首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents the use of caprylic acid (CA) to precipitate impurities from the protein A capture column elution pool for the purification of monoclonal antibodies (mAbs) with the objective of developing a two chromatography step antibody purification process. A CA‐induced impurity precipitation in the protein A column elution pool was evaluated as an alternative method to polishing chromatography techniques for use in the purification of mAbs. Parameters including pH, CA concentrations, mixing time, mAb concentrations, buffer systems, and incubation temperatures were evaluated on their impacts on the impurity removal, high‐molecular weight (HMW) formation and precipitation step yield. Both pH and CA concentration, but not mAb concentrations and buffer systems, are key parameters that can affect host–cell proteins (HCPs) clearance, HMW species, and yield. CA precipitation removes HCPs and some HMW species to the acceptable levels under the optimal conditions. The CA precipitation process is robust at 15–25°C. For all five mAbs tested in this study, the optimal CA concentration range is 0.5–1.0%, while the pH range is from 5.0 to 6.0. A purification process using two chromatography steps (protein A capture column and ion exchange polishing column) in combination with CA‐based impurity precipitation step can be used as a robust downstream process for mAb molecules with a broad range of isoelectric points. Residual CA can be effectively removed by the subsequent polishing cation exchange chromatography. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1515–1525, 2015  相似文献   

2.
Most biopharmaceutical drugs, especially monoclonal antibodies (mAbs), bispecific antibodies (BsAbs) and Fc‐fusion proteins, are expressed using Chinese Hamster Ovary (CHO) cell lines. CHO cells typically yield high product titers and high product quality. Unfortunately, CHO cell lines also generate high molecular weight (HMW) aggregates of the desired product during cell culture along with CHO host cell protein (HCP) and CHO DNA. These immunogenic species, co‐purified during Protein A purification, must be removed in a multi‐step purification process. Our colleagues have reported the use of a novel polymer‐mediated flocculation step to simultaneously reduce HMW, HCP and DNA from stable CHO cell cultures prior to Protein A purification. The objective of this study was to evaluate this novel “smart polymer” (SmP) in a high throughput antibody discovery workflow using transiently transfected CHO cultures. SmP treatment of 19 different molecules from four distinct molecular categories (human mAbs, murine mAbs, BsAbs and Fabs) with 0.1% SmP and 25 mM stimulus resulted in minimal loss of monomeric protein. Treatment with SmP also demonstrated a variable, concentration‐dependent removal of HMW aggregates after Protein A purification. SmP treatment also effectively reduced HCP levels at each step of mAb purification with final HCP levels being several fold lower than the untreated control. Interestingly, SmP treatment was able to significantly reduce high concentrations of artificially spiked levels of endotoxin in the cultures. In summary, adding a simple flocculation step to our existing transient CHO process reduced the downstream purification burden to remove impurities and improved final product quality. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1393–1400, 2017  相似文献   

3.
A methodology is presented to predict protein elution behavior from an ion exchange column using both individual or combined pH and salt gradients based on high‐throughput batch isotherm data. The buffer compositions are first optimized to generate linear pH gradients from pH 5.5 to 7 with defined concentrations of sodium chloride. Next, high‐throughput batch isotherm data are collected for a monoclonal antibody on the cation exchange resin POROS XS over a range of protein concentrations, salt concentrations, and solution pH. Finally, a previously developed empirical interpolation (EI) method is extended to describe protein binding as a function of the protein and salt concentration and solution pH without using an explicit isotherm model. The interpolated isotherm data are then used with a lumped kinetic model to predict the protein elution behavior. Experimental results obtained for laboratory scale columns show excellent agreement with the predicted elution curves for both individual or combined pH and salt gradients at protein loads up to 45 mg/mL of column. Numerical studies show that the model predictions are robust as long as the isotherm data cover the range of mobile phase compositions where the protein actually elutes from the column.  相似文献   

4.
High capacity magnetic protein A agarose beads, LOABeads PrtA, were used in the development of a new process for affinity purification of monoclonal antibodies (mAbs) from non-clarified CHO cell broth using a pilot-scale magnetic separator. The LOABeads had a maximum binding capacity of 65 mg/mL and an adsorption capacity of 25–42 mg IgG/mL bead in suspension for an IgG concentration of 1 to 8 g/L. Pilot-scale separation was initially tested in a mAb capture step from 26 L clarified harvest. Small-scale experiments showed that similar mAb adsorptions were obtained in cell broth containing 40 × 106 cells/mL as in clarified supernatant. Two pilot-scale purification runs were then performed on non-clarified cell broth from fed-batch runs of 16 L, where a rapid mAb adsorption ≥96.6% was observed after 1 h. This process using 1 L of magnetic beads had an overall mAb yield of 86% and 16 times concentration factor. After this single protein A capture step, the mAb purity was similar to the one obtained by column chromatography, while the host cell protein content was very low, <10 ppm. Our results showed that this magnetic bead mAb purification process, using a dedicated pilot-scale separation device, was a highly efficient single step, which directly connected the culture to the downstream process without cell clarification. Purification of mAb directly from non-clarified cell broth without cell separation can provide significant savings in terms of resources, operation time, and equipment, compared to legacy procedure of cell separation followed by column chromatography step. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2775, 2019.  相似文献   

5.
The efficiencies of mono gradient elution and dual salt‐pH gradient elution for separation of six mAb charge and size variants on a preparative‐scale ion exchange chromatographic resin are compared in this study. Results showed that opposite dual salt‐pH gradient elution with increasing pH gradient and simultaneously decreasing salt gradient is best suited for the separation of these mAb charge and size variants on Eshmuno® CPX. Besides giving high binding capacity, this type of opposite dual salt‐pH gradient also provides better resolved mAb variant peaks and lower conductivity in the elution pools compared to single pH or salt gradients. To have a mechanistic understanding of the differences in mAb variants retention behaviors of mono pH gradient, parallel dual salt‐pH gradient, and opposite dual salt‐pH gradient, a linear gradient elution model was used. After determining the model parameters using the linear gradient elution model, 2D plots were used to show the pH and salt dependencies of the reciprocals of distribution coefficient, equilibrium constant, and effective ionic capacity of the mAb variants in these gradient elution systems. Comparison of the 2D plots indicated that the advantage of opposite dual salt‐pH gradient system with increasing pH gradient and simultaneously decreasing salt gradient is the noncontinuous increased acceleration of protein migration. Furthermore, the fitted model parameters can be used for the prediction and optimization of mAb variants separation in dual salt‐pH gradient and step elution. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:973–986, 2018  相似文献   

6.
Affinity precipitation using Z‐elastin‐like polypeptide‐functionalized E2 protein nanocages has been shown to be a promising alternative to Protein A chromatography for monoclonal antibody (mAb) purification. We have previously described a high‐yielding, affinity precipitation process capable of rapidly capturing mAbs from cell culture through spontaneous, multivalent crosslinking into large aggregates. To challenge the capabilities of this technology, nanocage affinity precipitation was investigated using four industrial mAbs (mAbs A–D) and one Fc fusion protein (Fc A) with diverse molecular properties. A molar binding ratio of 3:1 Z:mAb was sufficient to precipitate >95% mAb in solution for all molecules evaluated at ambient temperature without added salt. The effect of solution pH on aggregation kinetics was studied using a simplified two‐step model to investigate the protein interactions that occur during mAb–nanocage crosslinking and to determine the optimal solution pH for precipitation. After centrifugation, the pelleted mAb–nanocage complex remained insoluble and was capable of being washed at pH ≥ 5 and eluted with at pH < 4 with >90% mAb recovery for all molecules. The four mAbs and one Fc fusion were purified from cell culture using optimal process conditions, and >94% yield and >97% monomer content were obtained. mAb A–D purification resulted in a 99.9% reduction in host cell protein and >99.99% reduction in DNA from the cell culture fluids. Nanocage affinity precipitation was equivalent to or exceeded expected Protein A chromatography performance. This study highlights the benefits of nanoparticle crosslinking for enhanced affinity capture and presents a robust platform that can be applied to any target mAb or Fc‐containing proteins with minimal optimization of process parameters.  相似文献   

7.
The emergence of monoclonal antibody (mAb) therapies has created a need for faster and more efficient bioprocess development strategies in order to meet timeline and material demands. In this work, a high‐throughput process development (HTPD) strategy implementing several high‐throughput chromatography purification techniques is described. Namely, batch incubations are used to scout feasible operating conditions, miniature columns are then used to determine separation of impurities, and, finally, a limited number of lab scale columns are tested to confirm the conditions identified using high‐throughput techniques and to provide a path toward large scale processing. This multistep approach builds upon previous HTPD work by combining, in a unique sequential fashion, the flexibility and throughput of batch incubations with the increased separation characteristics for the packed bed format of miniature columns. Additionally, in order to assess the applicability of using miniature columns in this workflow, transport considerations were compared with traditional lab scale columns, and performances were mapped for the two techniques. The high‐throughput strategy was utilized to determine optimal operating conditions with two different types of resins for a difficult separation of a mAb monomer from aggregates. Other more detailed prediction models are cited, but the intent of this work was to use high‐throughput strategies as a general guide for scaling and assessing operating space rather than as a precise model to exactly predict performance. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:626–635, 2014  相似文献   

8.
A two‐step chromatography process for monoclonal antibody (mAb) purification from clarified cell culture supernatant (cCCS) was developed using cation exchange Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) as a capture step. After an initial characterization of the cell culture supernatant the capture step was designed from a batch gradient elution chromatogram. A variety of chromatographic materials was screened for polishing of the MCSGP‐captured material in batch mode. Using multi‐modal anion exchange in bind‐elute mode, mAb was produced consistently within the purity specification. The benchmark was a state‐of‐the‐art 3‐step chromatographic process based on protein A, anion and cation exchange stationary phases. The performance of the developed 2‐step process was compared to this process in terms of purity, yield, productivity and buffer consumption. Finally, the potential of the MCSGP process was investigated by comparing its performance to that of a classical batch process that used the same stationary phase. Biotechnol. Bioeng. 2010;107: 974–984. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
N‐linked glycosylation is known to be a crucial factor for the therapeutic efficacy and safety of monoclonal antibodies (mAbs) and many other glycoproteins. The nontemplate process of glycosylation is influenced by external factors which have to be tightly controlled during the manufacturing process. In order to describe and predict mAb N‐linked glycosylation patterns in a CHO‐S cell fed‐batch process, an existing dynamic mathematical model has been refined and coupled to an unstructured metabolic model. High‐throughput cell culture experiments carried out in miniaturized bioreactors in combination with intracellular measurements of nucleotide sugars were used to tune the parameter configuration of the coupled models as a function of extracellular pH, manganese and galactose addition. The proposed modeling framework is able to predict the time evolution of N‐linked glycosylation patterns during a fed‐batch process as a function of time as well as the manipulated variables. A constant and varying mAb N‐linked glycosylation pattern throughout the culture were chosen to demonstrate the predictive capability of the modeling framework, which is able to quantify the interconnected influence of media components and cell culture conditions. Such a model‐based evaluation of feeding regimes using high‐throughput tools and mathematical models gives rise to a more rational way to control and design cell culture processes with defined glycosylation patterns. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1135–1148, 2016  相似文献   

10.
Poor solubility is a common challenge encountered during the development of high concentration monoclonal antibody (mAb) formulations, but there are currently no methods that can provide predictive information on high-concentration behavior of mAbs in early discovery. We explored the utility of methodologies used for determining extrapolated solubility as a way to rank-order mAbs based on their relative solubility properties. We devised two approaches to accomplish this: 1) vapor diffusion technique utilized in traditional protein crystallization practice, and 2) polyethylene glycol (PEG)-induced precipitation and quantitation by turbidity. Using a variety of in-house mAbs with known high-concentration behavior, we demonstrated that both approaches exhibited reliable predictability of the relative solubility properties of these mAbs. Optimizing the latter approach, we developed a format that is capable of screening a large panel of mAbs in multiple pH and buffer conditions. This simple, material-saving, high-throughput approach enables the selection of superior molecules and optimal formulation conditions much earlier in the antibody discovery process, prior to time-consuming and material intensive high-concentration studies.  相似文献   

11.
Chinese hamster ovary (CHO) cells are often used to produce therapeutic monoclonal antibodies (mAbs). CHO cells express many host cell proteins (HCPs) required for their growth. Interactions of HCPs with mAbs can sometimes result in co‐purification of trace levels of ‘hitchhiker’ HCPs during the manufacturing process. Purified mAb‐1 product produced in early stages of process optimization had high HCP levels. In addition, these lots formed delayed‐onset particles containing mAb‐1 and its heavy chain C‐terminal fragments. Studies were performed to determine the cause of the observed particle formation and to optimize the purification for improved HCP clearance. Protease activity and inhibitor stability studies confirmed that an aspartyl protease was responsible for fragmentation of mAb‐1 resulting in particle formation. An affinity resin was used to selectively capture aspartyl proteases from the mAb‐1 product. Mass spectrometry identified the captured aspartyl protease as CHO cathepsin D. A wash step at high pH with salt and caprylate was implemented during the protein A affinity step to disrupt the HCP–mAb interactions and improve HCP clearance. The product at the end of purification using the optimized process had very low HCP levels, did not contain detectable protease activity, and did not form particles. Spiking of CHO cathepsin D back into mAb‐1 product from the optimized process confirmed that it was the cause of the particle formation. This work demonstrated that process optimization focused on removal of HCPs was successful in eliminating particle formation in the final mAb‐1 product. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1360–1369, 2015  相似文献   

12.
With an increased number of applications in the field of the avidin‐biotin technology, the resulting demand for highly‐purified protein avidin has drawn our attention to the purification process of avidin that naturally occurs in chicken egg white. The high‐throughput process development (HTPD) methodology was exploited, in order to evaluate purification process alternatives to commonly used ion‐exchange chromatography. In a high‐throughput format, process parameters for aqueous two‐phase extraction, selective precipitation with salts and polyethylene glycol, and hydrophobic interaction and mixed‐mode column chromatography experiments were performed. The HTPD strategy was complemented by a high‐throughput tandem high‐performance liquid chromatography assay for protein quantification. Suitable conditions for the separation of avidin from the major impurities ovalbumin, ovomucoid, ovotransferrin, and lysozyme were identified in the screening experiments. By combination of polyethylene glycol precipitation with subsequent resolubilization and separation in a polyethylene glycol/sulfate/sodium chloride two‐phase system an avidin purity of 77% was obtained with a yield >90% while at the same time achieving a significant reduction of the process volume. The two‐phase extraction and precipitation results were largely confirmed in larger scale with scale‐up factors of 230 and 133, respectively. Seamless processing of the avidin enriched bottom phase was found feasible by using mixed‐mode chromatography. By gradient elution a final avidin purity of at least 97% and yield >90% was obtained in the elution pool. The presented identification of a new and beneficial alternative for the purification of the high value protein thus represents a successful implementation of HTPD for an industrially relevant purification task. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:957–973, 2015  相似文献   

13.
Introduction – Although medicinal plants are widely used throughout the world, few studies have been carried out concerning the levels of heavy metal contaminants present. Such metals are highly toxic to living organisms even in low concentrations owing to their cumulative effect. The present paper describes the the development of a pre‐concentration flow injection analysis‐flame atomic absorption spectrometric system to determine the lead content in medicinal plants at the ppb level. Objective – To develop a pre‐concentration flow injection analysis‐flame atomic absorption spectrometric system to determine the lead content in medicinal plants at the ppb level. Methodology – A pre‐concentration flow system was coupled to a flame atomic absorption spectrometer. The plant samples were analysed after nitroperchloric digestion. The proposed system was optimised by evaluating the following parameters: nature, concentration and volume of the eluent solution, elution flow rate, elution efficiency, pre‐concentration flow rate and pre‐concentration time. Results – The proposed system exhibited good performance with high precision and repeatability (RSD ≤ 2.36%), excellent linearity (r = 0.9999), low sample consumption (10.5 mL per determination) and an analytical throughput of 55 samples/h. Lead concentrations ranged from 3.37 ± 0.25 to 7.03 ± 0.51 μg/g in dry material. This concentration interval is greater than that previously published in the literature. Conclusion – The inclusion of a pre‐concentration column in the flow manifold improved the sensitivity of the spectrometer. Thus, it was possible to determine the analyte at the ng/mL level in sample solutions of medicinal plants. This is a very important accomplishment, especially when the cumulative effect of heavy metals in living organisms is considered. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The effectiveness of therapeutic monoclonal antibodies (mAbs) is governed not only by their bioactivity, but also by their biophysical properties. Assays for rapidly evaluating the biophysical properties of mAbs are valuable for identifying those most likely to exhibit superior properties such as high solubility, low viscosity and slow serum clearance. Analytical hydrophobic interaction chromatography (HIC), which is performed at high salt concentrations to enhance hydrophobic interactions, is an attractive assay for identifying mAbs with low hydrophobicity. However, this assay is low throughput and thus not amenable to processing the large numbers of mAbs that are commonly generated during antibody discovery. Therefore, we investigated whether an alternative, higher throughput, assay could be developed that is based on evaluating antibody self-association at high salt concentrations using affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS). Our approach is to coat gold nanoparticles with polyclonal anti-human antibodies, use these conjugates to immobilize human mAbs, and evaluate mAb self-interactions by measuring the plasmon wavelengths of the antibody conjugates as a function of ammonium sulfate concentration. We find that hydrophobic mAbs, as identified by HIC, generally show significant self-association at low to moderate ammonium sulfate concentrations, while hydrophilic mAbs typically show self-association only at high ammonium sulfate concentrations. The correlation between AC-SINS and HIC measurements suggests that our assay, which can evaluate tens to hundreds of mAbs in a parallel manner and requires only small (microgram) amounts of antibody, will enable early identification of mAb candidates with low hydrophobicity and improved biophysical properties.  相似文献   

15.
High cell densities for transient transfection with polyethyleneimine (PEI) can be used for rapid and maximal production of recombinant proteins. High cell densities can be obtained by different cultivation systems, such as batch or perfusion systems. Herein, densities up to 18 million cells/mL were obtained by centrifugation for transfection evaluation. PEI transfection efficiency was easily determined by transfected enhanced green fluorescence protein (EGFP) reporter plasmid DNA (pDNA). A linear correlation between fluorescence intensity and transfection efficiency was improved. The transfection efficiency of PEI was highly dependent on the transfection conditions and directly related to the level of recombinant protein. Several factors were required to optimize the transient transfection process; these factors included the media type (which is compatible with low or high cell density transfection), the preculture CHO‐K1 suspension cell density, and the pDNA to PEI level. Based on design of experiment (DoE) analyses, the optimal transfection conditions for 10 × 106 cells/mL in the CHOMACS CD medium achieved 73% transfection efficiency and a cell viability of over 80%. These results were confirmed for the production of transforming growth factor‐beta 1 (TGF‐β1) in a shake flask. The purified TGF‐β1 protein concentration from 60 mL supernatant was 27 µg/mL, and the protein was biologically active.  相似文献   

16.
《MABS-AUSTIN》2013,5(3):553-561
The effectiveness of therapeutic monoclonal antibodies (mAbs) is governed not only by their bioactivity, but also by their biophysical properties. Assays for rapidly evaluating the biophysical properties of mAbs are valuable for identifying those most likely to exhibit superior properties such as high solubility, low viscosity and slow serum clearance. Analytical hydrophobic interaction chromatography (HIC), which is performed at high salt concentrations to enhance hydrophobic interactions, is an attractive assay for identifying mAbs with low hydrophobicity. However, this assay is low throughput and thus not amenable to processing the large numbers of mAbs that are commonly generated during antibody discovery. Therefore, we investigated whether an alternative, higher throughput, assay could be developed that is based on evaluating antibody self-association at high salt concentrations using affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS). Our approach is to coat gold nanoparticles with polyclonal anti-human antibodies, use these conjugates to immobilize human mAbs, and evaluate mAb self-interactions by measuring the plasmon wavelengths of the antibody conjugates as a function of ammonium sulfate concentration. We find that hydrophobic mAbs, as identified by HIC, generally show significant self-association at low to moderate ammonium sulfate concentrations, while hydrophilic mAbs typically show self-association only at high ammonium sulfate concentrations. The correlation between AC-SINS and HIC measurements suggests that our assay, which can evaluate tens to hundreds of mAbs in a parallel manner and requires only small (microgram) amounts of antibody, will enable early identification of mAb candidates with low hydrophobicity and improved biophysical properties.  相似文献   

17.
The glycosylation of therapeutic monoclonal antibodies (mAbs), a known critical quality attribute, is often greatly modified during the production process by animal cells. It is essential for biopharmaceutical industries to monitor and control this glycosylation. However, current glycosylation characterization techniques involve time‐ and labor‐intensive analyses, often carried out at the end of the culture when the product is already synthesized. This study proposes a novel methodology for real‐time monitoring of antibody glycosylation site occupancy using Raman spectroscopy. It was first observed in CHO cell batch culture that when low nutrient concentrations were reached, a decrease in mAb glycosylation was induced, which made it essential to rapidly detect this loss of product quality. By combining in situ Raman spectroscopy with chemometric tools, efficient prediction models were then developed for both glycosylated and nonglycosylated mAbs. By comparing variable importance in projection profiles of the prediction models, it was confirmed that Raman spectroscopy is a powerful method to distinguish extremely similar molecules, despite the high complexity of the culture medium. Finally, the Raman prediction models were used to monitor batch and feed‐harvest cultures in situ. For the first time, it was demonstrated that the concentrations of glycosylated and nonglycosylated mAbs could be successfully and simultaneously estimated in real time with high accuracy, including their sudden variations due to medium exchanges. Raman spectroscopy can thus be considered as a promising PAT tool for feedback process control dedicated to on‐line optimization of mAb quality. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:486–493, 2018  相似文献   

18.
Protein A chromatography is widely employed for the capture and purification of monoclonal antibodies (mAbs). Because of the high cost of protein A resins, there is a significant economic driving force to seek new downstream processing strategies. Membrane chromatography has emerged as a promising alternative to conventional resin based column chromatography. However, to date, the application has been limited to mostly ion exchange flow through (FT) mode. Recently, significant advances in Natrix hydrogel membrane has resulted in increased dynamic binding capacities for proteins, which makes membrane chromatography much more attractive for bind/elute operations. The dominantly advective mass transport property of the hydrogel membrane has also enabled Natrix membrane to be run at faster volumetric flow rates with high dynamic binding capacities. In this work, the potential of using Natrix weak cation exchange membrane as a mAb capture step is assessed. A series of cycle studies was also performed in the pilot scale device (> 30 cycles) with good reproducibility in terms of yield and product purities, suggesting potential for improved manufacturing flexibility and productivity. In addition, anion exchange (AEX) hydrogel membranes were also evaluated with multiple mAb programs in FT mode. Significantly higher binding capacity for impurities (support mAb loads up to 10Kg/L) and 40X faster processing speed were observed compared with traditional AEX column chromatography. A proposed protein A free mAb purification process platform could meet the demand of a downstream purification process with high purity, yield, and throughput. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:974–982, 2015  相似文献   

19.
The load phase in preparative Protein A capture steps is commonly not controlled in real‐time. The load volume is generally based on an offline quantification of the monoclonal antibody (mAb) prior to loading and on a conservative column capacity determined by resin‐life time studies. While this results in a reduced productivity in batch mode, the bottleneck of suitable real‐time analytics has to be overcome in order to enable continuous mAb purification. In this study, Partial Least Squares Regression (PLS) modeling on UV/Vis absorption spectra was applied to quantify mAb in the effluent of a Protein A capture step during the load phase. A PLS model based on several breakthrough curves with variable mAb titers in the HCCF was successfully calibrated. The PLS model predicted the mAb concentrations in the effluent of a validation experiment with a root mean square error (RMSE) of 0.06 mg/mL. The information was applied to automatically terminate the load phase, when a product breakthrough of 1.5 mg/mL was reached. In a second part of the study, the sensitivity of the method was further increased by only considering small mAb concentrations in the calibration and by subtracting an impurity background signal. The resulting PLS model exhibited a RMSE of prediction of 0.01 mg/mL and was successfully applied to terminate the load phase, when a product breakthrough of 0.15 mg/mL was achieved. The proposed method has hence potential for the real‐time monitoring and control of capture steps at large scale production. This might enhance the resin capacity utilization, eliminate time‐consuming offline analytics, and contribute to the realization of continuous processing. Biotechnol. Bioeng. 2017;114: 368–373. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.  相似文献   

20.
The discovery of monoclonal antibodies (mAbs) that bind to a particular molecular target is now regarded a routine exercise. However, the successful development of mAbs that (1) express well, (2) elicit a desirable biological effect upon binding, and (3) remain soluble and display low viscosity at high concentrations is often far more challenging. Therefore, high throughput screening assays that assess self-association and aggregation early in the selection process are likely to yield mAbs with superior biophysical properties. Here, we report an improved version of affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS) that is capable of screening large panels of antibodies for their propensity to self-associate. AC-SINS is based on concentrating mAbs from dilute solutions around gold nanoparticles pre-coated with polyclonal capture (e.g., anti-Fc) antibodies. Interactions between immobilized mAbs lead to reduced inter-particle distances and increased plasmon wavelengths (wavelengths of maximum absorbance), which can be readily measured by optical means. This method is attractive because it is compatible with dilute and unpurified mAb solutions that are typical during early antibody discovery. In addition, we have improved multiple aspects of this assay for increased throughput and reproducibility. A data set comprising over 400 mAbs suggests that our modified assay yields self-interaction measurements that are well-correlated with other lower throughput assays such as cross-interaction chromatography. We expect that the simplicity and throughput of our improved AC-SINS method will lead to improved selection of mAbs with excellent biophysical properties during early antibody discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号