首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物染色体G-带的初步研究   总被引:5,自引:1,他引:4  
本文首次报道了川百台(Lilium davidii)、华山松(Pinus armardii)和七叶一枝花(Paris polyphylla)等植物染色体G-带研究结果。本试验的G-带与以往的C-带不同,C-带每条染色体上一般只有1-4条带,多分布在着丝点附近,而G-带则多达几十条,分布在整条染色体上,带纹清晰,前期染色体带呈颗粒状,中期染色体呈明显的带状,与哺乳动物染色体G-带很相似。G-带的数目取决于染色体浓缩的程度。前期染色体带纹数目是中期的三倍,接近人类高分辨带水平。对G-带带纹采用了自动光谱分析,波峰数值与带纹相符。作者同时介绍了胰酶法在植物染色体G-带中的应用。认为此方法既适合动物亦适用于植物。但植物G-带显示的关键可能不在胰酶法本身,而在合适的分裂时期及染色体处理技术。  相似文献   

2.
玉米染色体G-带ASG法显带的研究   总被引:10,自引:4,他引:6  
两个自交系的根尖染邑体经ASG法处理显出了G-带。王米G-带沿整个染色体长轴分布,是一些密切邻近的多重带纹。无论有丝分裂的晚前期、早中期或中期染色体都有这类带纹。每一对同源染色体的两成员G-带带型基本相似,不同染色体或同一染色体的不同区域带纹具有一定的差异。ASG处理前用α-溴萘或放线菌素D预处理都可显出G-带。本文讨论了玉米G-带与哺乳动物G-带的相似点以及用ASG法进行玉米G-带显带应注意的技术问题。  相似文献   

3.
4.
Fluorescent staining patterns of L cell chromosomes with 1-dimethylaminonaphthalene-5-sulfonyl chloride (dansyl chloride) were studied. Ordinary air-dried L cell metaphase chromosomes exhibited relatively uniform and bright yellowish green fluorescence by dansyl-staining under the fluorescence microscope. However, after the chromosome preparations were treated with 10 mM NaCl for 24 h at 4 °C, which produced distinctive G-bands with Giemsa-staining, the centromeric regions and several interstitial regions of some particular chromosomes were clearly fluorescent but other regions showed only dull fluorescence. After the treatment of chromosome slides with cupric sulfite reagent, which converts sulfhydryls and disulfides to thiosulfates chromosomes showed clear G-bands which were indistinguishable from those after 10 mM NaCl treatment. By dansyl-staining, however, the cupric sulfite-treated chromosomes exhibited very faint fluorescence on their contour alone, and neither centromeric regions nor some interstitial regions of marker chromosomes had distinctly bright fluorescence.Although Giemsa-staining disclosed dark chromocenters in approx. 75% of interphase nuclei irrespective of pretreatments, dansyl-staining revealed bright chromocenters in approx. 60% of interphase nuclei in control slides, in about 40% of nuclei in 10 mM NaCl-treated slides, and in only about 30% of nuclei in cupric sulfite-treated preparations.These observations indicated that in the air-dried chromosome preparations, the distribution of protein over the metaphase chromosome is relatively uniform along its length, and that G-bands in the chromosome and Giemsa-staining of chromocenters in interphase nuclei are not significantly affected by apparent loss of protein from the preparations. It was also suggested that particular protein may be associated with the centromeric regions of L cell chromosomes. Some technical details of dansyl fluorochroming and the significance of the observations were discussed.  相似文献   

5.
M. Schmid 《Chromosoma》1978,68(2):131-148
In the chromosomes of 12 frog species of the suborder Diplasiocoela (Amphibia, Anura), the constitutive heterochromatin and the nucleolus organizer regions (NORs) have been specifically stained. On most of the chromosomes, aside from the centric heterochromatin, telomeric and interstitial C-bands were also found. The various C-bands display a very variable reaction to alkaline pretreatment; this indicates heterogeneity in the constitutive heterochromatin. Sex chromosomes could not be identified in any of the species studied. The number and chromosomal positions of the NORs vary quite strongly between species and between families. In 4 species of the genus Rana, there were, aside from the standard-NORs in chromosome pair 10, between 4 and 14 extra, small NORs detectable in the smaller chromosome pairs. As possible causal mechanism of these additional small NORs the reintegration of amplified rDNA during amphibian oogenesis is suggested. Q- or G-bands could only be recognized in mitotic prophase chromosomes. The strong spiralization of metaphase chromosomes prevents the differential demonstration of Q- or G-bands in the euchromatic regions.  相似文献   

6.
A method of visualizing chromosome bands by electron microscopy has been used to investigate the fine structural organization of G- and C-banded chromosomes. The following information has been obtained:
1. 1. G-bands, produced by trypsinization, were electron dense regions of highly packed chromatin fibres separated by regions in which the chromatin fibres were much less densely packed (interbands).
2. 2. Several degrees of chromatin dispersion were apparent in trypsinized chromosomes. Such dispersion was not a prerequisite for the initial visualization of G-bands, however the progressive pattern of dispersion indicated that the bands were relatively more resistant to dispersion than the interbands.
3. 3. After fixation and trypsinization, individual chromatin fibres measured 250 Å in diameter and appeared morphologically similar to control chromatin fibres seen by whole mount electron microscopy.
4. 4. In trypsinized chromosome complements, the chromosomes often appeared to be interconnected to one another by chromatin fibres. The evidence indicates that these interchromosomal fibres are artefacts produced by the overlapping of dispersed chromatin fibres.
5. 5. When the same metaphase chromosome was observed by both light and electron microscopy, some of the light microscopic G-bands were represented by two or more ultrastructural bands. The number of bands seen in metaphase chromosomes by electron microscopy appears to approach the increased number of bands generally seen in prometaphase chromosomes by light microscopy.
6. 6. C-banding methods (NaOH treatment or overtrypsinization) resulted in the extraction of variable amounts of chromatin from the non C-band regions of the chromosomes, however the constitutive heterochromatin remained highly condensed and resistant to extraction. This result supports the hypothesis that the mechanism of C-banding involves the selective loss of non C-band chromatin.
  相似文献   

7.
Summary Giemsa techniques have refused to reveal G-banding patterns in plant chromosomes. Whatever has been differentially stained so far in plant chromosomes by various techniques represents constitutive heterochromatin (redefined in this paper). Patterns of this type must not be confused with the G-banding patterns of higher vertebrates which reveal an additional chromosome segmentation beyond that due to constitutive heterochromatin. The absence of G-bands in plants is explained as follows: 1) Plant chromosomes in metaphase contain much more DNA than G-banding vertebrate chromosomes of comparable length. At such a high degree of contraction vertebrate chromosomes too would not show G-bands, simply for optical reasons. 2) The striking correspondence of pachytene chromomeres and mitotic G-bands in higher vertebrates suggests that pachytene chromomeres are G-band equivalents, and that this may also be the case in plants. G-banded vertebrate chromosomes are on the average only 2.3 times shorter in mitosis than in pachytene; the chromomeric pattern therefore still can be shown. In contrast, plant chromosomes are approximately 10 times shorter at mitotic metaphase; their pachytene-like arrangement of chromomeres is therefore no longer demonstrable.  相似文献   

8.
A. D. Stock 《Genetica》1984,64(3):225-228
The mitotic chromosomes from cultured cells of Xenopus muelleri were G-banded with trypsin and/or with trypsin/urea. These amphibian chromosomes were not found to be more highly contracted at metaphase than those of mammals or reptiles and trypsin G-banding was more easily induced than in the case of most reptilian chromosomes. The organization of vertebrate chromosomes into distinct early replicating (R-bands) and late replicating (G-bands) replicon clusters may be characteristic of eucaryotes in general.  相似文献   

9.
As chromosomes condense during early mitosis, their subbands fuse in a highly coordinated fashion. Subband fusion occurs when two large subbands flanking one minor subband come together to form one band, which takes on the cytological characteristics of the original flanking subbands. Using four different banding techniques--GTG (G-bands obtained with trypsin and Giemsa), GBG (G-bands obtained with BrdU and Giemsa), RHG (R-bands obtained by heating and Giemsa), and RBG (R-bands obtained with BrdU and Giemsa)--we studied subband fusion from prophase (1,250 bands per haploid set) to late metaphase (300 bands). To quantify the condensation process, a fusion index was established. We found that chromosomes contain preferential zones of condensation. From prophase to late metaphase, the early replicating subbands (R-subbands) fuse more readily with each other than do the late-replicating subbands (G-subbands). R-bands usually replicate early and condense late independently of the adjacent G-bands, which replicate late but condense early. Therefore, chromosome bands can undergo DNA replication and chromatin condensation relatively autonomously. Our data suggest that (1) chromosome replication and condensation are closely connected in time, (2) the metaphase bands represent independent units of chromatin condensation, and (3) the condensation process is an important feature of chromosome organization.  相似文献   

10.
本文对植物染色体高分辨 G-带技术进行了比较系统的研究,并首次运用改良的尿素法在野生一粒小麦、玉米、蚕豆、吊兰、川百合等多种植物上诱导出 G-带,带纹清晰,数目多,分布在染色体全长上。前期染色体带呈颗粒状,中期染色体呈明显带状,与哺乳动物染色体 G-带很相似。G-带的数目取决于染色体浓缩程度,中期染色体一条深带到晚前期可显示出2.67条亚带。作者同时比较了胰酶法与尿素法的显带效果。认为两种方法显示的带纹基本相同,尿素法比胰酶法作用温和,显带时间长达数分钟,易于掌握,重复性高,具有更高的应用价值。  相似文献   

11.
We have developed a technique of random primer extension of fixed chromosomes that is applicable to both mouse and man. Human chromosomes are not homogeneously labeled with this technique; those regions corresponding to R-bands appear to be more sensitive than those identified as G-bands, whereas centromeric regions are not labeled. These results not only corroborate specific structural differences between distinct regions of mammalian genomes but also open up the possibility of assays with specific primers to test whether primer extension is useful for the identification of genes and families of sequences on chromosomes.  相似文献   

12.
The structural organization of the mouse metaphase chromosomes in the early embryonic development (I-IV cleavages) was studied using serial ultrathin section. It was shown that in the first cleavage the metaphase chromosomes consist of DNP fibrils 20-25 nm in diameter, which are distributed nonuniformly along the chromosomes. It was suggested that parts of chromosomal arms formed by tightly packing DNP fibrils may correspond to the G-bands revealed by the routine Giemsa staining. In metaphase chromosomes of 8-16-cell embryos DNP fibrils form chromonema--thick threads about 90 nm in diameter. The chromonemata are evenly organized along chromosomal arms. The centromeric heterochromatin always consists of DNP fibrils tightly arranged in a block having no chromonemal level of organization. In all the cells studied chromosomes form structural contacts (associations) by their centromeric heterochromatin regions.  相似文献   

13.
Previous studies of the kinetochore in mammalian systems have demonstrated that this structure undergoes reorganizations after microtubule attachment or in response to activation of the spindle checkpoint. Here, we show that the Caenorhabditis elegans kinetochore displays analogous rearrangements at prometaphase, when microtubule/chromosome interactions are being established, and after exposure to checkpoint stimuli such as nocodazole or anoxia. These reorganizations are characterized by a dissociation of several kinetochore proteins, including HCP-1/CeCENP-F, HIM-10/CeNuf2, SAN-1/CeMad3, and CeBUB-1, from the centromere. We further demonstrate that at metaphase, despite having dissociated from the centromere, these reorganized kinetochore proteins maintain their associations with the metaphase plate. After checkpoint activation, these proteins are detectable as large "flares" that project out laterally from the metaphase plate. Disrupting these gene products via RNA interference results in sensitivity to checkpoint stimuli, as well as defects in the organization of chromosomes at metaphase. These phenotypes suggest that these proteins, and by extension their reorganization during mitosis, are important for mediating the checkpoint response as well as directing the assembly of the metaphase plate.  相似文献   

14.
Human metaphase chromosomes were treated with the restriction endonuclease MseI, which cuts DNA at TTAA sequences. This enzyme preferentially cuts and extracts DNA from G-bands and thus is the first restriction endonuclease allowing direct R-band visualization. Specific patterns ranging from R+C-like to C-like banding can be induced, depending on the concentration of the enzyme. At intermediate concentrations, only a subset of R-bands are produced, corresponding to GC-rich bands that are especially resistant to heat denaturation (so-called T-bands). These results suggest that compositional differences between chromosomal regions determine the different rates of cleavage by MseI, not only between R- and G-bands but also among different R-bands.  相似文献   

15.
In this paper, we present an analysis of the sex chromosomes of four hamster species after application of different staining techniques. The mitotic X chromosomes show a striking similarity in G-banding pattern but rather great differences in their C-banding patterns. A presumably homologous euchromatic segment that exhibits two distinct G-bands appears in the X chromosome of each species. The Y chromosome of Cricetus cricetus is in contrast to those of the other species, because it reveals a relatively well-differentiated G- and C-banding pattern. In meiotic metaphase I, interstitial chiasmata can be found in the sex bivalents of Cricetus cricetus and Cricetulus griseus, whereas the gonosomes of Mesocricetus auratus and Phodopus sungorus sungorus are terminally associated. The regions that are involved in pairing or association are always heterochromatic.  相似文献   

16.
Chromatin high mobility group protein I (HMG-I) is a mammalian nonhistone protein that has been demonstrated both in vitro and in vivo to preferentially bind to A.T-rich sequences of DNA. Recently the DNA-binding domain peptide that specifically mediates the in vitro interaction of high mobility group protein (HMG)-I with the narrow minor groove of A.T-DNA has been experimentally determined. Because of its predicted secondary structure, the binding domain peptide has been called "the A.T hook" motif. Previously we demonstrated that the A.T hook of murine HMG-I protein is specifically phosphorylated by purified mammalian cdc2 kinase in vitro and that the same site(s) are also phosphorylated in vivo in metaphase-arrested cells. We also found that the DNA binding affinity of short synthetic binding domain peptides phosphorylated in vitro by cdc2 kinase was significantly reduced compared with unphosphorylated peptides. Here we extend these findings to intact natural and recombinant HMG-I proteins. We report that the affinity of binding of full-length HMG-I proteins to A.T-rich sequences is highly dependent on ionic conditions and that phosphorylation of intact proteins by cdc2 kinase reduces their affinity of in vitro binding to A.T-DNA by about 20-fold when assayed near normal mammalian physiological salt concentrations. Furthermore, in cell synchronization studies, we demonstrated that murine HMG-I proteins are phosphorylated in vivo in a cell cycle-dependent manner on the same amino acid residues modified by purified cdc2 kinase in vitro. Together these results strongly support the assertion that HMG-I proteins are natural substrates for mammalian cdc2 kinase in vivo and that their cell cycle-dependent phosphorylation by this enzyme(s) significantly modulates their DNA binding affinity, thereby possibly altering their biological function(s).  相似文献   

17.
We have determined the domains of the mammalian high mobility group (HMG)I chromosomal proteins necessary and sufficient for binding to the narrow minor groove of stretches of A.T-rich DNA. Three highly conserved regions within each of the known HMG-I proteins is closely related to the consensus sequence T-P-K-R-P-R-G-R-P-K-K. A synthetic oligopeptide corresponding to this consensus "binding domain" (BD) sequence specifically binds to substrate DNA in a manner similar to the intact HMG-I proteins. Molecular Corey-Pauling-Koltun model building and computer simulations employing energy minimization programs to predict structure suggest that the consensus BD peptide has a secondary structure similar to the antitumor and antiviral drugs netropsin and distamycin and to the dye Hoechst 33258. In vitro these ligands, which also preferentially bind to A.T-rich DNA, have been demonstrated to effectively compete with both the BD peptide and the HMG-I proteins for DNA binding. The BD peptide also contains novel structural features such as a predicted Asx bend or "hook" at its amino-terminal end and laterally projecting cationic Arg/Lys side chains or "bristles" which may contribute to the binding properties of the HMG-I proteins. The predicted BD peptide structure, which we refer to as the "A.T-hook," represents a previously undescribed DNA-binding motif capable of binding to the minor groove of stretches of A.T base pairs.  相似文献   

18.
Combining higher resolution chromosome analysis and bromodeoxyuridine (BrdU) incorporation, our study demonstrates that: (1) Human chromosomes synthesize DNA in a segmental but highly coordinated fashion. Each chromosome replicates according to its innate pattern of chromosome structure (banding). (2) R-positive bands are demonstrated as the initiation sites of DNA synthesis in all human chromosomes, including late-replicating chromosomes such as the LX and Y. (3) Replication is clearly biphasic in the sense that late-replicating elements, such as G-bands, the Yh, C-bands, and the entire LX, initiate replication after it has been completed in the autosomal R-bands (euchromatin) with minimal or no overlap. The chronological priority of R-band replication followed by G-bands is also retained in the facultative heterochromatin or late-replicating X chromosome (LX). Therefore, the inclusion of G-bands as a truly late-replicating chromatin type or G(Q)-heterochromatin is suggested. (4) Lateral asymmetry (LA) in the Y chromosome can be detected after less than half-cycle in 5-bromodeoxyuridine (BrdUrd), and the presence of at least two regions of LA in this chromosome is confirmed. (5) Finally, the replicational map of human chromosomes is presented, and a model of replication chronology is suggested. Based on this model, a system of nomenclature is proposed to place individual mitoses (or chromosomes) within S-phase, according to their pattern of replication banding. Potential applications of this methodology in clinical and theoretical cytogenetics are suggested.  相似文献   

19.
以性成熟公猪睾丸和外周血为材料,采用长低渗、高氯仿卡诺固定液固定和外周血细胞培养制备减数分裂粗线期二价体和有丝分裂中期染色体,通过对二价体和有丝分裂中期染色体分裂指数和长度的比较研究,发现二价体的分裂指数和长度分别是有丝分裂中期染色体的5倍和3.42倍(1.87~5.98);同时以12号染色体为例,比较了二价体上的染色粒结构带与有丝分裂中期染色体G-带,表明染色粒结构带比中期染色体G-带纹丰富,而与早中期G-带带织吻合。  相似文献   

20.
A V Rodionov 《Genetika》1985,21(12):2057-2065
The concept of genetic inactivity of G-band DNA had been reinvestigated using the modified approach of Korenberg et al (1978). Coefficients of correlation and partial correlation between the relative gene density (g'), the relative G-band material richness (kH/C) and the relative chromosome size (s') were calculated. The kH/C was calculated as the ratio of brightness of fluorescence of chromosomes stained by Hoechst 33258 (Hi) and by chromomycin A3(Ci). The kH/C is the characteristics of G-band chromosome richness, because G-bands become bright after Hoechst 33258 staining and R-bands are bright after chromomycin A3 staining, while no significant C-bands in chromosomes which may be stained by these fluorochromes are discovered. For the kH/C determination the flow cytometry data of Langlois et al (1982) were used. The relative size of chromosomes was determined, based on the flow cytometry data of Young et al (1979). According to Korenberg, the "gene density" (g') in a chromosome was calculated as a ratio of the number of genes located in the chromosome before 1984 (Human Gene Mapping 7) to the relative size of this chromosome. Correlation between the "gene density" and the G-band richness was rs = -0.65. Out of 107 genes located in either G- or R-bands (Human Gene Mapping 7), 90 were mapped in the R-band and only 17 were ascribed to the G-band in metaphase chromosomes. The data on gene replication time show that all genes of the general cell activity and a portion of tissue-specific genes replicate during the early S-phase, together with R-band materials. These three independent lines of evidence are consistent with the notion that the R-band DNA is more genetically active than G-band DNA. The nature of "junk" DNA of G-bands is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号