首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In the current study, gefitinib loaded PLGA nanoparticles (GFT-PLGA-NPs) and chitosan coated PLGA nanoparticles (GFT-CS-PLGA-NPs) were synthesized to investigate the role of surface charge of NPs for developing drug delivery system for non-small-cell lung cancer (NSCLC). The developed NPs were evaluated for their size, PDI, zeta potential (ZP), drug entrapment, drug loading, DSC, FTIR, XRD, in vitro release profile, and morphology. The anti-cancer activity of GFT loaded PLGA NPs and GFT loaded CS-PLGA-NPs were examined in human A549 lung cancer cell lines. In vitro release studies of GFT-CS-PLGA-NPs showed more sustained release in comparison to GFT-PLGA-NPs due surface charge attraction of chitosan. In addition, viability of A549 cells decreases significantly with the increasing concentration of GFT-PLGA NPs and GFT-CS-PLGA-NPs when compared to that of pure GFT and blank PLGA NPs. In addition, the microscopic analysis and counting of viable cells also validate the cytotoxicity of the developed NPs. This investigation proved that the developed NPs would be efficient carriers to deliver GFT with improved efficacy against NSCLC.  相似文献   

2.
Liposomes and polymers are widely used drug carriers for controlled release since they offer many advantages like increased treatment effectiveness, reduced toxicity and are of biodegradable nature. In this work, anticancer drug‐loaded PLGA‐lecithin‐PEG nanoparticles (NPs) were synthesized and were functionalized with AS1411 anti‐nucleolin aptamers for site‐specific targeting against tumor cells which over expresses nucleolin receptors. The particles were characterized by transmission electron microscope (TEM) and X‐ray photoelectron spectroscopy (XPS). The drug‐loading efficiency, encapsulation efficiency and in vitro drug release studies were conducted using UV spectroscopy. Cytotoxicity studies were carried out in two different cancer cell lines, MCF‐7 and GI‐1 cells and two different normal cells, L929 cells and HMEC cells. Confocal microscopy and flowcytometry confirmed the cellular uptake of particles and targeted drug delivery. The morphology analysis of the NPs proved that the particles were smooth and spherical in shape with a size ranging from 60 to 110 nm. Drug‐loading studies indicated that under the same drug loading, the aptamer‐targeted NPs show enhanced cancer killing effect compared to the corresponding non‐targeted NPs. In addition, the PLGA‐lecithin‐PEG NPs exhibited high encapsulation efficiency and superior sustained drug release than the drug loaded in plain PLGA NPs. The results confirmed that AS1411 aptamer‐PLGA‐lecithin‐PEG NPs are potential carrier candidates for differential targeted drug delivery. Biotechnol. Bioeng. 2012; 109: 2920–2931. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Targeted delivery of drug molecules to specific cells in mammalian systems demonstrates a great potential to enhance the efficacy of current pharmaceutical therapies. Conventional strategies for pharmaceutical delivery are often associated with poor therapeutic indices and high systemic cytotoxicity, and this result in poor disease suppression, low surviving rates, and potential contraindication of drug formulation. The emergence of aptamers has elicited new research interests into enhanced targeted drug delivery due to their unique characteristics as targeting elements. Aptamers can be engineered to bind to their cognate cellular targets with high affinity and specificity, and this is important to navigate active drug molecules and deliver sufficient dosage to targeted malignant cells. However, the targeting performance of aptamers can be impacted by several factors including endonuclease‐mediated degradation, rapid renal filtration, biochemical complexation, and cell membrane electrostatic repulsion. This has subsequently led to the development of smart aptamer‐immobilized biopolymer systems as delivery vehicles for controlled and sustained drug release to specific cells at effective therapeutic dosage and minimal systemic cytotoxicity. This article reports the synthesis and in vitro characterization of a novel multi‐layer co‐polymeric targeted drug delivery system based on drug‐loaded PLGA‐Aptamer‐PEI (DPAP) formulation with a stage‐wise delivery mechanism. A thrombin‐specific DNA aptamer was used to develop the DPAP system while Bovine Serum Albumin (BSA) was used as a biopharmaceutical drug in the synthesis process by ultrasonication. Biophysical characterization of the DPAP system showed a spherical shaped particulate formulation with a unimodal particle size distribution of average size ~0.685 µm and a zeta potential of +0.82 mV. The DPAP formulation showed a high encapsulation efficiency of 89.4 ± 3.6%, a loading capacity of 17.89 ± 0.72 mg BSA protein/100 mg PLGA polymeric particles, low cytotoxicity and a controlled drug release characteristics in 43 days. The results demonstrate a great promise in the development of DPAP formulation for enhanced in vivo cell targeting. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:249–261, 2018  相似文献   

4.
Natural polysaccharides, due to their outstanding merits, have received more and more attention in the field of drug delivery. In the present study tamoxifen citrate, TMX (a non-steroidal antiestrogenic drug) loaded guar gum nanoparticles, GG NPs, crosslinked with glutaraldehyde were prepared for treatment of breast cancer. An oil in water (o/w) emulsion polymer cross-linking method was employed for preparation of blank and drug loaded sustained release nature biodegradable nanoparticles. Prepared nanoparticles were characterized by morphology in scanning electron microscope (SEM), size distribution in transmission electron microscope (TEM), TMX loading by high performance liquid chromatography (HPLC) and in vitro drug release characteristics. An overall sustained release of the drug from the biodegradable nanoparticles was observed in in vitro release studies. The release of TMX from GG NPs was found to be effected by guar gum and glutaraldehyde concentration. Regression coefficient (R2) analysis suggested that the predominant mechanism behind the drug release from the nanoparticles was time dependent release and diffusion. In vivo studies on female albino mice demonstrated maximum uptake of the drug by mammary tissue after 24 h of administration with drug loaded guar gum nanoparticles in comparison with that with the tablet form of the drug. These findings demonstrate that controlled release of TMX from GG NPs could be a potential alternative pharmaceutical formulation in passive targeting of TMX in breast cancer treatments.  相似文献   

5.
The presence of blood‐brain barrier (BBB) greatly limits the availability of drugs and their efficacy against glioma. Focused ultrasound (FUS) can induce transient and local BBB opening for enhanced drug delivery. Here, we developed polysorbate 80‐modified paclitaxel‐loaded PLGA nanoparticles (PS‐80‐PTX‐NPs, PPNP) and examined the enhanced local delivery into the brain for glioma treatment by combining with FUS. Our result showed PPNP had good stability, fast drug release rate and significant toxicity to glioma cells. Combined with FUS, PPNP showed a stronger BBB permeation efficiency both in the in vitro and in vivo BBB models. Mechanism studies revealed the disrupted tight junction, reduced P‐glycoprotein expression and ApoE‐dependent PS‐80 permeation collectively contribute to the enhanced drug delivery, resulting in significantly stronger antitumour efficacy and longer survival time in the tumour‐bearing mice. Our study provided a new strategy to efficiently and locally deliver drugs into the brain to treat glioma.  相似文献   

6.
Poor patient compliance, untoward reactions and unstable blood drug levels after the bolus administration are impeding the pharmacotherapy for insobriety. A long-acting preparation may address these limitations. The aim of this paper was to further investigate the in vitro characteristics and in vivo performances of nalmefene microspheres. Nalmefene was blended with poly (lactide-co-glycolide) (PLGA) to prepare the target microspheres by an O/O emulsification solvent evaporation method. The prepared microspheres exhibited a controlled release profile of nalmefene in vitro over 4 weeks, which was well fitted with a first-order model. In vitro degradation study showed that the drug release in vitro was dominated by both drug diffusion and polymer degradation mechanisms. Pharmacokinetics study indicated that the prepared microspheres could provide a relatively constant of nalmefene plasma concentration for at least one month in rats. The in vivo pharmacokinetics profile was well correlated with the in vitro drug release. Pharmacodynamics studies revealed that the drug loaded microspheres could produce a long-acting antagonism efficacy on rats. These results demonstrated the promising application of injectable PLGA microspheres containing nalmefene for the long-term treatment of alcohol dependence.  相似文献   

7.
Psoriasis is a chronic, autoimmune skin disease affecting approximately 2% of the world's population. Clobetasol propionate which is a superpotent topical corticosteroid is widely used for topical treatment of psoriasis. Conventional dosage forms like creams and ointments are commonly prefered for the therapy. The purpose of this study was to develop a new topical delivery system in order to provide the prolonged release of clobetasol propionate and to reduce systemic absorption and side effects of the drug. Clobetasol propionate loaded-poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres were prepared by oil-in-water emulsion–solvent evaporation technique. Particle size analysis, morphological characterization, DSC and XRD analyses and in vitro drug release studies were performed on the microparticle formulations. Emulgel formulations were prepared as an alternative for topical delivery of clobetasol propionate. In vitro drug release studies were carried out from the emulgel formulations containing pure drug and drug-loaded microspheres. In addition, the same studies were performed to determine the drug release from the commercial cream product of clobetasol propionate. The release of clobetasol propionate from the emulgel formulations was significantly higher than the commercial product. In addition, the encapsulation of clobetasol propionate in the PLGA microspheres significantly delayed the drug release from the emulgel formulation. As a result, the decrease in the side effects of clobetasol propionate by the formulation containing PLGA microspheres is expected.  相似文献   

8.
The present investigation was aimed at developing cytarabine-loaded poly(lactide-coglycolide) (PLGA)-based biodegradable nanoparticles by a modified nanoprecipitation which would have sustained release of the drug. Nine batches were prepared as per 32 factorial design to optimize volume of the co-solvent (0.22–0.37 ml) and volume of non-solvent (1.7–3.0 ml). A second 32 factorial design was used for optimization of drug: polymer ratio (1:5) and stirring time (30 min) based on the two responses, mean particle size (125 ± 2.5 nm), and percentage entrapment efficiency (21.8 ± 2.0%) of the Cyt-PLGA nanoparticles. Optimized formulation showed a zeta potential of −29.7 mV indicating good stability; 50% w/w of sucrose in Cyt-PLGA NP was added successfully as cryoprotectant during lyophilization for freeze-dried NPs and showed good dispersibility with minimum increase in their mean particle sizes. The DSC thermograms concluded that in the prepared PLGA NP, the drug was present in the amorphous phase and may have been homogeneously dispersed in the PLGA matrix. In vitro drug release from the pure drug was complete within 2 h, but was sustained up to 24 h from PLGA nanoparticles with Fickian diffusion. Stability studies showed that the developed PLGA NPs should be stored in the freeze-dried state at 2–8°C where they would remain stable in terms of both mean particle size and drug content for 2 months.  相似文献   

9.

Background

Naked DNA and standard vectors have previously been used for gene delivery from implantable carrier matrices with great potential for gene therapeutic assistance of wound healing or tissue engineering. We have previously developed copolymer‐protected gene vectors which are inert towards opsonization. Here we examine their potency in carrier‐mediated gene delivery in comparison to standard vectors using a vector‐loaded collagen sponge model.

Methods

Equine collagen type I sponges were loaded by a lyophilization method with naked DNA, polyethylenimine (PEI)‐DNA, DOTAP/cholesterol‐DNA and copolymer‐protected PEI‐DNA. These preparations were characterized in terms of vector‐release, cell growth on the matrices and reporter gene expression by cells colonizing the sponges in vitro and in vivo. Subcutaneous implantation of sponges in rats served as an in vivo model.

Results

At the chosen low vector dose, the loading efficiency was at least 86%. Naked DNA‐loaded collagen matrices lost 77% of the DNA dose in an initial burst in aqueous buffer in vitro. The other preparations examined displayed a sustained vector release. There was no difference in cell growth and invasion of the sponges between vector‐loaded and untreated collagen grafts. Reporter gene expression from cells colonizing the sponges in vitro was observed for not more than 7 days with naked DNA, whereas the lipoplex and polyplex preparations yielded long‐term expression throughout the experimental period of up to 56 days. The highest expression levels were achieved with the PEI‐DNA‐PROCOP (protective copolymer) formulation. Upon subcutaneous implantation in rats, no luciferase expression was detected with naked DNA preparations. DOTAP/cholesterol‐DNA and PEI‐DNA‐loaded implants lead to reporter gene expression for at least 3 days, but with poor reproducibility. PEI‐DNA‐PROCOP collagen matrices yielded consistently the highest reporter gene expression levels for at least 7 days with good reproducibility.

Conclusions

With the preparation method chosen, lipoplex‐ and polyplex‐loaded collagen sponges are superior in mediating sustained gene delivery in vitro and local transfection in vivo as compared to naked DNA‐loaded sponges. Protective copolymers are particularly advantageous in promoting the tranfection capacity of polyplex‐loaded sponges upon subcutaneous implantation, likely due to their stabilizing and opsonization‐inhibiting properties. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

10.
The effective controlled release of small hydrophilic drugs from poly(d ,l ‐lactic‐co‐glycolic acid) (PLGA) microspheres has remained a challenge, largely due to the difficulty of loading a large amount of the drug inside the microspheres, owing to the hydrophilicity of the drugs. This study provides a new strategy for increasing encapsulation of small hydrophilic drugs inside PLGA microspheres by utilizing noncovalent, physical adsorption between hydrophilic drugs and emulsifying polymers of poly(vinyl alcohol) and pluronic. An order of magnitude increase in drug loading efficiency from 2.7 to 18.6% for dopamine, a model small hydrophilic drug, was achieved. The large amount of dopamine‐loaded PLGA formulation herein could be useful for the treatment of Parkinson's disease. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:215–223, 2014  相似文献   

11.
Dental implantation is an effective standard treatment modality to restore missing teeth and maxillofacial defects. However, in diabetics there is an increased risk for implant failure due to impaired peri-implant osseous healing. Early topical insulin treatment was recently shown to normalize diabetic bone healing by rectifying impairments in osteoblastic activities. In this study, insulin/poly(lactic-co-glycolic acid) (PLGA) microspheres were prepared by a double-emulsion solvent evaporation method. Microspheres were then incorporated in fibrin gel to develop a local drug delivery system for diabetic patients requiring implant treatment. In vitro release of insulin from fibrin gel loaded with these microspheres was assessed, and sustained prolonged insulin release over 21 days ascertained. To assess the bioactivity of released insulin and determine whether slow release might improve impaired diabetic bone formation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase (ALP) activity, mineralized nodule formation, and ELISA (enzyme-linked immunosorbent assay) assays were performed. The insulin released from the drug delivery system stimulated cell growth in previously inhibited cells, and ameliorated the impaired bone-forming ability of human MG-63 cells under high glucose conditions. Fibrin gel loaded with insulin/PLGA microspheres shows potential for improving peri-implant bone formation in diabetic patients.  相似文献   

12.
A major cause of thromboplebitis, during acyclovir (ACV) parenteral administration is the high pH of its reconstituted solution (pH 11). Its plasma half life is 2.5 h, requiring repeated administration which may result in excess of drug solubility leading to possible renal damage and acute renal failure. The present study reports the efficiency of stealthy ACV nanoparticles (NPs) to increase the mean residence time of the drug 29 times. It caused a marked decrease in thrombophlebitis when injected into rabbit’s ear vein. The polymers used were (Poly lactic acid, polylactic-co-glycolic (PLGA) 85/15, PLGA 75/25, PLGA 50/50). Particles were evaluated for their encapsulation efficiency, morphology, particle size and size distribution, zeta potential, and in vitro drug release. Small NPs (280–300 nm) with 60% drug release after 48 h were obtained. Among the block copolymer used, poloxamer 407 was of superior coating properties with a coat thickness in the range of 1.5–8.3 nm and a decreased surface charge.  相似文献   

13.
We describe the formulation of bovine serum albumin nanoparticles (BSA‐NPs) by the coacervation method using surfactants. Plasmids (pUC18, pUC18egfp and pBBR1MCS‐2) isolated from E. coli were incorporated into the BSA matrix by incubating in albumin solution prior to formulation of NPs. Plasmid incorporation was calculated by % yield, entrapment efficiency, DNA loading capacity and release of entrapped DNA by comparing with blank NPs. BSA‐DNA binding studies were carried out by using fluorescence spectroscopy and Fourier Transform Infra Red Spectroscopy (FT‐IR). The surface charge distribution of the NPs loaded with plasmid was calculated using zeta potential. The photoluminescence of BSA‐NPs was quenched when loaded with pDNA, confirming the interaction of DNA with BSA. Altogether, these results provide evidences for the excellent DNA carrying efficiency of BSA‐NPs without loss of plasmid's integrity. The NPs were used to transfect E. coli DH5α strain lacking ampicillin resistance. They, however, showed ampicillin resistance subsequent to transfection with plasmid encoding ampicillin resistance gene. Effect of transfection was confirmed by confocal microscopy and by the isolation of the plasmid by agarose gel electrophoresis from the transfected bacterial culture. This study clearly demonstrates the efficacy of BSA‐NPs as delivery vehicle for pDNA transfection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The aim of the present work was to study the in vitro/in vivo characteristics of dutasteride loaded biodegradable microspheres designed for sustained release of dutasteride over four weeks. An O/W emulsion-solvent evaporation method was used to incorporate dutasteride, which is of interest in the treatment of benign prostatic hyperplasia (BPH), into poly(lactide-co-glycolide) (PLGA). A response surface method (RSM) with central composite design (CCD) was employed to optimize the formulation variables. A prolonged in vitro drug release profile was observed, with a complete release of the entrapped drug within 28 days. The pharmacokinetics study showed sustained plasma drug concentration-time profile of dutasteride loaded microspheres after subcutaneous injection into rats. The in vitro drug release in rats correlated well with the in vivo pharmacokinetics profile. The pharmacodynamics evaluated by determination of the BPH inhibition in the rat models also showed a prolonged pharmacological response. These results suggest the potential use of dutasteride loaded biodegradable microspheres for the management of BPH over long periods.  相似文献   

15.

Introduction

Polymer-based delivery systems offer innovative intra-cavity administration of drugs, with the potential to better target micro-deposits of cancer cells in brain parenchyma beyond the resected cavity. Here we evaluate clinical utility, toxicity and sustained drug release capability of a novel formulation of poly(lactic-co-glycolic acid) (PLGA)/poly(ethylene glycol) (PEG) microparticles.

Methods

PLGA/PEG microparticle-based matrices were molded around an ex vivo brain pseudo-resection cavity and analyzed using magnetic resonance imaging and computerized tomography. In vitro toxicity of the polymer was assessed using tumor and endothelial cells and drug release from trichostatin A-, etoposide- and methotrexate-loaded matrices was determined. To verify activity of released agents, tumor cells were seeded onto drug-loaded matrices and viability assessed.

Results

PLGA/PEG matrices can be molded around a pseudo-resection cavity wall with no polymer-related artifact on clinical scans. The polymer withstands fractionated radiotherapy, with no disruption of microparticle structure. No toxicity was evident when tumor or endothelial cells were grown on control matrices in vitro. Trichostatin A, etoposide and methotrexate were released from the matrices over a 3-4 week period in vitro and etoposide released over 3 days in vivo, with released agents retaining cytotoxic capabilities. PLGA/PEG microparticle-based matrices molded around a resection cavity wall are distinguishable in clinical scanning modalities. Matrices are non-toxic in vitro suggesting good biocompatibility in vivo. Active trichostatin A, etoposide and methotrexate can be incorporated and released gradually from matrices, with radiotherapy unlikely to interfere with release.

Conclusion

The PLGA/PEG delivery system offers an innovative intra-cavity approach to administer chemotherapeutics for improved local control of malignant brain tumors.  相似文献   

16.
A new bioactive glass-based scaffold was developed for local delivery of drugs in case of osteomyelitis. Bioactive glass having a new composition was prepared and converted into porous scaffold. The bioactivity of the resulting scaffold was examined by in vitro acellular method. The scaffolds were loaded with two different drugs, an antibacterial or antifungal drug. The effects of the size of the scaffold, drug concentration, and dissolution medium on drug release were studied. The scaffolds were further coated with a degradable natural polymer, chitosan, to further control the drug release. Both the glass and scaffold were bioactive. The scaffolds released both the drugs for 6 weeks, in vitro. The results indicated that the bigger the size and the higher the drug concentration, the better was the release profile. The scaffolds appeared to be suitable for local delivery of the drugs in cases of osteomyelitis.  相似文献   

17.
The use of poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) as carriers for chemotherapeutic drugs is regarded as an actively targeted nano-therapy for the specific delivery of anti-cancer drugs to target cells. However, the exact mechanism by which PLGA NPs boost anticancer cytotoxicity at the molecular level remains largely unclear. This study employed different molecular approaches to define the response of carcinoma FaDu cells to different types of treatment, specifically: paclitaxel (PTX) alone, drug free PLGA NPs, and PTX-loaded PTX-PLGA NPs. Functional cell assays revealed that PTX-PLGA NPs treated cells had a higher level of apoptosis than PTX alone, whereas the complementary, UHPLC-MS/MS (TIMS-TOF) based multi-omics analyses revealed that PTX-PLGA NPs treatment resulted in increased abundance of proteins associated with tubulin, as well as metabolites such as 5-thymidylic acid, PC(18:1(9Z)/18:1(9Z0), vitamin D, and sphinganine among others. The multi-omics analyses revealed new insights about the molecular mechanisms underlying the action of novel anticancer NP therapies. In particular, PTX-loaded NPs appeared to exacerbate specific changes induced by both PLGA-NPs and PTX as a free drug. Hence, the PTX-PLGA NPs’ molecular mode of action, seen in greater detail, depends on this synergy that ultimately accelerates the apoptotic process, resulting in cancer cell death.  相似文献   

18.
A novel drug delivery system for the treatment of brain tumors was formulated by methotrexate (MTX)-loaded polymeric nanoparticles (NPs) based on Glycol chitosan (GCS) and Dextran sulfate (DS). The physicochemical properties of resulting particles were investigated, evidencing the contribution of these nanoparticles for brain targeting. In vitro release of MTX was also evaluated. The GCS-DS nanoparticles have been developed based on the modulation of ratio show promise as a system for controlled delivery of the drug to the brain.  相似文献   

19.
The purpose of this research was to assess the physicochemical properties of a controlled release formulation of recombinant human growth hormone (rHGH) encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) composite microspheres. rHGH was loaded in poly(acryloyl hydroxyethyl) starch (acHES) microparticles, and then the protein-containing microparticles were encapsulated in the PLGA matrix by a solvent extraction/evaporation method. rHGH-loaded PLGA microspheres were also prepared using mannitol without the starch hydrogel microparticle microspheres for comparison. The detection of secondary structure changes in protein was investigated by using a Fourier Transfer Infrared (FTIR) technique. The composite microspheres were spherical in shape (44.6±2.47 μm), and the PLGA-mannitol microspheres were 39.7±2.50 μm. Drug-loading efficiency varied from 93.2% to 104%. The composite microspheres showed higher overall drug release than the PLGA/mannitol microspheres. FTIR analyses indicated good stability and structural integrity of HGH localized in the microspheres. The PLGA-acHES composite microsphere system could be useful for the controlled delivery of protein drugs.  相似文献   

20.
In HIV infections, homoeostasis of T cells is dysregulated such that there is a depletion of CD4+ T cells and a progressive loss of naïve CD4+ and CD8+ T cells. Methodologies that can improve the function of some or all of these cells will likely enhance immune responsiveness in HIV infection. Interleukin‐7 (IL‐7) is a cytokine that has been shown to be critical in homeostatic expansion of naïve CD8+ and CD4+ cells in lymphopenic hosts, as well as regulating effector T cell to memory T‐cell transition and memory T‐cell homeostasis. In animal studies and clinical trials, repeated injections of IL‐7 are used to boost both CD4+ and CD8+ cell counts. Daily injections, however, are painful, inconvenient, and provide a frequent route for pathogen entry. We developed a poly (D ,L ‐lactide‐co‐glycolide; PLGA) microparticle controlled release system to administer IL‐7 in which a single injection of microparticles can provide therapeutic delivery of IL‐7. IL‐7 encapsulated PLGA microparticles were first synthesized using a water/organic/water double emulsion method, release from the particles was then optimized using in vitro release studies and therapeutic effectiveness was finally studied in animal studies. These PLGA microparticles showed effective delivery of IL‐7 for 1 week in vitro. These results were translated to in vivo delivery as well, which was followed for 9 days. Controlled release of IL‐7 in mice demonstrated biological activity in both CD4+ and CD8+ T cells in mice, which was consistent with previously reported results using daily injections. Biotechnol. Bioeng. 2012; 109:1835–1843. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号