首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract 1. Unoccupied wheat plants and wheat plants occupied by conspecific eggs or larvae were presented to ovipositing female Hessian flies in choice tests.
2. The presence of conspecific eggs on the leaf surfaces of wheat plants did not appear to have any effect on the responses of ovipositing Hessian fly females.
3. The presence of conspecific larvae at the base and nodes of wheat plants for 1, 6, or 11 days had significant effects on Hessian fly oviposition. Eggs oviposited on plants were inversely proportional to larval densities and days of larval occupation.
4. Feeding by Hessian fly larvae is associated with several changes in wheat plants. One of these changes, the growth arrestment of the plant, was measured by recording the heights of plants used in oviposition tests. Plant heights were inversely proportional to both larval densities and days of occupation. Plant heights were directly proportional to eggs oviposited on plants.
5. The consequences of adult female avoidance of plants occupied by conspecific larvae were investigated by allowing females to oviposit on unoccupied plants and 1-day, 6-day, and 11-day larval occupied plants, then scoring at the end of the first larval instar the survival of the offspring that resulted from this oviposition.
6. Survival during the first larval instar was 88% for the offspring of females that oviposited on unoccupied plants, decreasing to 82, 31, and 4% on the 1-day, 6-day, and 11-day occupied plant treatments. On these four plant treatments, a positive correlation was found between larval performance (i.e. survival) and the preferences of ovipositing females.
7. On the four plant treatments, relationships between first-instar larval density and first-instar larval survival varied significantly. On unoccupied plants, survival was inversely proportional to density. On plants oviposited on at 6 days of larval occupation, survival was directly proportional to density.  相似文献   

2.
The clutch size laid by Hessian flies (Mayetiola destructor Say) (Diptera: Cecidomyiidae) was manipulated over a range of 1 to 30 eggs on single wheat plants (Triticum aestivum, L.). Pupae developing from egg clutches were removed from plants, counted and reared through to adult eclosion. Wing lengths of adult males and females were recorded and used as an indicator of body size. Survival to pupal and adult stages, as well as mean wing length of resulting males and females, decreased as clutch size increased. Wing length of females from clutches showed a positive linear relationship with potential fecundity. The benefits of small clutches for a female Hessian fly's offspring are discussed in the context of the foraging behaviour of the ovipositing female. We predict that under high probabilities of survival and availability of host plants, females will lay smaller-sized clutches per plant. However when the probability of survival is low and host plants scare, the female will respond by laying larger-sized clutches.  相似文献   

3.
For plant resistance that is induced rather than constitutive, the precise timing of a sequence of events must be considered (i.e., initial detection of the insect by the plant's surveillance systems, up-regulation of signaling and defense pathways, achievement of effective levels of defense, and finally down-regulation of signaling and defense). Here, we provide a timeline for the interaction between resistant wheat ( Triticum aestivum L.) (Poaceae) and the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). To create this timeline, we measured the daily growth of the third, fourth, and fifth leaves of susceptible and resistant plants. Because each leaf had a different spatial relationship to the site of larval attack (i.e., the sheath epidermal cells of the third leaf) and a different pattern of growth relative to the 3–5 days that larvae attacked resistant plants, we learned different things from each leaf. The third leaf shows how quickly responses of susceptible and resistant plants diverge (i.e., 36–60 h after initial larval attack). The fourth leaf shows that, for both susceptible and resistant plants, negative effects of larval attack extend beyond the third leaf. These negative effects are more severe for susceptible plants, but even in resistant plants continue for several days after larvae have died. The fifth leaf is interesting because it shows how rapidly the resistant plant recovers from larval attack. Thus, 204–348 h after initial attack, a time when the fourth leaf of resistant plants is showing reduced growth and the fifth leaf of susceptible plants is showing zero growth, the fifth leaf of resistant plants shows a small increase in growth. Grasses with resistance gene-mediated resistance may have a two-fold strategy, using resistance mechanisms to stop Hessian fly larvae from further attack and tolerance mechanisms to protect resources for future plant growth.  相似文献   

4.
Hessian fly eggs are more likely to be found on adaxial rather than abaxial surfaces of wheat leaves. These leaf surfaces differ in their physical features: the adaxial side of the leaf has parallel grooves and ridges while the abaxial side is relatively smooth. We used leaf models to investigate the relationship between Hessian fly egglaying and these physical features. When both sides of a green paper leaf model were treated with a wheat leaf extract, but only one side of the model was scored with parallel grooves, the grooved side received more eggs than the smooth side. As the number of grooves per surface increased from 0 to 10, eggs per model increased. When grooves and the wheat leaf extract were tested together and separately, the grooves significantly increased egg numbers in the presence, but not the absence, of wheat extract. In contrast, wheat extract increased egg numbers both in the absence and presence of grooves. Molding techniques were used to recreate the physical features of the adaxial and abaxial leaf surfaces of five grasses. For four of the grass genotypes (a triticale, two common wheats, and a durum wheat), patterns of egglaying on real leaves and molded models were similar, i.e., adaxial leaf surfaces and adaxial molded models were preferred over abaxial leaf surfaces and abaxial models. On the fifth grass, oat, preferences for the adaxial side of real leaves and for adaxial models were not as obvious. We conclude that the adult female Hessian fly obtains information about the leaf surface through her tactile and/or kinesthetic senses and uses this information when making egglaying decisions.  相似文献   

5.
The acceptability of various plant species to ovipositing carrot flies was weakly, but significantly correlated with the host's suitability for larval development. Both adult host-plant preferences and larval performance as determined in laboratory experiments explained a part of the variation in susceptibility among the various test plants observed in the field. Across the whole set of plant species examined, antixenosis contributed more substantially to resistance than antibiosis, while the reverse seemed to be true for carrot cultivars.  相似文献   

6.
Neotyphodium (Clavicipitaceae: Balansieae) fungal endophyte infection does not always confer temperate grass resistance to insect herbivores, although reports indicate that over 40 species are adversely affected by its infection. Laboratory and glasshouse experiments were conducted to improve our knowledge of the anti‐insect properties of Neotyphodium‐infected (E+) non‐commercial grasses, and E+ wild barley (Hordeum) specifically. Neotyphodium infection of four plant inventory (PI) lines of wild barley conferred resistance to Mayetiola destructor (Say) (Diptera: Cecidomyiidae), whereas none of the E+ wild barley accessions reduced the survival of Rhopalosiphum padi (L.) (Homoptera: Aphididae). Metopolophium dirhodum (Walker) (Homoptera: Aphididae) densities were significantly lower on the E+ clones of Hordeum brevisubulatum ssp. violaceum (Boissier and Hohenacker) (PI 440420), compared with densities on endophyte‐free (E–) plants of this species in population growth experiments. Neotyphodium infection of three Hordeum bogdanii (Wilensky) PI lines did not confer resistance to M. dirhodum; however, one of these E+ lines (PI 314696) was resistant to this aphid in a second population growth experiment. Our results provide additional evidence that the outcome of a grass–endophyte–insect interaction is influenced by the host grass species or genotype, Neotyphodium species or genotype, and the insect species involved. They also reinforce this phenomenon for non‐commercial grass–endophyte–insect interactions and underscore the potential role of endophytes in mediating wild barley–insect interactions and their potential to act as defensive mutualists.  相似文献   

7.
Various leaf models made of paper were presented to carrot flies, Psila rosae (F.) (Diptera: Psilidae) in choice assays to investigate the effect of non-chemical plant traits on oviposition behaviour. The surrogate leaves differed in colour, shape, surface coating, size and stem length. In the presence of host-plant extracts, physical factors strongly influenced oviposition. Green, yellow and orange three-dimensional models similar in shape to host-plant leaves (pinnately or ternately compound or dissected) and with a thin cover of paraffin wax were most acceptable to the females. Egg-laying was not affected by leaf size, but was negatively correlated with stem length. The results obtained by testing models with simple leaf silhouettes were confirmed in an experiment using more lifelike imitations of real host and non-host leaves. The findings are discussed by an extensive review of similar studies in three other phytophagous fly species (cabbage root fly, onion fly, Hessian fly).  相似文献   

8.
The adaptive significance of sibling cannibalism was analyzed in the ladybird beetle Harmonia axyridis at two prey densities. Possible costs and benefits were considered from three points of view: the mother, the cannibal and the victim. Cannibals ate both infertile and fertile eggs, thereby increasing in body length and survival rate with the intensity of sibling cannibalism. The cannibalistic trait was clearly beneficial to the cannibal when aphid density was low. However, it was not always beneficial when aphid density was high and the victims were full siblings. The altruistic behavior of being a victim was beneficial only when the victim was cannibalized by full siblings at low aphid density. The mother attained almost equal fitness at low aphid density, regardless of the intensity of sibling cannibalism. This suggests that sibling cannibalism is not maladaptive for the mother. At high aphid density, however, mother's fitness decreased with the intensity of sibling cannibalism, indicating that sibling cannibalism is maladaptive for the mother when larval food availability is high.  相似文献   

9.
10.
Abstract. The behavioural facilitation hypothesis, tested in the present study, suggests that evolution of host-plant shifts by phytophagous insects is based on the preadaptation of insects to the chemistry of potentially novel plant hosts. Thus, closely-related insects should have similar sensitivities to compounds that are shared by different host plants. The chemoreception is investigated for four phytophagous flies, Delia radicum, Delia floralis, Delia antiqua and Delia platura (Diptera, Calyptratae: Anthomyiidae), belonging to the same genus but developing mainly on different plant families, with particular secondary plant compound profiles. In addition, the carrot fly, Psila rosae, an acalyptrate Diptera, is included as an unrelated species that is associated with completely different host plants. For the comparison, the known oviposition stimulants of the cabbage root fly (glucobrassicin, sinalbin, sinigrin and a thia-triaza-fluorene compound; CIF-1) present on the cabbage leaf surface were chosen. Responses from prothoracic tarsal sensilla are recorded to contact stimulation in a dose-dependent manner. Among the different flies tested, only D. radicum responds to all the compounds. By contrast, D. floralis is only sensitive to CIF-1, and not specifically on the C5 sensillum, a finding that is in conflict with previously published results. This discrepancy is possibly an indication of the variability among flies originating from different cultures or habitats. With the exception of sinigrin at high concentration, the various compounds tested do not stimulate D. antiqua or D. platura. However, the carrot fly appears to be completely insensitive to sinigrin even at the highest tested concentration of 10−1 M. The responses of the contact-chemoreceptor neurones to the selected compounds therefore provide little evidence of common sensitivities that would explain host shift in Delia species and specialization at the physiological level. The wide divergence within closely-related species and rearing cultures appears to indicate that the sensitivity and distribution of sensory receptor neurones is very variable on an evolutionary scale.  相似文献   

11.
12.
Climate change can modify ecological interactions, but whether it can have cascading effects throughout ecological networks of multiple interacting species remains poorly studied. Climate‐driven alterations in the intensity of plant–herbivore interactions may have particularly profound effects on the larger community because plants provide habitat for a wide diversity of organisms. Here we show that changes in vegetation over the last 21 years, due to climate effects on plant–herbivore interactions, have consequences for songbird nest site overlap and breeding success. Browsing‐induced reductions in the availability of preferred nesting sites for two of three ground nesting songbirds led to increasing overlap in nest site characteristics among all three bird species with increasingly negative consequences for reproductive success over the long term. These results demonstrate that changes in the vegetation community from effects of climate change on plant–herbivore interactions can cause subtle shifts in ecological interactions that have critical demographic ramifications for other species in the larger community.  相似文献   

13.
14.
Abstract 1. Field studies were conducted to evaluate the preference and performance of a gall‐inducing midge (Harmandia tremulae) within the crown of trembling aspen (Populus tremuloides). Females did not select oviposition sites preferentially within leaves, but did lay preferentially on young leaves. 2. Larvae were the only life stage involved in gall site selection within leaves and in gall initiation and development. Gall size, which was positively related to survival, was highest for galls on mid veins that were located close to the petiole. However, one‐third of galls were located on lateral veins and most galls were not adjacent to the petiole, indicating that many larvae choose sub‐optimal gall initiation sites. 3. Gall density was positively associated with leaf length, and leaf length, was positively associated with gall size. However, gall density per leaf was not related to larval survival in galls. This latter result may be a result of an observed inverse relationship between gall size and gall density for similar‐sized leaves. 4. The results partially support the plant vigour and optimal plant module size hypotheses, which predict that galler fitness in successfully induced galls should be highest on large, fast‐growing plant modules. The lack of a strong preference‐performance link supports the confusion hypothesis, which predicts that oviposition and gall site selection may often be suboptimal in systems where galler lifespan is short. This study suggests that small‐scale variations in plant quality within leaves, can render gall site selection by juveniles as important as that previously reported for adult females.  相似文献   

15.
In butterflies, male reproductive success is highly related to the quality and the size of the spermatophore transferred to the female. The spermatophore is a capsule produced by the male during copulation, which in many species contains sperm in addition to a nuptial gift, and which is digested by the female after copulation. The nuptial gift may contribute to egg production and offspring quality, and in some cases also to female body maintenance. The production of the spermatophore, however, represents a cost for the male and, in polyandrous species, ejaculates are sometimes allocated adaptively across matings. Nonetheless, although the ecological factors affecting the reproductive success of female butterflies have been the topic of numerous studies, little information exists on the factors affecting males’ contribution to reproduction, and the indirect impacts on female fecundity and fitness. We used the Glanville fritillary butterfly, Melitaea cinxia (Linnaeus, 1758) (Nymphalidae), in order to assess variation in male allocation to matings. In this species, smaller males produce smaller spermatophores, but variation in spermatophore size is not correlated with female reproductive success. We show that spermatophore size increases with male age at first mating, decreases with mating frequency and adult food‐deprivation, and is not influenced by developmental food‐limitation. The length of copulation period does not influence the spermatophore size nor influences the polyandrous mating behavior in this species. Male contribution to his spermatophore size is clearly influenced by his condition and adult‐resource at the time of mating. Despite this variation, spermatophore size does not seem to have a direct impact on female reproductive output or mating behavior.  相似文献   

16.
植食性昆虫对寄主植物的选择适应性是研究昆虫和植物协同进化关系的核心内容之一。评估寄主植物对植食性昆虫种群的适合度,需要综合分析昆虫对寄主的产卵选择性和寄主对昆虫的取食适合性。以桔小实蝇和番石榴实蝇为研究对象,分别测定了这两种实蝇对6种寄主果实:番石榴、香蕉、杨桃、木瓜、甜橙、番茄的产卵选择性以及幼虫取食后对其生长发育的影响。寄主产卵选择性实验分别采用完整寄主果实直接供试产卵和块状寄主果实气味引诱产卵两种处理方式;在生长发育适应性实验中,以幼虫和蛹的存活和生长发育等相关参数作为评价指标。实验结果表明,寄主的供试方式不同,两种实蝇的选择性均有明显差异;对寄主气味选择性强的寄主更适合于两种实蝇后代的生长发育。两种实蝇对6种寄主果实的产卵选择性和后代发育适合性两者相关性不显著,与许多文献报道单一地采用发育适合性(如发育历期、存活率或蛹重等)作为评价寄主选择性的结果不一致。两种实蝇之间对6种寄主果实的产卵选择和幼虫取食适合性既具相似性也具差异性,表明这两种实蝇在寄主生态位上既有重叠性又有分化性。  相似文献   

17.
Patterns of phenological variation and reproductive investment were studied in the dioecious shrub Baccharis dracunculifolia DC (Asteraceae), and possible consequences on survivorship were evaluated. The sex ratio was determined in a natural field population (n = 921) of B. dracunculifolia in Belo Horizonte, Brazil. Fifty-two males and 56 females were sampled at random from this population. During the reproductive season of 1999, inflorescence production, shoot growth and mortality, and xylem water potential were recorded for each individual. The population sex ratio was male-biased (1.27 : 1, P < 0.05), and was associated with a higher mortality of female shoots (38.4 vs. 23.1 %, P < 0.05), and individuals (17.8 vs. 11.5 %, P < 0.1), despite lower water stress in female plants. Flowering phenology also differed between the sexes, with males producing more inflorescences, and earlier, than females. Owing to fruit maturation, the number of inflorescences supported by females was higher than that supported by males later in the reproductive season. This occurred during the dry season, and drought stress may have been responsible for the greater female mortality. Thus, the male-biased sex ratio in this population of B. dracunculifolia is probably due to different reproductive functions of males and females. Intersexual differences in reproductive phenology had consequences for plant demography.  相似文献   

18.
We examined the relationship between survival of roe deer (Capreolus capreolus) fawns at Trois Fontaines, Champagne-Ardennes, France, and factors related to bed-site selection (predator avoidance and thermoregulation) and maternal food resources (forage availability in the maternal home range). Previous studies have demonstrated that at small scales, the young of large herbivores select bed sites independently from their mothers, although this selection takes place within the limits of their mother’s home range. Fawn survival was influenced largely by the availability of good bed sites within the maternal home range, not by the fawn’s selection of bed sites; however, selection for thermal cover when selecting bed sites positively influenced survival of young fawns. Typical features of a good home range included close proximity to habitat edges, which is related to forage accessibility for roe deer. The availability of bed sites changed as fawns aged, probably due to an increased mobility of the fawn or a different use of the home range by the mother; sites offering high concealment and thermal protection became less available in favor of areas with higher forage accessibility. Despite the minor influence of bed-site selection on survival, roe deer fawns strongly selected their bed sites according to several environmental factors linked to predator avoidance and thermoregulation. Fawns selected for sites providing concealment, light penetration, and avoided signs of wild boar (Sus scrofa) activity. Avoidance of sites with high light penetration by young fawns positively affected their survival, confirming a negative effect on thermoregulation due to reduced thermal cover. Selection for light penetration by older fawns was less clear. We discuss these results in the context of cross-generational effects in habitat selection across multiple scales, and the potential influence of the ‘ghost of predation past’.  相似文献   

19.
We have examined the fitness consequences of random and potentially non-random matings within two populations taken from inside, and two from outside a hybrid zone in Chorthippus parallelus. When given the opportunity to mate non-randomly, females from all populations laid egg pods more quickly than females obliged to mate at random. A range of fitness parameters measured on the offspring did not show increased fitness following potential non-random mating for any population. However, in non-hybrid populations, the sons of non-randomly mated females had about twice the mating success of the sons of those females forced to mate at random, suggesting the existence of heritable variation for male reproductive success. Hybrid dysfunction did not occur amongst the offspring of randomly mated hybrid females, demonstrating that the lack of dysfunction within these populations is not due to the evolution of assortative mating within them.  相似文献   

20.
The ability of non‐crop plants to support complete development of insect pests is an important factor for determining the impact of those plants on resistance management programs for transgenic crops. We assessed the effect of one physical factor, plant stem diameter, on the ability of plants to support full development of the European corn borer (ECB), Ostrinia nubilalis Hübner (Lepidoptera: Crambidae), the target pest of transgenic Bt‐corn. In the field, European corn borer larvae were significantly more likely to tunnel and survive in plants with larger stem diameters. Larvae were 40× more likely to survive on corn, the largest plant tested, compared to many of the smaller plants. In the laboratory, larvae were more likely to survive in and less likely to abandon the largest diet‐filled artificial stems that varied only in stem diameter. In conditions simulating those that an ECB larvae would encounter upon abandoning a host, larvae survived up to three weeks and were able to locate corn as a new host with a significantly higher frequency than would be expected if they were foraging randomly. These results indicate that the probability of ECB larval survival to maturity on a plant other than corn is relatively low and thus these smaller stemmed non‐corn plants may not make a substantial contribution to the pool of susceptible adults. Conversely, since more mature larvae are not as susceptible as neonates, any larvae that partially develop on non‐corn plants and subsequently colonize Bt‐corn may not be exposed to a lethal dose of the toxin. Since some proportion of the individuals that survive could be partially resistant heterozygotes the presence of non‐corn host plants could facilitate the development of resistant ECB populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号