首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Antimicrobial peptides (AMPs) consist of molecules that act on the defense systems of numerous organisms toward multiple pathogens such as bacteria, fungi, parasites and viruses. These compounds have become extremely significant due to the increasing resistance of microorganisms to common antibiotics. However, the low quantity of peptides obtained from direct purification is, to date, still a remarkable bottleneck for scientific and industrial research development. Therefore, this review describes the main heterologous systems currently used for AMP production, including bacteria, fungi and plants, and also the related strategies for reaching greater functional peptide production. The main difficulties of each system are also described in order to provide some directions for AMP production. In summary, data revised here indicate that large-scale production of AMPs can be obtained using biotechnological tools, and the products may be applied in the pharmaceutical industry as well as in agribusiness.  相似文献   

3.
Innate immune system is a primary line of defense in fish that protects it from the invading pathogens. Antimicrobial peptides (AMPs) are widely distributed in nature and are essential components of innate immunity. These molecules enable the host’s innate immune system to fight against a variety of infectious agents. One such AMP, hepcidin, is a cysteine rich amphipathic peptide. We have amplified, cloned and characterized hepcidin like AMP from Schizothorax richardsonii that inhabits one of the most difficult aquatic ecosystems in the Indian Himalayas. The cDNA encoding hepcidin like peptide was amplified as a 371 bp fragment with an open reading frame (ORF) of 279 nucleotides flanked by 5′ and 3′ UTRs of 70 and 22 bases respectively. This ORF encodes a peptide of 93 amino acids with a signal peptide of 24 amino acids and a mature peptide of 25 amino acids. The mature hepcidin like peptide of S. richardsonii has eight cystine residues that participate in the formation of four disulfide bonds, a unique feature of hepcidin like AMPs. A 3D model of hepcidin like mature peptide was generated using Modeller 9.10 which was validated using PROCHECK and ERRAT. Phylogenetic analysis of hepcidin like AMP from S. richardsonii revealed that it was closely related to hepcidin from olive barb (Puntius sarana).  相似文献   

4.

In recent years, antimicrobial peptides (AMPs) have attracted increasing attention. The microbial cells provide a simple, cost-effective platform to produce AMPs in industrial quantities. While AMP production as fusion proteins in microorganisms is commonly used, the recovery of AMPs necessitates the use of expensive proteases and extra purification steps. Here, we develop a novel fusion protein DAMP4-F-pexiganan comprising a carrier protein DAMP4 linked to the AMP, pexiganan, through a long, flexible linker. We show that this fusion protein can be purified using a non-chromatography approach and exhibits the same antimicrobial activity as the chemically synthesized pexiganan peptide without any cleavage step. Activity of the fusion protein is dependent on a long, flexible linker between the AMP and carrier domains, as well as on the expression conditions of the fusion protein, with low-temperature expression promoting better folding of the AMP domain. The production of DAMP4-F-pexiganan circumvents the time-consuming and costly steps of chromatography-based purification and enzymatic cleavages, therefore shows considerable advantages over traditional microbial production of AMPs. We expect this novel fusion protein, and the studies on the effect of linker and expression conditions on its antimicrobial activity, will broaden the rational design and production of antimicrobial products based on AMPs.

  相似文献   

5.
果蝇作为一种模式昆虫,为研究昆虫和人类的先天免疫发挥了重要作用。目前对果蝇体内免疫诱导产生的抗微生物肽多基因家族在分子进化、抗菌功能的分子特征和免疫诱导表达的信号传递机制等方面的研究进展,进一步加深了人们对昆虫乃至其他动物和人类先天免疫模式的认识,为研究其他昆虫特别是作为主要农林害虫的鳞翅目昆虫的先天免疫机制发挥了重要作用。本文集中对黑腹果蝇Drosophila melanogaster抗微生物肽及其免疫模式的研究结果和最新进展进行了介绍,其中包括作者近几年的研究结果。  相似文献   

6.
Honeydew produced by sooty beech scale insects (Ultracoelostoma spp., Homoptera: Coelostomidiidae) is a keystone ecological process in New Zealand beech (Nothofagus spp., Nothofagaceae) forest. This work puts forward a model of honeydew production based on individual insects that presumes feeding and excretion are episodic processes driven by the insect rather than the passive processes that were previously assumed. The model is parameterized using existing data and then compared to an independent pre‐existing dataset. The model suggests that over a 12‐h period, on average the insects suck sap for 2 h, and excrete waste sap for 12 min. Resource uptake by the insects appears to be limited by the time required to process the sap, consistent with the observed relationship between honeydew production rates and ambient temperature. This implies that insect feeding rates may be ultimately limited by the low nitrogen content of phloem sap.  相似文献   

7.
8.
Large‐scale bioreactors for the production of monoclonal antibodies reach volumes of up to 25 000 L. With increasing bioreactor size, mixing is however affected negatively, resulting in the formation of gradients throughout the reactor. These gradients can adversely affect process performance at large scale. Since mammalian cells are sensitive to changes in pH, this study investigated the effects of pH gradients on process performance. A 2‐Compartment System was established for this purpose to expose only a fraction of the cell population to pH excursions and thereby mimicking a large‐scale bioreactor. Cells were exposed to repeated pH amplitudes of 0.4 units (pH 7.3), which resulted in decreased viable cell counts, as well as the inhibition of the lactate metabolic shift. These effects were furthermore accompanied by increased absolute lactate levels. Continuous assessment of molecular attributes of the expressed target protein revealed that subunit assembly or N‐glycosylation patterns were only slightly influenced by the pH excursions. The exposure of more cells to the same pH amplitudes further impaired process performance, indicating this is an important factor, which influences the impact of pH inhomogeneity. This knowledge can aid in the design of pH control strategies to minimize the effects of pH inhomogeneity in large‐scale bioreactors.  相似文献   

9.
Antimicrobial peptides (AMPs) play an important role in the innate immunity of insects. In Drosophila 17 additional immune induced molecules (DIMs) were found in the haemolymph of adult flies upon septic injury. Previous studies using MALDI mass spectrometry combined with Edman degradation, detected AMPs and DIMs of a predominantly large size. By means of 2D-nanoLC ESI MS/MS, 43 DIMs were identified in this study from the haemolymph of Drosophila third instar larvae 12h after challenge with a mixture of Micrococcus luteus and Escherichia coli. Most peptides were derived from known AMP or DIM precursors, but only four peptides were purified and identified before. The majority of the peptides that we detected were smaller in size. Interestingly, two previously unknown peptide precursors were found and hereby related to immune defense. These include CG7738 and CG32185. Many of the identified peptides are post-translationally modified by an N-terminal pyroglutamic acid and/or a C-terminal amide. Haemolymph of control larvae was treated in the same way and revealed only one peptide.  相似文献   

10.
Insect antimicrobial peptides and their applications   总被引:1,自引:0,他引:1  
Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin, and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides, and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20–50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications.  相似文献   

11.
《Journal of Asia》2022,25(2):101892
Antimicrobial peptides (AMPs) in insects have the potential to be developed as chemotherapy agents against numerous microbial species. This article reviewed the existing knowledge of what have been focused so far on published materials related to AMPs isolated from insects. Previous studies were focused on peptide characterization and the mechanism pathways of different AMPs from a variety of insect Orders. Most studied insect Orders are as follows: Hymenoptera (50%), Diptera (17%), Coleoptera (13%), Lepidoptera (10%), Hemiptera (5%), Blattodea (3%) and Odonata (2%). Dozens of new AMPs have been extracted from insects recently. However, more studies in vivo and in vitro are necessary to fully understand their effect and the mechanisms of antimicrobial action to utilize their promising potential in cosmetic and pharmaceutical industries.  相似文献   

12.
With increasing bioreactor volumes, the mixing time of the reactor increases as well, which creates an inhomogeneous environment for the cells. This can result in impaired process performance in large‐scale production reactors. Particularly the addition of base through the reactor headspace can be problematic, since it creates an area, where cells are repeatedly exposed to an increased pH. The aim of this study is to simulate this large‐scale phenomenon at lab‐scale and investigate its impact. Two different cell lines were exposed to pH amplitudes of a maximal magnitude of 0.05 units (pH of 6.95). Both cell lines showed similar responses, like decreased viable cell counts, but unaffected lactate levels. However, cell line B showed an initially increased specific productivity in response to the introduced amplitudes, whereas cell line A showed a consistently lower specific productivity. Furthermore, the time point at which base addition is started influences the impact, which pH amplitudes have on process performance. When pH control was started earlier in the process, maximal viable cell counts decreased and the lactate metabolic shift was less pronounced. These results show that the potential negative impact of pH amplitudes can be minimized by strategic process design.  相似文献   

13.
Plant suspension cell cultures are emerging as an alternative to mammalian cells for production of complex recombinant proteins. Plant cell cultures provide low production cost, intrinsic safety and adherence to current regulations, but low yields and costly purification technology hinder their commercialization. Fungal hydrophobins have been utilized as fusion tags to improve yields and facilitate efficient low‐cost purification by surfactant‐based aqueous two‐phase separation (ATPS) in plant, fungal and insect cells. In this work, we report the utilization of hydrophobin fusion technology in tobacco bright yellow 2 (BY‐2) suspension cell platform and the establishment of pilot‐scale propagation and downstream processing including first‐step purification by ATPS. Green fluorescent protein‐hydrophobin fusion (GFP‐HFBI) induced the formation of protein bodies in tobacco suspension cells, thus encapsulating the fusion protein into discrete compartments. Cultivation of the BY‐2 suspension cells was scaled up in standard stirred tank bioreactors up to 600 L production volume, with no apparent change in growth kinetics. Subsequently, ATPS was applied to selectively capture the GFP‐HFBI product from crude cell lysate, resulting in threefold concentration, good purity and up to 60% recovery. The ATPS was scaled up to 20 L volume, without loss off efficiency. This study provides the first proof of concept for large‐scale hydrophobin‐assisted production of recombinant proteins in tobacco BY‐2 cell suspensions.  相似文献   

14.
Antimicrobial resistance within a wide range of infectious agents is a severe and growing public health threat. Antimicrobial peptides (AMPs) are among the leading alternatives to current antibiotics, exhibiting broad spectrum activity. Their activity is determined by numerous properties such as cationic charge, amphipathicity, size, and amino acid composition. Currently, only around 10% of known AMP sequences have experimentally solved structures. To improve our understanding of the AMP structural universe we have carried out large scale ab initio 3D modeling of structurally uncharacterized AMPs that revealed similarities between predicted folds of the modeled sequences and structures of characterized AMPs. Two of the peptides whose models matched known folds are Lebocin Peptide 1A (LP1A) and Odorranain M, predicted to form β-hairpins but, interestingly, to lack the intramolecular disulfide bonds, cation-π or aromatic interactions that generally stabilize such AMP structures. Other examples include Ponericin Q42, Latarcin 4a, Kassinatuerin 1, Ceratotoxin D, and CPF-B1 peptide, which have α-helical folds, as well as mixed αβ folds of human Histatin 2 peptide and Garvicin A which are, to the best of our knowledge, the first linear αββ fold AMPs lacking intramolecular disulfide bonds. In addition to fold matches to experimentally derived structures, unique folds were also obtained, namely for Microcin M and Ipomicin. These results help in understanding the range of protein scaffolds that naturally bear antimicrobial activity and may facilitate protein design efforts towards better AMPs.  相似文献   

15.
An antimicrobial peptide (AMP) of the cecropin family was isolated by HPLC from plasma of the insect pest, Spodoptera frugiperda. Its molecular mass is 3910.9 Da as determined by mass spectrometry. Thanks to the EST database Spodobase, we were able to describe 13 cDNAs encoding six different cecropins which belong to the sub-families CecA, CecB, CecC and CecD. The purified peptide identified as CecB1 was chemically synthesized (syCecB1). It was shown to be active against Gram-positive and Gram-negative bacteria as well as fungi. Two closely related entomopathogenic bacteria, Xenorhabdus nematophila F1 and Xenorhabdus mauleonii VC01(T) showed different susceptibility to syCecB1. Indeed, X. nematophila was sensitive to syCecB1 whereas X. mauleonii had a minimal inhibitory concentration (MIC) eight times higher. Interestingly, injection of live X. nematophila into insects did not induce the expression of AMPs in hemolymph. This effect was not observed when this bacterium was heat-killed before injection. On the opposite, both live and heat-killed X. mauleonii induced the expression of AMPs in the hemolymph of S. frugiperda. The same phenomenon was observed for another immune-related protein lacking antimicrobial activity. Altogether, our data suggest that Xenorhabdus strains have developed different strategies to supplant the humoral defense mechanisms of S. frugiperda, either by increasing their resistance to AMPs or by preventing their expression during such host-pathogen interaction.  相似文献   

16.
Abstract. 1. The degree of infestation by New Zealand sooty beech scale insects (Ultracoelostoma assimile, Homoptera: Margarodidae) varies dramatically among adjacent southern beech trees (Nothofagus spp., Fagaceae), but has previously been assumed to be uniformly or randomly distributed within individual host trees. In this study, a full‐census survey was conducted from ground level to canopy level on 14 naturally occurring, canopy‐dominant red beech (Nothofagus fusca) trees (size range 38.7–107.6 cm diameter at breast height) to determine the degree of within‐tree heterogeneity in herbivore density. 2. The within‐tree distribution of the sooty beech scale was vertically stratified and highly heterogeneous, with the greatest densities occurring on bark surfaces in the canopy rather than on the trunk, and on the lower rather than upper sides of the branches. The spatial distribution was strongly negatively correlated with trunk and branch diameter, and increasing bark thickness (as a function of diameter) provides a plausible explanation for differences in the establishment and population density of sooty beech scale insects with trunk and branch size. Furthermore, there was a significant change in the spatial distribution of scale insect populations on trunks and branches of trees of increasing diameter at breast height. This indicates a strong temporal component to the spatial dynamics of the sooty beech scale insect driven by changing host phenology. Future studies on phytophagous insects infesting large host trees need to consider more explicitly changes in population dynamics through space and time. 3. Because of the high degree of within‐tree heterogeneity in population density, the total population size of scale insects on an individual tree could not be predicted from any measure of population density low on the trunk. However, the dry weight biomass of sooty mould fungi growing on the ground beneath infested trees was a remarkably accurate predictor of the total population size of scale insects. The use of sooty mould fungi as a relative measure of population size could be incorporated into studies of other honeydew‐producing hemipterans, since the growth of sooty mould is a distinctive feature synonymous with high concentrations of honeydew production worldwide.  相似文献   

17.
Manufacturing practices for recombinant adeno‐associated viruses (AAV) have improved in the last decade through the development of new platforms in conjunction with better production and purification methods. In this review, we discuss the advantages and limitations of the most popular systems and methods employed with mammalian cell platforms. Methods and systems such as transient transfection, packaging and producer cells and adenovirus and herpes simplex virus are described. In terms of best production yields, they are comparable with about 104–105 vector genomes produced per cell but transient transfection of HEK293 cells is by far the most commonly used. For small‐scale productions, AAV can be directly purified from the producing cell lysate by ultracentrifugation on a CsCl or iodixanol‐step gradient whereas large‐scale purification requires a combination of multiple steps. Micro/macrofiltration (i.e. including tangential flow filtration and/or dead‐end filtration) and chromatography based‐methods are used for large‐scale purification. Purified AAV products must then be quantified and characterized to ensure quality. Recent purification methods and current analytical techniques are reviewed here. Finally, AAV technology is very promising, but manufacturing improvements are still required to meet the needs of affordable, safe and effective AAV vectors essential for licensing of gene therapy clinical protocols.  相似文献   

18.
pVEC is a cell‐penetrating peptide derived from the murine vascular endothelial‐cadherin protein. To evaluate the potential of pVEC as antimicrobial peptide (AMP), we synthesized pVEC and its analogs with Trp and Arg/Lys substitution, and their antimicrobial and lipopolysaccharide (LPS)‐neutralizing activities were investigated. pVEC and its analogs displayed a potent antimicrobial activity (minimal inhibitory concentration: 4–16 μM) against Gram‐positive and Gram‐negative bacteria but no or less hemolytic activity (less than 10% hemolysis) even at a concentration of 200 μM. These peptides induced a near‐complete membrane depolarization (more than 80%) at 4 μM against Staphylococcus aureus and a significant dye leakage (35–70%) from bacterial membrane‐mimicking liposome at a concentration as low as 1 μM. The fluorescence profiles of pVEC and its analogs in dye leakage from liposome and membrane depolarization were similar to those of a frog‐derived AMP, magainin 2. These results suggest that pVEC and its analogs kill bacteria by forming a pore or ion channel in the cytoplasmic membrane. pVEC and its analogs significantly inhibited nitric oxide production or tumor necrosis factor‐α release in LPS‐stimulated mouse macrophage RAW264.7 cells at 10 to 50 μM, in which RAW264.7 were not damaged. Taken together, our results suggest that pVEC and its analogs with potent antimicrobial and LPS‐neutralizing activities can serve as AMPs for the treatment of microbial infection and sepsis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect–host interactions, but also for the development of sustainable pest‐control strategies that exploit insects' host‐seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host‐seeking have focussed on short‐range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of ‘habitat cues’, volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil‐dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non‐host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant‐derived repellents for controlling insect pests.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号