首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The replication of the bacteriocinogenic factor Clo DF13 was studied in Escherichia coli mutants which lack either DNA polymerase I (polA1 and resA1 mutants), DNA polymerase II (polB1 mutant) or DNA polymerase III (dnaE mutant). DNA polymerase I is required for Clo DF13 replication. The Clo DF13 factor, however, can be maintained in a strain carrying the polA107 mutation and thus lacking the 53 exonucleolytic activity of DNA polymerase I. DNA polymerase II is not required for transfer replication and maintenance of the Clo DF13 plasmid. In the temperature sensitive dnaE mutant, Clo DF13 can replicate at the nonpermissive temperature during the first two hours after the temperature shift from 30°C to 43°C. During this period DNA polymerase III seems not to be essential for Clo DF13 replication.  相似文献   

2.
The subject RNA models the binding site for the coat protein of the R17 virus, as well as the ribosome recognition sequence for the R17 replicase gene. With an RNA of this size, overlaps among the sugar protons complicate assignments of the 1H NMR spectrum. The cross peaks that overlap significantly in 2D-NOE spectra can frequently be resolved by introducing a third, in our approach the double-quantum, frequency axis. In particular the planes in a 3D-NOE/2QC spectrum perpendicular to the 2Q axis are extremely useful, showing a highly informative repeating NOE-2Q pattern. In this experiment substantial J-coupling confers special advantages. This always occurs for geminal pairs (H5/H5 for RNA plus H2/H2 for DNA), as well as for H5/H6, for H3/H4 in sugars with substantial populations of the N-pucker, for H1/H2 for S-puckered sugars, and usually for H2/H3. For the 24-mer RNA hairpin the additional information from the 3D-NOE/2QC spectrum allowed assignment of all of the non-exchangeable protons, eliminating the need for stable-isotope labeling.  相似文献   

3.
APS-kinase (ATP: adenylylsulphate 3-phosphotransferase, EC 2.7.1.25) has been purified from the alga Chlamydomonas reinhardii, strain CW 15 by means of chromatofocussing and affinity chromatography. The isolated protein showed an apparent molecular mass of 44,000 upon sodium dodecylsulphate polyacrylamide gel electrophoresis. The transfer of phosphate groups from ATP onto APS required a pH of 6.8, the presence of Mg2+ ions and a reducing thiol. Its catalytical activity was destroyed by sulphhydryl group inhibitors (phenyl-mercuri compounds, dithiopyridine) and alkylating reagents.The purified enzyme attained a V max of 360 pkat under optimal reaction conditions declining to v limit of 260 pkat in the presence of excess substrate APS. This sensitivity towards changes in substrate concentrations was parallelled by a high affinity and specificity: apparent K m APS: 2 · 10-6 mol · l-1, and K m ATP: 7 · 10-6 mol · l-1. The enzyme was found specific for ATP, d-ATP and CTP, while UTP, ITP and GTP showed marginal activity. The Hill coefficients suggested 4 binding sites for APS and 1 for ATP. Excessive APS resulted in a negative slope indicating 3 inhibiting sites of the substrate.Abbreviations APS Adenosine 5-phosphosulphate - dATP 2-deoxyadenosine 5-triphosphate - p-CMB p-chloromercuribenzoate - DTE dithioerythritol - DTT dithiothreitol - -MSH -mercaptoethanol - PAPS 3-phosphoadenosine 5-phosphosulphate - PAP 3-phosphoadenosine 5-phosphate - SDS sodium dodecyl sulphate This work is part of a dissertation submitted by H. G. J., Bochum 1982  相似文献   

4.
The conformations and internal dynamics of the deoxyriboses of d(CGTACG)2 have been determined by NMR measurements at 15°C. The conformations of the sugars were determined using coupling constants and time-dependent NOE measurements. The J-splitting patterns of the H1, H2 and H2 resonances show that the sugars exist as mixtures of conformations near C2 endo (south) and C3 endo (north). The population of the south conformation was larger for the purines than for the pyrimidines. The overall tumbling time of the molecule in 2H2O was determined from measurements of the cross relaxation rate constant for the H6-H5 vectors of the two cytosine residues. Order parameters were determined for the H1-H2, H2-H2 and H2-H3 vectors from measurements of cross relaxation rate constants, making use of multi-spin analysis of the NOE build up rates. These order parameters are weakly dependent of the base sequence, and except for the terminal Cyt 1 residue, the H2-H2 and H2-H3 vectors are near unity, indicating the absence of rapid pseudorotation on the nanosecond time scale. However, the order parameter for the H1-H2 vector is significantly smaller than expected for rapid pseudorotation indicating the presence of other motions of the sugars. This motion must be about an effective axis parallel to the H2-H vector, and to occur with an angular fluctuation of about 30°.The results show that to obtain highly refined structures for nucleic acids by NMR the effects of spin diffusion and motional averaging cannot be ignored.Some of this work was presented as a poster at the 30th Experimental NMR Conference at Asilomar, California 1989  相似文献   

5.
An Arabidopsis mutant rnr1, which has a defect in the basic genetic system in chloroplasts, was isolated using the screening of the high chlorophyll fluorescence phenotype. Whereas chlorophyll fluorescence and immunoblot studies showed the mutant had reduced activities of photosystems I and II, molecular characterization of the mutant suggested that a T-DNA insertion impaired the expression of a gene encoding a RNase R family member with a targeting signal to chloroplasts. Since RNase R family members have a 3–5 exoribonuclease activity, we examined the RNA profile in chloroplasts. In rnr1 the intercistronic cleavage between 23S and 4.5S rRNA was impaired, and a significant reduction in rRNA in chloroplasts was found, suggesting that RNR1 functions in the maturation of chloroplast rRNA. The present results suggest that defects in the genetic system in chloroplasts cause high chlorophyll fluorescence, pale green leaf, and marked reduction in the growth rate, whereas the levels of some chloroplast RNA were higher in rnr1 than in the wild-type.  相似文献   

6.
Summary Escherichia coli rnh mutants lacking ribonuclease H (RNase H) activity can tolerate deletion of the origin of DNA Replication (oriC) and transposon-insertional inactivation of an initiator gene (dnaA:Tn10). Introduction of the recA200 allele encoding a thermolabile RecA protein intornh dnaA: Tn10 and rnh oriC mutants strains rendered DNA synthesis and colony formation of these mutants temperature sensitive. The temperature sensitivity and the broth sensitivity (Srm) of the rnh dnaA: Tn10 recA200 strain was suppressed by the presenceof plasmids (pBR322 derivatives) carrying dnaA +only when the intact oriC site was present on the chromosome. Lack of RNase H activity neither promoted replication of minichromosomes (pOC24 and pasn20) in the absence of required DnaA+ protein nor inhibited dnaA +–dependent minichromosome replication. These results led to the conclusion that RNase H is not directly involved in the events leading to initiation of DNA replication at oriC. Rather, it functions as a specificity factor by eliminating certain forms of RNA-DNA hybrids which could otherwise be used to prime DNA replication at sites other than oriC.  相似文献   

7.
The signal-transduction system that mediates the melanosome-aggregating response in melanophores of the black-moor goldfish, Carassius auratus, was investigated by examining the inhibition of adenylate cyclase activity mediated by -adrenoceptors in cultured cells. When the melanophores were incubated with 1 mmol·l-1 3-isobutyl-1-methylxanthine for 5 min, the intracellular level of cyclic adenosine-3,5-monophosphate increased two- to three-fold. Norepinephrine at 100 nmol·l-1 and naphazoline at 1 mol·l-1 inhibited the 3-isobutyl-1-methylxanthine-induced accumulation of cyclic adenosine-3,5-monophosphate in the cells in both the presence and the absence of isoproterenol, a -adrenergic agonist. Methoxamine and phenylephrine also reduced the extent of accumulation of cyclic adenosine-3,5-monophosphate, but only when they were present at relatively high concentrations (above 100 mol·l-1). The range of concentrations at which norepinephrine inhibited the accumulation of cyclic adenosine-3,5-monophosphate was consistent with the range at which it induced the aggregation of melanosomes. Pretreatment of the cells with pertussis toxin (1 g·ml-1) for 15 h or treatment with 100 nmol·l-1 yohimbine (an 2-adrenergic antagonist) inhibited the effects of the -adrenergic agonists on both the aggregation of melanosomes and the 3-isobutyl-1-methylxanthine-induced accumulation of cyclic adenosine-3,5-monophosphate, but prazosin (an 1adrenergic antagonist) at 100 nmol·l-1 was not inhibitory. These results indicate that the melanosome-aggregating response of the goldfish melanophore is induced mainly via inhibition of the activity of adenylate cyclase, which occurs as result of stimulation of a pathway that involves 1adrenergic and a inhibitory GTP-binding protein.Abbreviations A-kinase cAMP-dependent protein kinase - BSS balanced salts solution - CaM calmodulin - cAMP cyclic adenosine-3,5-monophosphate - Clo clonidine - EDTA ethylenediaminetetra-acetic acid - G-protein GTP-binding protein - HEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid - IBMX 3-isobutyl-1-methylxanthine - IP3 inositol 1,4,5-trisphosphate Mex, methoxamine - MSH melanocyte-stimulating hormone - Nap naphazoline - NE norepinephrine - Oxy oxymetazoline - Phe phenylephrine - PTX pertussis toxin  相似文献   

8.
The refolding kinetics of guanidine-denatured disulfide-intact bovine pancreatic ribo-nuclease A (RNase A) and its proline-42-to-alanine mutant (Pro42Ala) have been studied by monitoring tyrosine burial and 2-cytidine monophosphate (2CMP) inhibitor binding. The folding rate for wild-type RNase A is faster in the presence of the inhibitor 2CMP than in its absence, indicating that the transition-state structure in the rate-determining step is stabilized by 2CMP. The folding rate monitored by 2CMP binding to the major slow-folding species of Pro42Ala RNase A is faster than the folding rate monitored by tyrosine burial; however, the folding rate monitored by inhibitor binding to the minor slow-folding species is decreased significantly over the folding rate monitored by tyrosine burial, indicating that the major and minor slow-folding species of Pro42Ala fold to the native state with different transition-state conformations in the rate-determining step.  相似文献   

9.
The extrathyroidal conversion of thyroxine to triiodothyronine in the snake, Elaphe taeniura, has been determined in vitro. The liver, kidney and pancreas are important organs showing significant 5-deiodinase activity. The pancreas has a higher conversion rate (18.5±3.58 pmol·min-1·mg protein-1) than other vertebrate tissues that have been studied. The 5-deiodinase activity is dependent on substrate (thyroxine) concentration, cofactor, i.e. dithioerythritol concentration, temperature, duration of incubation and pH. It is sensitive to iopanoic acid, propylthiouracil, salicylate and propranolol. It is also indicative that the 5-deiodinase activity increased and decreased, respectively, in snakes with experimentally induced hyper- and hypo-thyroidism. These characteristics suggest that snake 5-deiodinase is similar to that of mammals, probably of type I category.Abbreviations ANOVA analysis of variance - BSA bovine serum albumin - BW body weight - cpm counts per minute - 5D 5-deiodinase - DTE dithioerythritol - EDTA ethylenediamine tetraacetate - IOP iopanoic acid - K m Michaelis-Menten constant - L/D Light/Dark - MW molecular weight - NRS normal rabbit serum - PEG polyethylene glycol - %B percentage of added label found in the pellet - PTU propylthiouracil - RIA radioimmunoassay - rT3 3,5,5-triiodothyronine - SPSS Statistical Package for the Social Sciences - T3 3,5,3-triiodothyronine - T4 thyroxine - TRIS Tris (hydroxymethyl) aminomethane - Tx thyroidectomized - V max maximum velocity of enzyme reaction  相似文献   

10.
    
Summary As has been shown previously, RNA polymerase subunit ts-mutation rpoC1 results in an overproduction of RNA polymerase subunits at nonpermissive temperature. The mutant enzyme shows low activity in vitro and a sedimentation coefficient 9S which is characteristic of immature core polymerase. In this paper we describe a mutation designated opr1 which suppresses RNA polymerase subunit overproduction. The mutation was found among Ts+ revertants of the Ts double mutant carrying a rpoC1 mutation and a rif-r rpo B251 mutation. Opr1 is closely linked to the original rpo mutations and shows complete trans-dominance. Although opr1 seems to affect RNA polymerase, it does not suppress the accumulation of immature 9S RNA polymerase and does not restore the activity of the RpoC1 mutant enzyme. This and other results of a comparison of strains carrying different combinations of rpoC1, rpoB251 and opr1 mutations suggest that neither inhibition of total RNA and protein synthesis, nor the low RNA polymerase activity in vitro, nor the apparent defects in enzyme maturation, nor the enzyme degradation observed at 42°C are responsible for the overproduction in RpoC1 strains.  相似文献   

11.
The origin of Q-independent derivatives of phage lambda   总被引:13,自引:0,他引:13  
Summary qsr (Q-independent) phages are characterised by the replacement of the region of the genome that contains Q, S, R, and the late gene promoter, PR, with host-derived DNA that codes for functions analogous to those deleted. Restriction endonuclease analysis and DNA/DNA hybridisation methods have been used to show that p4 and qin A 3, two such Q-independent phages, are the product of recombination between and a defective lambdoid prophage (the qsr prophage) located at an as yet unidentified site in the E. coli K 12 chromosome. The qsr prophage is distinct from the defective lambdoid prophage Rac (Kaiser and Murray 1979). In the E. coli K 12 strain AB1157 from which qsr phages cannot be generated, the qsr prophage has suffered an internal deletion. That the qsr prophage appears not to carry a full complement of essential late genes suggests one explanation for its apparently defective nature.  相似文献   

12.
Summary The timing mechanism underlying ultradian (2–3 h) activity patterns in the common vole, Microtus arvalis, was studied using behavioural deprivation experiments. These were aimed at distinguishing between a homeostatic control mechanism, in which the rhythmic behaviour itself is part of the causal loop, and a clock mechanism, independent of the behaviour.In 175 experiments, deprivation of food during 3 ultradian cycles in (subjective) daytime did not result in significant changes in the ultradian periodicity of attempts to obtain the food, compared with ad lib. access to food and water. A minor, but significant increase in ultradian activity time () occurred in the course of the deprivation, but this was compensated by a shorter ultradian rest (). These results were obtained both in intact animals (n = 24), which showed ultradian and circadian rhythmicity in behaviour, and in animals (n = 21) with electrolytic lesions aimed at the suprachiasmatic nuclei (SCN), which lacked the circadian modulation of behaviour. Simultaneous deprivation of water and food in 8 voles without circadian rhythmicity during 40 experiments also did not lead to any change in the ultradian periodicity of feeding attempts.Rest deprivation was studied in 5 SCN lesioned voles, by forcing running wheel activity to continue following spontaneous running. Thus, the experimental activity bout was artificially lengthened to 2–9 h in 67 experiments. The onset of the subsequent rest episodes occurred independent of the duration of the preceding . The duration of was dependent on the preceding, experimental in a periodic fashion. The interval experimental (=lengthened +following ) was equal to one, two or three times the control (obtained on nonexperimental days). This result fits the prediction of a clock model and is in conflict with a monotonicincrease of with , as expected in a homeostatic, restorative process.It is concluded that the ultradian timing of activity in the common vole can be explained neither by homeostatic hunger or thirst mechanisms nor by homeostatic rest/activity regulation. The results strongly suggest an independent clock system generating ultradian feeding rhythms in the common vole.Abbreviations DD continuous darkness - LD light-dark regime - LL continuous light - RCA retrochiasmatic area - ARC arcuate nucleus - SCN suprachiasmatic nuclei - ultradian period - ultradian activity time - ultradian rest time  相似文献   

13.
Internal motions of d-ribose selectively 2H-labeled at the 2 position were measured using solid state 2H NMR experiments. A sample of d-ribose-2 -d was prepared in a hydrated, non-crystalline state to eliminate effects of crystal-packing. Between temperatures of –74 and –60°C the C2–H2 bond was observed to undergo two kinds of motions which were similar to those of C2–H2/H2 found previously in crystalline deoxythymidine (Hiyama et al. (1989) J. Am. Chem. Soc., 111, 8609–8613): (1) Nanosecond motion of small angular displacement with an apparent activation energy of 3.6 ± 0.7 kcal mol–1, and (2) millisecond to microsecond motion of large amplitude with an apparent activation energy 4 kcal mol–1. At –74°C, the slow, large-amplitude motion was best characterized as a two-site jump with a correlation time on the millisecond time scale, whereas at –60°C it was diffusive on the microsecond time scale. The slow, large-amplitude motions of the C2–H2 bond are most likely from interconversions between C2-endo and C3-endo by way of the O4-endo conformation, whereas the fast, small-amplitude motions are probably librations of the C2–H2 bond within the C2-endo and C3-endo potential energy minima.  相似文献   

14.
Summary Using X174 replicative form (RF) DNA as an in vivo probe, we have investigated the coordinated action of the 53 exonuclease and polymerase activities of DNA polymerase I in order to understand better its physiological role. We constructed double mutants containing the rep mutation (the replication of X174 RF does not occur in rep mutants) together with a mutation affecting DNA polymerase I, either polA12 or polA546ex. Using these mutants, which are believed to be thermosensitive in the polymerase function or the 53 exonuclease function respectively, we studied the kinetics of nick translation at the permissive and non-permissive temperatures in vivo. The substrate was the X174 replicative form DNA nicked by the X174 gene A protein. E. coli rep polA546ex gave the lowest rate of nick translation, although the ability to perform nick translation, at least as measured by our assay, was still present. E. coli rep polA12 showed a similar low rate at the non-permissive temperature but a rate close to the wildtype level at the permissive temperature. Formation of the parental replicative form molecule in either strain was affected little, even at the restrictive temperature. Our results suggest that DNA polymerase I may not play a major role in ongoing DNA replication.  相似文献   

15.
To clone new replication origin(s) activated under RNase H-defective (rnh ) conditions in Escherichia coli cells, whole chromosomal DNA digested with EcoRI was to with a Kmr DNA fragment and transformed into an rnh derivative host. From the Kmr transformants, we obtained eight kinds of plasmid-like DNA, each of which contained a specific DNA fragment, termed Hot, derived from the E. coli genome. Seven of the Hot DNAs (HotA-G) mapped to various sites within a narrow DNA replication termination region (about 280 kb), without any particular selection. Because Hot DNA could not be transformed into a mutant strain in which the corresponding Hot region had been deleted from the chromosome, the Hot DNA, though obtained as covalently closed circular (ccc) DNA, must have arisen by excision from the host chromosome into which it had initially integrated, rather than by autonomous replication of the transformed species. While Hot DNA does not have a weak replication origin it does have a strong recombinational hotspot active in the absence of RNase H. This notion is supported by the finding that Chi activity was present on all Hot DNAs tested and no Hot-positive clone without Chi activity was obtained, with the exception of a DNA clone carrying the dif site.  相似文献   

16.
Using primary cultures of gill pavement cells from freshwater rainbow trout, a method is described for achieving confluent monolayers of the cells on glass coverslips. A continuous record of intracellular pH was obtained by loading the cells with the pH-sensitive flourescent dye 2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein and mounting the coverslips in the flowthrough cuvette of a spectrofluorimeter. Experiments were performed in HEPES-buffered media nominally free of HCO3. Resting intracellular pH (7.43 at extracellular pH=7.70) was insensitive to the removal of Cl or the application of 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (0.1 mmol·l–1), but fell by about 0.3 units when Na+ was removed or in the presence of amiloride (0.2 mmol·l–1). Exposure to elevated ammonia (ammonia prepulse; 30 mmol·l–1 as NH4Cl for 6–9 min) produced an increase in intracellular pH (to about 8.1) followed by a slow decay, and washout of the pulse caused intracellular pH to fall to about 6.5. Intracellular non-HCO 3 buffer capacity was about 13.4 slykes. Rapid recovery of intracellular pH from intracellular acidosis induced by ammonia prepulse was inhibited more than 80% in Na+-free conditions or in the presence of amiloride (0.2 mmol·l–1). Neither bafilomycin A1 (3 mol·l–1) nor Cl removal altered the intracellular pH recovery rate. The K m for Na+ of the intracellular pH recovery mechanism was 8.3 mmol·l–1, and the rate constant at V max was 0.008·s–1 (equivalent to 5.60 mmol H+·l–1 cell water·min–1), which was achieved at external Na+ levels from 25 to 140 mmol·l–1. We conclude that intracellular pH in cultured gill pavement cells in HEPES-buffered, HCO 3 -free media, both at rest and during acidosis, is regulated by a Na+/H+ antiport and not by anion-dependent mechanisms or a vacuolar H+-ATPase.Abbreviations BCECF 2,7-bis(2-carboxyethyl)-5(6)-carboxy-fluorescein - BCECF/AM 2,7-bis(2-carboxyethyl)-5(6)-carboxy-fluorescein, acetoxymethylester - Cholin-Cl choline chloride - DMSO dimethyl sulfoxide - EDTA ethylene diamine tetra-acetic acid - FBS foetal bovine serum - H + -ATPase Proton-dependent adenosine triphosphatase - HEPES N-[2-hydroxyethyl]piperazine-N[2-ethanesulfonic acid] - pH i intracellular pH - pH e extracellular pH - PBS phosphate-buffered saline - SITS 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid  相似文献   

17.
Strain B51 capable of degrading polychlorinated biphenyls (PCB) was isolated from soil contaminated with wastes from the chemical industry. Based on its morphological and chemotaxonomic characteristics, the strain was identified as a Microbacterium sp. Experiments with washed cells showed that strain B51 is able to degrade ortho- and para-substituted mono-, di-, and trichlorinated biphenyls (MCB, DCB, and TCB, respectively). Unlike the known PCB degraders, Microbacterium sp. B51 is able to oxidize the ortho-chlorinated ring of 2,2-DCB and 2,4-DCB and the para-chlorinated ring of 4.4-DCB. The degradation of 2,4-DCB and 4,4-DCB was associated with the accumulation of 4-chlorobenzoic acid (4-CBA) in the medium in amounts comprising 80–90% of the theoretical yield. The strain was able to utilize 2-MCB, 2,2-DCB, and their intermediate 2-CBA and to oxidize the mono(ortho)-chlorinated ring of 2,4,2-TCB and the di(ortho-para)-chlorinated ring of 2,4,4-TCB. A mixed culture of Microbacterium sp. B51 and the 4-CBA-degrading bacterium Arthrobacter sp. H5 was found to grow well on 1 g/l 2,4-DCB as the sole source of carbon and energy.  相似文献   

18.
Summary In this first article on the carotenoids of Myxobacterales we report on the minor carotenoids of Stigmatella aurantiaca: phytoene, phytofluene, lycopene, -carotene, 4-keto--carotene, 1,2-dihydro-1-hydroxy--carotene, 4-keto-1,2-dihydro-1-hydroxy--carotene, 4-keto-1,2-dihydro-1-hydroxy-torulene, and 1,2,1,2-tetrahydro-1,1-dihydroxy-lycopene. These pigments account for about 10% of total carotenoids.  相似文献   

19.
Chloroplasts of land plants have an active transfer RNA processing system, consisting of an RNase P-like 5 endonuclease, a 3 endonuclease, and a tRNA:CCA nucleotidyltransferase. The specificity of these enzymes resembles more that of their eukaryotic counterparts than that of their cyanobacterial predecessors. Most strikingly, chloroplast RNase P activity almost certainly resides in a protein, rather than in an RNA protein complex as in Bacteria, Archaea, and Eukarya. The chloroplast enzyme may have evolved from a preexisting chloroplast NADP-binding protein. Chloroplast RNase P cleaves pre-tRNA by a reaction mechanism in which at least one of the Mg2+ ions utilized by the bacterial ribozyme RNase P is replaced by an amino acid side chain.Abbreviations pre-tRNA precursor to tRNA - pCp cytidine 5, 3-bisphosphate - IC50 inhibitor concentration giving 50% inhibition - GAPDH glyceraldehyde 3-phosphate dehydrogenase  相似文献   

20.
Summary The region of the phage lambda chromosome containing the attachment site (P · P) and the genes int and xis, excised by the action of endonuclease R.EcoRI, has been inserted into the unique site for that enzyme on the promiscuous conjugative plasmid, RP4, generating the recombinant plasmid RP4att. Transformants containing the hybrid plasmid were recognised by their ability to allow efficient lysogenization by phage b2 (Weil and Signer, 1968; Echols et al., 1968) containing the mutant attachment site · P. The construction and properties of the hybrid plasmid RP4att are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号