sustain the native gammarid Gammarus lacustris, however, revealed no negative impact on diversity metrics. Among the lakes studied, the benthic biomass did not differ in invaded and uninvaded habitats. The biomass of indigenous invertebrates (excluding chironomids, which exhibited high lake-specific biomass variation) was lower in the places with well-established P. robustoides. A detrimental impact was observed upon the native isopod Asellus aquaticus and a negative correlation with most of the higher taxa of native invertebrates. In the invaded lake habitats that favour P. robustoides, a change in community structure and a decrease in diversity up to twofold or more are to be expected.  相似文献   

19.
Features of the composition and structure of the summer zooplankton in the pelagic zone of Lake Sevan in years that were characterized by different abundances and biomasses of fish are described. It is shown that the species diversity of the community and the specific number of species of zooplankteurs, the quantity of Copepods in the total abundance and biomass of zooplankton, as well as the value of the Shannon index and the trophic coefficient, increased upon an increase in the fish abundance. At the same time, the total biomass of zooplankton and biomass of cladocerans decreased, among which the density and biomass of the larger and more colored Daphnia (Ctenodaphnia) magna Straus decreased, but the density and biomass of D. (Daphnia) hyalina Leydig and Diaphаnosoma brachyurum Lievin increased.  相似文献   

20.
Poly- and perfluoroalkyl compounds (PFASs) are ubiquitous in the environment, but their influences on microbial community remain poorly known. The present study investigated the depth-related changes of archaeal and bacterial communities in PFAS-contaminated soils. The abundance and structure of microbial community were characterized using quantitative PCR and high-throughput sequencing, respectively. Microbial abundance changed considerably with soil depth. The richness and diversity of both bacterial and archaeal communities increased with soil depth. At each depth, bacterial community was more abundant and had higher richness and diversity than archaeal community. The structure of either bacterial or archaeal community displayed distinct vertical variations. Moreover, a higher content of perfluorooctane sulfonate (PFOS) could have a negative impact on bacterial richness and diversity. The rise of soil organic carbon content could increase bacterial abundance but lower the richness and diversity of both bacterial and archaeal communities. In addition, Proteobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Acidobacteria were the major bacterial groups, while Thaumarchaeota, Euryarchaeota, and unclassified Archaea dominated in soil archaeal communities. PFASs could influence soil microbial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号