首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: In this study, we compare seven different methods which have been designed or modified to extract total DNA from raw milk and raw milk cheese with a view to its subsequent use for the PCR of bacterial DNA. Materials and Results: Seven extraction methods were employed to extract total DNA from these foods, and their relative success with respect to the yield and purity of the DNA isolated, and its quality as a template for downstream PCR, was compared. Although all of the methods were successful with respect to the extraction of DNA naturally present in cheese, they varied in their relative ability to extract DNA from milk. However, when milk was spiked with a representative Gram‐positive (Listeria monocytogenes EGDe) or Gram‐negative (Salmonella enterica serovar Typhimurium LT2) bacterium, it was established that all methods successfully extracted DNA which was suitable for subsequent detection by PCR. Conclusions: Of the seven approaches, the PowerFood? Microbial DNA Isolation kit (MoBio Laboratories Inc.) was found to most consistently extract highly concentrated and pure DNA with a view to its subsequent use for PCR‐based amplification and also facilitated accurate detection by real‐time quantitative PCR. Significance and Impact of the Study: Accurately assessing the bacterial composition of milk and cheese is of great importance to the dairy industry. Increasingly, DNA‐based technologies are being employed to provide an accurate assessment of this microbiota. However, these approaches are dependent on our ability to extract DNA of sufficient yield and purity. This study compares a number of different options and highlights the relative success of these approaches. We also highlight the success of one method to extract DNA from different microbial populations as well as DNA which is suitable for real‐time PCR of microbes of interest, a challenge often encountered by the food industry.  相似文献   

2.
Among the survival strategies developed by bacteria when faced with adverse environmental conditions, the viable but nonculturable (VNC) state has been described. In this state, bacteria are unable to form colonies but are still alive and capable of metabolic activity. The VNC state has been described in numerous Gram-negative species, but recently also in Enterococcus faecalis, a Gram-positive species which can be found in the environment. In this study we describe a competitive PCR (cPCR) protocol to detect and quantify a specific sequence of DNA from culturable and nonculturable E. faecalis cells present in water samples. The protocol was found to be specific and capable of detecting amounts of DNA up to 0.1 pg corresponding to approximately 2 cells ml(-1). Moreover, it allows an internal standard to be used to quantify the amount of specific DNA present in samples from different environments. The application of this cPCR method to water samples from Lake Garda enabled us to demonstrate the presence of nonculturable forms of E. faecalis in lake water and to quantify their DNA and the corresponding concentration of nonculturable cells.  相似文献   

3.
A marker-coupled method for site-directed mutagenesis   总被引:1,自引:0,他引:1  
T J Shen  L Q Zhu  X Sun 《Gene》1991,103(1):73-77
A marker-coupled method for site-directed mutagenesis (SDM) has been developed. In this method, target DNA is first cloned into a plasmid vector which carries an inactivated tetracycline-resistance (TcR)-encoding tet gene. Using this cloned plasmid as template, polymerase chain reaction (PCR) is performed with a mutagenic primer and a marker primer. The mutagenic primer contains the desired mutations to be introduced into the target DNA, and the marker primer contains a mutation for restoring the activity of the inactivated tet gene. The PCR product is annealed with a gapped duplex plasmid template, extended and ligated in vitro. The resulting uni-strand-mutated plasmid is converted into the gapped duplex form, transformed into Escherichia coli JM109 and spread on yeast extract/tryptone culture medium + Tc plates. The TcR colonies grown on these plates all carry active tet genes. Due to the 'tight coupling' between the marker primer and the mutagenic primer formed in the PCR product, these TcR colonies should also carry the mutagenic primer, e.g., the desired mutations in the target DNA. In fact, practically all of the TcR colonies have been found to be the desired mutants in the present experiments. Therefore, this method provides a very efficient approach for SDM.  相似文献   

4.
AIMS: The aim of this study was to develop a rapid, sensitive, specific tool for detection and quantification of Mycoplasma agalactiae DNA in sheep milk samples. METHODS AND RESULTS: A real-time polymerase chain reaction (PCR) assay targeting the membrane-protein 81 gene of M. agalactiae was developed. The assay specifically detected M. agalactiae DNA without cross-amplification of other mycoplasmas and common pathogens of small ruminants. The method was reproducible and highly sensitive, providing precise quantification of M. agalactiae DNA over a range of nine orders of magnitude. Compared with an established PCR assay, the real-time PCR was one-log more sensitive, detecting as few as 10(1) DNA copies per 10 microl of plasmid template and 6.5x10(0) colour changing units of reference strain Ba/2. CONCLUSIONS: The real-time PCR assay is a reliable method for the detection and quantification of M. agalactiae DNA in sheep milk samples. The assay is more sensitive than gel-based PCR protocols and provides quantification of the M. agalactiae DNA contained in milk samples. The assay is also quicker than traditional culture methods (2-3 h compared with at least 1 week). SIGNIFICANCE AND IMPACT OF THE STUDY: The established real-time PCR assay will help study the patterns of shedding of M. agalactiae in milk, aiding pathogenesis and vaccine efficacy studies.  相似文献   

5.
6.
Psychrotolerant sporeformers, specifically Paenibacillus spp., are important spoilage bacteria for pasteurized, refrigerated foods such as fluid milk. While Paenibacillus spp. have been isolated from farm environments, raw milk, processing plant environments, and pasteurized fluid milk, no information on the number of Paenibacillus spp. that need to be present in raw milk to cause pasteurized milk spoilage was available. A real-time PCR assay targeting the 16S rRNA gene was designed to detect Paenibacillus spp. in fluid milk and to discriminate between Paenibacillus and other closely related spore-forming bacteria. Specificity was confirmed using 16 Paenibacillus and 17 Bacillus isolates. All 16 Paenibacillus isolates were detected with a mean cycle threshold (C(T)) of 19.14 ± 0.54. While 14/17 Bacillus isolates showed no signal (C(T) > 40), 3 Bacillus isolates showed very weak positive signals (C(T) = 38.66 ± 0.65). The assay provided a detection limit of approximately 3.25 × 10(1) CFU/ml using total genomic DNA extracted from raw milk samples inoculated with Paenibacillus. Application of the TaqMan PCR to colony lysates obtained from heat-treated and enriched raw milk provided fast and accurate detection of Paenibacillus. Heat-treated milk samples where Paenibacillus (≥1 CFU/ml) was detected by this colony TaqMan PCR showed high bacterial counts (>4.30 log CFU/ml) after refrigerated storage (6°C) for 21 days. We thus developed a tool for rapid detection of Paenibacillus that has the potential to identify raw milk with microbial spoilage potential as a pasteurized product.  相似文献   

7.
The present study was performed to develop a fast and sensitive multiplex polymerase chain reaction protocol for routine diagnostics of American foulbrood. A new approach for detection of Paenibacillus larvae in putrid masses was described. Forty five samples of putrid masses obtained from bee combs suspicious for American foulbrood, a reference strain Paenibacillus larvae (NBIMCC 8478), clinical isolates and 4 strains of closely related bacterial species were included in experiments. Bacterial colonies?? DNA was isolated by heat and centrifugation method (standard procedure) and with prepGem commercial kit. DNA from putrid masses was isolated by standard and modified procedure. Three pairs of primers specific for 16S rRNA and one pair specific for 35 kDa metalloproteinase genes of Paenibacillus larvae were tested as single pair and in different combinations as multiplex PCR. The sensitivity of the multiplex PCR protocol for putrid masses, developed in study was 100%, versus 45.2% for the standard protocol. The developed multiplex PCR protocol could be successfully used for rapid and specific detection of Paenibacillus larvae in both putrid masses and isolated bacterial colonies.  相似文献   

8.
Low sensitivity of PCR reaction for detection of Mycoobacterium avium subspecies paratuberculosis (MAP) in tissues and fecal samples is mainly attributed to false negative results. Present study was undertaken to compare four methods of DNA isolation from tissues of infected animals and to determine most sensitive protocol for the recovery of DNA, suitable for IS900 PCR based detection of Johne's disease infection. Method I, the traditional van Soolingen2 method of DNA isolation was adopted for the isolation of DNA from tissues. Method II was modification (hexadecyl pyridinium chloride-HPC treatment) of van Soolingen2 method. Method III was traditional tissue DNA isolation method based on tissue lysis buffer. Method IV was modification of method III (HPC treatment). Using four methods of DNA isolation from 25 intestinal tissues of clinically infected goats, DNA was isolated from 15 (60.0%), 18 (72.0%), 13 (52.0%) and 13 (52.0%) tissues using method I, II, III and IV, respectively. All isolated DNA preparations were positive for MAP in IS900 PCR. HPC treatment enhanced the recovery of DNA from tissues of infected animals using method II. Therefore, method II can improve the diagnosis MAP infection using IS900 PCR.  相似文献   

9.
Pasteurized milk is a complex food that contains various inhibitors of polymerase chain reaction (PCR) and may contain a large number of dead bacteria, depending on the milking conditions and environment. Ethidium monoazide bromide (EMA)-PCR is occasionally used to distinguish between viable and dead bacteria in foods other than pasteurized milk. EMA is a DNA-intercalating dye that selectively permeates the compromised cell membranes of dead bacteria and cleaves DNA. Usually, EMA-PCR techniques reduce the detection of dead bacteria by up to 3.5 logs compared with techniques that do not use EMA. However, this difference may still be insufficient to suppress the amplification of DNA from dead Gram-negative bacteria (e.g., total coliform bacteria) if they are present in pasteurized milk in large numbers. Thus, false positives may result. We developed a new method that uses real-time PCR targeting of a long DNA template (16S-23S rRNA gene, principally 2,451?bp) following EMA treatment to completely suppress the amplification of DNA of up to 7?logs (10(7)?cells) of dead total coliforms. Furthermore, we found that a low dose of proteinase K (25?U/ml) removed PCR inhibitors and simultaneously increased the signal from viable coliform bacteria. In conclusion, our simple protocol specifically detects viable total coliforms in pasteurized milk at an initial count of ≥1?colony forming unit (CFU)/2.22?ml within 7.5?h of total testing time. This detection limit for viable cells complies with the requirements for the analysis of total coliforms in pasteurized milk set by the Japanese Sanitation Act (which specifies <1?CFU/2.22?ml).  相似文献   

10.
Results of study of rooms' air and washes from medical equipment by PCR assay to detect Pneumocystis carinii DNA are presented. PCR assay sensivity was 200 copies/ml. Method of taking of air samples by MC-2 sample-taking device was modified for P. carinii detection. Sensivity of the method was 10 copies/m3. 27 air samples and 105 washes from medical equipment were studied and P. carinii DNA was not detected. It has been shown during the study that DNA of pneumocysts remains intact at room temperature during 12 days including 2-hour ultraviolet (UV) radiation treatment. After processing of studied surfaces with 0.1% solution of chloramine with subsequent UV radiation treatment during 30 minutes results of PCR assay were negative.  相似文献   

11.
In this study we present an indexed genomic library of homokaryon AmutBmut constructed within a novel cosmid carrying pab1+ as a selectable Coprinus marker. The average insert size per cosmid comprises 41 kb. We screened the library and detected copies of known (a1-2, beta-tub, cgl1, ras, trp1) and of new Coprinus genes (cac, lac1, lac2, lac3). Screening was performed either by Southern blot hybridisation or more efficiently by non-radioactive PCR amplification. We successfully applied PCR with specific and with degenerate primers, multiplex PCR and colony PCR in library screening. Our results suggest a new, more efficient pooling strategy for future high throughput screenings to be used in PCR with pooled cosmid DNAs, or in a less laborious approach using pooled Escherichia coli colonies for PCR.  相似文献   

12.
A possible mode of transmission for the ruminant pathogen Mycobacterium avium subsp. paratuberculosis (MAP) from cattle to humans is via milk and dairy products. Although controversially, MAP has been suggested as the causative agent of Crohn's disease and its presence in consumers' milk might be of concern. A method to detect MAP in milk with real-time PCR was developed for screening of bulk tank milk. Pellet and cream fractions of milk were pooled and subjected to enzymatic digestion and mechanical disruption and the DNA was extracted by automated magnetic bead separation. The analytical sensitivity was assessed to 100 organisms per ml milk (corresponding to 1-10 CFU per ml) for samples of 10 ml. The method was applied in a study of 56 dairy herds to compare PCR of farm bulk tank milk to culture of environmental faecal samples for detection of MAP in the herds. In this study, 68% of the herds were positive by environmental culture, while 30% were positive by milk PCR. Results indicate that although MAP may be shed into milk or transferred to milk by faecal contamination, it will probably occur in low numbers in the bulk tank milk due to dilution as well as general milking hygiene measures. The concentration of MAP can therefore be assumed to often fall below the detection limit. Thus, PCR detection of MAP in milk would be more useful for control of MAP presence in milk, in order to avoid transfer to humans, than for herd prevalence testing. It could also be of value in assessing human exposure to MAP via milk consumption. Quantification results also suggest that the level of MAP in the bulk tank milk of the studied Danish dairy herds was low, despite environmental isolation of MAP from the herds.  相似文献   

13.
In assays to determine whether viable cells of Enterobacteriaceae are present in pasteurized milk, the typical ethidium monoazide (EMA) polymerase chain reaction (PCR) targets a short stretch of DNA. This process often triggers false-positive results owing to the high level of dead cells of Enterobacteriaceae that had initially contaminated the sample. We have developed a novel, direct, real-time PCR that does not require DNA isolation (DQ-PCR) to detect low levels of cells of Enterobacteriaceae regardless of live and dead cells first. We confirmed that the DQ-PCR targeting a long DNA (the 16S ribosomal RNA [rRNA] gene, amplified length of 1514 bp) following EMA treatment is a promising tool to detect live bacteria of all genera owing to the complete suppression of background signal from high levels of dead bacteria in pasteurized milk. However, when identifying viable bacteria in pasteurized milk, commercial PCR primers designed for detecting long stretches of DNA are generally not available. Thus, we treated samples with EMA and then carried out an initial round of PCR of a long stretch of DNA (16S gene, 1514 bp). We then performed another round of PCR, a novel nested PCR to generate short products using commercial primers. This procedure resulted in the rapid detection of low levels of viable cells of Enterobacteriaceae.  相似文献   

14.
The purpose of this study was to locate and detect genetic variation in the sheep FABP3 gene, a candidate gene for milk and meat quality traits in sheep. We have obtained an almost complete sequence (4,689 bp, excluding a part of intron 1) of the sheep FABP3 gene using PCR-based comparative genome walking. Sheep FABP3 has been located to chromosome 2 by sheep sequence-specific PCR on DNA from a sheep/rodent cell hybrid panel, and confirmed by linkage mapping using the International Mapping Flock. Direct sequencing of PCR products amplified from different DNA samples of Manchega breed sheep over the complete sheep FABP3 gene revealed 13 SNPs, one CTC insertion/deletion and a variable polyA tract. This poly A tract was found in association with a SINE/artiodactyls repeat. In addition, two SNPs were screened in different sheep breeds.  相似文献   

15.
Summary Polymerase chain reaction (PCR)in situ is a new technique which promises to enhance considerably our ability to detect a few copies of target nucleic acid sequences in fixed tissues and cells. It has an enormous potential for application in diagnostic histopathology of viral diseases and in the study of gene expression. PCRin situ is, however, technically difficult, and amplification of the target DNA is only 30–300 fold. In this article we present an overview of PCRin situ techniques used to amplify both DNA and RNA targets (RT-PCRin situ). We also identify problems which can reduce the efficiency of the technique or which can give rise to false-positive results. They include (1) the inhibitory effects of cross-linking of histones to DNA or PCR amplification, (2) abstraction of PCR reagents by tissue-bonding agents which are used to coat glass slides, (3) poor denaturation of target DNA and subsequent DNA renaturation due to extensive cross-linking of histones to DNA, or because of incorrect temperature regulation of thermal cyclers, (4) false-positive results which arise from end-labelling of DNA strand breaks byTaq polymerase, and (5) diffusion of PCR products into and out of cells leading to false-positive results. We present some of the approaches that have been used to overcome some of these difficulties and suggest new avenues for investigation to improve this technique further.  相似文献   

16.
Brucellosis is one of the most common zoonotic diseases, and current methods of detecting this pathogen are quite difficult. This work combines the benefits of a proximity ligation assay with those of a loop-mediated isothermal amplification method to develop a novel proximity ligation-based loop-mediated isothermal amplification method useful for Brucella detection. The genomic DNA extraction procedure is not needed. Sensitivity of this assay for detecting Brucella abortus is 1  ×  104 cells/mL in buffer and 1  ×  105 cells/mL in milk. The time to detection is within 2 h of initiating the procedure, and no special equipment is needed. This new method is also suitable for the detection of other pathogens, and as such will be useful in the food safety industry.

PRACTICAL APPLICATIONS


Polymerase chain reaction (PCR) is a sensitivity method for microbe detection, but the complicated genomic DNA extraction procedure and costly equipment needed for this method makes the PCR method unpopular in developing countries. In this study, we present the novel proximity ligation-based loop-mediated isothermal amplification (P-LAMP) method for Brucella detection; this is the first time to combine the monoclonal antibody for identify microbe and LAMP method for high performance amplification DNA. The genomic DNA extraction procedure is not needed and a water-bath boiler is the only equipment required to complete the detection process. The P-LAMP method is useful for food safety pathogen detection in developing countries.  相似文献   

17.
The presence of Wolbachia and Cardinium bacteria has been documented in many arthropod species, including the predatory mite Metaseiulus (=Typhlodromus or Galendomus) occidentalis (Nesbitt) (Acari: Phytoseiidae). We show that Tetranychus urticae, the prey of Metaseiulus occidentalis, contains Wolbachia and no detectable Cardinium using quantitative PCR (qPCR). Starvation for 72 h at 22°C eliminated most, if not all, Wolbachia in M. occidentalis adult females from 7 laboratory colonies. Refeeding of M. occidentalis with T. urticae after starvation for 72 h restored the amounts of Wolbachia in M. occidentalis to those of prestarvation levels, suggesting that Wolbachia detected in M. occidentalis starved for shorter periods of time in current, and some previous, studies likely came from T. urticae. Furthermore, eggs from all M. occidentalis colonies examined were free of Wolbachia if they were surface-decontaminated with 0.3% sodium hypochlorite before DNA extraction. Cardinium was present in 6 of 14 laboratory colonies of M. occidentalis. Starvation for 3, 24, 48, and 72 h had no effect on the amounts of Cardinium in adult females from the Cardinium-positive colonies. Eggs from these colonies were positive for Cardinium but contained less than 1% of the titers found in adult females. The data suggest that Cardinium, but not Wolbachia, is an endosymbiont in certain populations of M. occidentalis. In light of our current findings, we recommend specific practices for the identification of potential symbionts in predatory arthropod species using the PCR.  相似文献   

18.
DNA replication was studied in vitro in the presence of native and esterified milk proteins [-lactalbumin (ALA), β-lactoglobulin (BLG) and β-casein (BCN)]. Addition of unmodified proteins to the PCR medium did not change the result of the reaction seen by electrophoresis, even at excessive ratios of basic amino acids in proteins:phosphate groups in DNA as high as 100:1. Addition of esterified proteins greatly reduced the intensity of the bands corresponding to the newly synthesized DNA, at ratios as low as 1:1 and 5:1 in case of methylated-BLG and methylated-ALA, respectively. The inhibitory effect of esterified proteins was directly proportional to their extent of esterification and strongly related to their DNA-binding capacity. Generally, inhibition of PCR with esterified proteins was similar to what can be observed with histones. However, stronger inhibition was observed with highly esterified proteins when using a higher ratio of basic:acid residues (1:1) when compared with 0.5:1 ratio in case of histones. Highly esterified BCN did not exert any inhibitory effect because of its relatively lower pI when compared with that of other esterified milk proteins and due to its lower positive net charge at the pH used for PCR. During a second PCR run, only the addition of new DNA template was able to reinitiate the reaction, giving rise to new synthesized DNA. Addition of Taq DNA polymerase did not enhance DNA synthesis, showing that inhibition was performed only by binding of DNA template and not by the inhibition of the polymerase.  相似文献   

19.
Recently, several colony PCR methods have been developed to simplify DNA isolation procedure and facilitate PCR-based colony screening efforts in microalgae. A main drawback of current protocols is that cell collection, disruption, and genomic DNA extraction are required preceding the PCR step, making the colony PCR process laborious and costly. In the present study, we have developed a novel procedure that eliminates any steps of DNA extraction and allows the colony screening to be performed in a single PCR tube: algal cells (as low as 5,000) from agar plates or liquid cultures were directly transferred into a PCR tube containing 2× PCR buffer and boiled for 5–10 min depending on different algal strains, followed by addition of other PCR components (dNTPs, primers, and polymerase) and then subjected to conventional PCR reaction. The procedure documented here worked well not only for the model alga Chlamydomonas reinhardtii, but also for the thick-walled oleaginous strains such as Chlorella, Haematococcus, Nannochloropsis, and Scenedesmus with its efficacy independent on amplicon sizes and primer pairs. In addition, screening of Chlorella zofingiensis transformants was achieved using this method. Collectively, our single-tube colony PCR is a much simpler and more cost-effective procedure as compared to those previously reported and has broad applications including gene cloning, strain determination, and high-throughput screening of algae colonies and transformants for biomass and biofuel production.  相似文献   

20.
Aims: To develop a PCR‐based assay to detect Prototheca zopfii (P. zopfii) and its mastitis‐related subtype (genotype 2) directly from milk samples. Methods and Results: The DNA extraction method herein is based on the lysing properties of chemical agents, mechanical grinding and DNA‐binding properties of silica particles; this method was developed to rapidly extract DNA directly from P. zopfii in bovine milk. Two pairs of primers specific for P. zopfii and genotype 2 were used in the duplex PCR, and a sensitivity test showed that the detection level was 5 × 102 colony‐forming units (CFU) ml?1 for P. zopfii and 5 × 103 CFU ml?1 for genotype 2. Furthermore, a practical survey of 23 milk samples showed that the assay produced results that were in accordance with those obtained by the conventional microbiology method. Conclusions: The DNA extraction method is effective in isolating sufficient quantities of DNA from P. zopfii in milk for PCR analysis. The PCR assay is economical, sensitive and more rapid than the conventional culture method. Significance and Impact of the Study: The assay could be used as an alternative method for the rapid the detection of bovine mastitis resulting from P. zopfii genotype 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号