首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu F  Ng SK  Lu Y  Low W  Lai J  Jedd G 《The Journal of cell biology》2008,180(2):325-339
Woronin bodies (WBs) are dense-core organelles that are found exclusively in filamentous fungi and that seal the septal pore in response to wounding. These organelles consist of a membrane-bound protein matrix comprised of the HEX protein and, although they form from peroxisomes, their biogenesis is poorly understood. In Neurospora crassa, we identify Woronin sorting complex (WSC), a PMP22/MPV17-related membrane protein with dual functions in WB biogenesis. WSC localizes to large peroxisome membranes where it self-assembles into detergent-resistant oligomers that envelop HEX assemblies, producing asymmetrical nascent WBs. In a reaction requiring WSC, these structures are delivered to the cell cortex, which permits partitioning of the nascent WB and WB inheritance. Our findings suggest that WSC and HEX collaborate and control distinct aspects of WB biogenesis and that cortical association depends on WSC, which in turn depends on HEX. This dependency helps order events across the organellar membrane, permitting the peroxisome to produce a second organelle with a distinct composition and intracellular distribution.  相似文献   

2.
Septa of filamentous ascomycetes are perforated by septal pores that allow communication between individual hyphal compartments. Upon injury, septal pores are plugged rapidly by Woronin bodies (WBs), thereby preventing extensive cytoplasmic bleeding. The mechanism by which WBs translocate into the pore is not known, but it has been suggested that wound‐induced cytoplasmic bleeding “flushes” WBs into the septal opening. Alternatively, contraction of septum‐associated tethering proteins may pull WBs into the septal pore. Here, we investigate WB dynamics in the wheat pathogen Zymoseptoria tritici. Ultrastructural studies showed that 3.4 ± 0.2 WBs reside on each side of a septum and that single WBs of 128.5 ± 3.6 nm in diameter seal the septal pore (41 ± 1.5 nm). Live cell imaging of green fluorescent ZtHex1, a major protein in WBs, and the integral plasma membrane protein ZtSso1 confirms WB translocation into the septal pore. This was associated with the occasional formation of a plasma membrane “balloon,” extruding into the dead cell, suggesting that the plasma membrane rapidly seals the wounded septal pore wound. Minor amounts of fluorescent ZtHex1‐enhanced green fluorescent protein (eGFP) appeared associated with the “ballooning” plasma membrane, indicating that cytoplasmic ZtHex1‐eGFP is recruited to the extending plasma membrane. Surprisingly, in ~15% of all cases, WBs moved from the ruptured cell into the septal pore. This translocation against the cytoplasmic flow suggests that an active mechanism drives WB plugging. Indeed, treatment of unwounded and intact cells with the respiration inhibitor carbonyl cyanide m‐chlorophenyl hydrazone induced WB translocation into the pores. Moreover, carbonyl cyanide m‐chlorophenyl hydrazone treatment recruited cytoplasmic ZtHex1‐eGFP to the lateral plasma membrane of the cells. Thus, keeping the WBs out of the septal pores, in Z. tritici, is an ATP‐dependent process.  相似文献   

3.
The Australian magpie ( Gymnorhina tibicen ) is polymorphic for back colour with three distinct morphs recognized: the black-backed form (BB) which occurs in northern and north-eastern Australia; the white-backed form (WB) which occurs in south-eastern Australia and Tasmania and the Western form which occurs in the far south-west corner of the continent. Male and female WBs and BBs are both monomorphic for back colour while Westerns are sexually dimorphic, with males white-backed and females black-backed. In the south-east the WB and BB distributions overlap with individuals of intermediate phenotype interspersed with pure WB and BB phenotypes. This study used mtDNA control-region sequences to test the predictions of two alternative hypotheses to explain the distribution of WB and BB populations in eastern Australia and Tasmania. Our data support the hypothesis that the variation has evolved in situ, as no population genetic structuring was evident in eastern Australia related to back colour and Tasmanian WBs were no more closely related to mainland WBs than to mainland BBs (primary contact hypothesis). Back colour patterns may be maintained by different forms of natural selection favouring BB genes in the north-east and WB genes in the south-east.  相似文献   

4.
Understanding how genomes encode complex cellular and organismal behaviors has become the outstanding challenge of modern genetics. Unlike classical screening methods, analysis of genetic variation that occurs naturally in wild populations can enable rapid, genome-scale mapping of genotype to phenotype with a medium-throughput experimental design. Here we describe the results of the first genome-wide association study (GWAS) used to identify novel loci underlying trait variation in a microbial eukaryote, harnessing wild isolates of the filamentous fungus Neurospora crassa. We genotyped each of a population of wild Louisiana strains at 1 million genetic loci genome-wide, and we used these genotypes to map genetic determinants of microbial communication. In N. crassa, germinated asexual spores (germlings) sense the presence of other germlings, grow toward them in a coordinated fashion, and fuse. We evaluated germlings of each strain for their ability to chemically sense, chemotropically seek, and undergo cell fusion, and we subjected these trait measurements to GWAS. This analysis identified one gene, NCU04379 (cse-1, encoding a homolog of a neuronal calcium sensor), at which inheritance was strongly associated with the efficiency of germling communication. Deletion of cse-1 significantly impaired germling communication and fusion, and two genes encoding predicted interaction partners of CSE1 were also required for the communication trait. Additionally, mining our association results for signaling and secretion genes with a potential role in germling communication, we validated six more previously unknown molecular players, including a secreted protease and two other genes whose deletion conferred a novel phenotype of increased communication and multi-germling fusion. Our results establish protein secretion as a linchpin of germling communication in N. crassa and shed light on the regulation of communication molecules in this fungus. Our study demonstrates the power of population-genetic analyses for the rapid identification of genes contributing to complex traits in microbial species.  相似文献   

5.
The hyphae of filamentous fungi are compartmentalized by septa that have a central pore. The fungal septa and septum-associated structures play an important role in maintaining cellular and intrahyphal homeostasis. The dolipore septa in the higher Basidiomycota (i.e., Agaricomycotina) are associated with septal pore caps. Although the ultrastructure of the septal pore caps has been studied extensively, neither the biochemical composition nor the function of these organelles is known. Here, we report the identification of the glycoprotein SPC18 that was found in the septal pore cap-enriched fraction of the basidiomycetous fungus Rhizoctonia solani. Based on its N-terminal sequence, the SPC18 gene was isolated. SPC18 encodes a protein of 158 amino acid residues, which contains a hydrophobic signal peptide for targeting to the endoplasmic reticulum and has an N-glycosylation motif. Immunolocalization showed that SPC18 is present in the septal pore caps. Surprisingly, we also observed SPC18 being localized in some plugs. The data reported here strongly support the hypothesis that septal pore caps are derived from endoplasmic reticulum and are involved in dolipore plugging and, thus, contribute to hyphal homeostasis in basidiomycetous fungi.  相似文献   

6.
A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenkörper (Spk), whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture.  相似文献   

7.
The mechanisms ensuring accurate partitioning of yeast vacuoles and mitochondria are distinct, yet they share common elements. Both organelles move along actin filaments, and both organelles require fusion and fission to maintain normal morphology. Recent studies have revealed that while vacuolar inheritance requires a processive myosin motor, mitochondrial inheritance requires controlled actin polymerization. Distinct sets of proteins required for the fusion and fission of each organelle have also been identified.  相似文献   

8.
We observed that the filamentous fungus, Aspergillus oryzae, grown on agar media burst out cytoplasmic constituents from the hyphal tip soon after flooding with water. Woronin body is a specialized organelle known to plug the septal pore adjacent to the lysed compartment to prevent extensive loss of cytoplasm. A. oryzae Aohex1 gene homologous to Neurospora crassa HEX1 gene encoding a major protein in Woronin body was expressed as a fusion with DsRed2, resulting in visualization of Woronin body. Confocal microscopy and three-dimensional reconstruction of images visualized the septal pore as a dark region surrounded by green fluorescence of EGFP-fused secretory protein, RNase T1, on the septum. Dual fluorescent labeling revealed the plugging of the septal pores adjacent to the lysed apical compartments by Woronin bodies during hypotonic shock. Disruption of Aohex1 gene caused disappearance of Woronin bodies and the defect to prevent extensive loss of cytoplasm during hypotonic shock.  相似文献   

9.
Electron microscopic observations of a previously undescribed ascomycetous septal pore structure are presented and discussed. Hyphal septa and septa at the base of phialides in the hyphomycete, Trichoderma saturnisporum Hammill, developed a membrane-bounded, electron-opaque septal pore body which was fine-structurally similar to Woronin bodies. Within a septal pore body, several electron-transparent layers appeared to develop centripetally from the septal pore rim. The number of layers observed varied from two to about five, with lower numbers being more frequently observed. The electron-transparent layers perhaps functioned as a vinculum, binding the septal pore body in place. Questions about the origin and function of septal pore bodies are discussed.  相似文献   

10.
Mitochondria are essential organelles of eukaryotic cells. They grow continuously throughout the cell cycle and are inherited by daughter cells upon cell division. Inheritance of mitochondria and maintenance of mitochondrial distribution and morphology require active transport of the organelles along the cytoskeleton and depend on membrane fission and fusion events. Many of the molecular components and cellular mechanisms mediating these complex processes have been conserved during evolution across the borders of the fungal and animal kingdoms. During the past few decades, several constituents of the cellular machinery mediating mitochondrial behavior have been identified and functionally characterized. Here, we review the contributions of fungi, with special emphasis on the filamentous fungus Neurospora crassa, to our current understanding of mitochondrial morphogenesis and inheritance.  相似文献   

11.
Development of hyphal septa (pseudosepta) in Allomyces macrogynus begins with the formation of five or more discontinuous pieces of wall material that project inward from the hyphal wall. Lateral fusion of these projections leaves a central pore in the septum that is later filled in by centripetal deposition of wall material. However, lateral fusion of the projections is not complete; peripheral pores remain in the rim of the mature septum. The position of cytoplasmic microtubules corresponds to the position of actively moving cellular particles and organelles. Allomyces reticulatus and A. arbuscula have similar septa.  相似文献   

12.
The evolution of island populations in natural systems is driven by local adaptation and genetic drift. However, evolutionary pathways may be altered by humans in several ways. The wild boar (WB) (Sus scrofa) is an iconic game species occurring in several islands, where it has been strongly managed since prehistoric times. We examined genomic diversity at 49 803 single-nucleotide polymorphisms in 99 Sardinian WBs and compared them with 196 wild specimens from mainland Europe and 105 domestic pigs (DP; 11 breeds). High levels of genetic variation were observed in Sardinia (80.9% of the total number of polymorphisms), which can be only in part associated to recent genetic introgression. Both Principal Component Analysis and Bayesian clustering approach revealed that the Sardinian WB population is highly differentiated from the other European populations (FST=0.126–0.138), and from DP (FST=0.169). Such evidences were mostly unaffected by an uneven sample size, although clustering results in reference populations changed when the number of individuals was standardized. Runs of homozygosity (ROHs) pattern and distribution in Sardinian WB are consistent with a past expansion following a bottleneck (small ROHs) and recent population substructuring (highly homozygous individuals). The observed effect of a non-random selection of Sardinian individuals on diversity, FST and ROH estimates, stressed the importance of sampling design in the study of structured or introgressed populations. Our results support the heterogeneity and distinctiveness of the Sardinian population and prompt further investigations on its origins and conservation status.  相似文献   

13.
Woronin bodies of filamentous fungi   总被引:7,自引:0,他引:7  
  相似文献   

14.
Intercellular communication of vegetative cells and their subsequent cell fusion is vital for different aspects of growth, fitness, and differentiation of filamentous fungi. Cell fusion between germinating spores is important for early colony establishment, while hyphal fusion in the mature colony facilitates the movement of resources and organelles throughout an established colony. Approximately 50 proteins have been shown to be important for somatic cell-cell communication and fusion in the model filamentous fungus Neurospora crassa. Genetic, biochemical, and microscopic techniques were used to characterize the functions of seven previously poorly characterized cell fusion proteins. HAM-6, HAM-7 and HAM-8 share functional characteristics and are proposed to function in the same signaling network. Our data suggest that these proteins may form a sensor complex at the cell wall/plasma membrane for the MAK-1 cell wall integrity mitogen-activated protein kinase (MAPK) pathway. We also demonstrate that HAM-9, HAM-10, AMPH-1 and WHI-2 have more general functions and are required for normal growth and development. The activation status of the MAK-1 and MAK-2 MAPK pathways are altered in mutants lacking these proteins. We propose that these proteins may function to coordinate the activities of the two MAPK modules with other signaling pathways during cell fusion.  相似文献   

15.
Ebstein’s anomaly is a rare congenital heart malformation characterised by adherence of the septal and posterior leaflets of the tricuspid valve to the underlying myocardium. Associated abnormalities of left ventricular morphology and function including left ventricular noncompaction (LVNC) have been observed. An association between Ebstein’s anomaly with LVNC and mutations in the sarcomeric protein gene MYH7, encoding β-myosin heavy chain, has been shown by recent studies. This might represent a specific subtype of Ebstein’s anomaly with a Mendelian inheritance pattern. In this review we discuss the association of MYH7 mutations with Ebstein’s anomaly and LVNC and its implications for the clinical care for patients and their family members.  相似文献   

16.
17.
The colony of a filamentous ascomycete fungus typically grows as a multinucleate syncytium. While this syncytial organization has developmental advantages, it bears the risk of extensive damage caused by local injury of hyphae. Loss of cytoplasm in injured hyphae is restricted by the fast and efficient sealing of the central pores of hyphal crosswalls, or septa, by a peroxisome-derived organelle called the Woronin body. The formation of septal plugs is also associated with development and leads to separation of certain parts of the colony. Septal plugs associated with developmental processes or aging hyphae typically occur by the accumulation of sealing material. Here we report that in Neurospora crassa, a protein necessary for hyphal fusion and proper colony development called SO (SOFT) localizes to septal plugs. In response to injury, SO accumulates at the septal plug in a Woronin body-independent manner. However, the presence of the Woronin body affects the speed of accumulation of SO at the septal pore. We determined that SO contributes to, but is not essential for, septal plugging. SO accumulation was also observed at septal plugs formed during hyphal aging and during programmed cell death mediated by genetic differences at heterokaryon incompatibility (het) loci.  相似文献   

18.
It has previously been suggested that small sperm size may be an adaptation to achieve uniparental inheritance of organelles, and hence to prevent the spread of selfish cytoplasmic elements. Such an explanation for anisogamy implies a mechanism whereby the male gamete eliminates its own cytoplasm prior to fusion with the egg. A model has been presented demonstrating the invasion and persistence of a modifier that acts gametically to kill its own organelles. Here we show, however, that this model is far from robust; indeed, if any cost is associated with the modifier it cannot persist. We also show that despite an empirically demonstrated association between anisogamy and multicellularity, this result also applies if the analysis is applied in the multicellular case. This class of model contrasts with the majority of analyses in which the modifier kills off the incoming gamete’s organelles. We show that these models are highly robust, even if uniparental inheritance is imperfect.  相似文献   

19.
Mitochondria are amazingly dynamic organelles. They continuously move along cytoskeletal tracks and frequently fuse and divide. These processes are important for maintenance of mitochondrial functions, for inheritance of the organelles upon cell division, for cellular differentiation and for apoptosis. As the machinery of mitochondrial behavior has been highly conserved during evolution, it can be studied in simple model organisms, such as yeast. During the past decade, several key components of mitochondrial dynamics have been identified and functionally characterized in Saccharomyces cerevisiae. These include the mitochondrial fusion and fission machineries and proteins required for maintenance of tubular shape and mitochondrial motility. Taken together, these findings reveal a comprehensive picture that shows the cellular processes and molecular components required for mitochondrial inheritance and morphogenesis in a simple eukaryotic cell.  相似文献   

20.
Summary The dolipore and parenthesomes are major components of the septal apparatus in wild type homokaryon and dikaryon strains of Schizophyllum commune. The parenthesome lacuna contains a matrix material that produces a lamellar appearance. The domain between the pore and the parenthesome is normally devoid of any organelles or membrane material, but is traversed by a system of microfilaments. The filaments pass through the septal pore, which is obstructed by a pair of opposed occlusions. In the homokaryon carrying a B-factor mutation, which leads to septal degradation, the septa as initially synthesized appear normal apart from the intrusion of membranous vesicles into the pore domain. In those homokaryons which carry a modifier mutation, preventing septal degradation, in addition to the B-factor mutation, once again the pore domain is invaded by membraneous vesicles and in some cases the parenthesomes become disorganized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号