首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In enzymatic saccharification of lignocellulosics, the access of the enzymes to exposed cellulose surfaces is a key initial step in triggering hydrolysis. However, knowledge of the structure–hydrolyzability relationship of the pretreated biomass is still limited. Here we used fluorescent‐labeled recombinant carbohydrate‐binding modules (CBMs) from Clostridium josui as specific markers for crystalline cellulose (CjCBM3) and non‐crystalline cellulose (CjCBM28) to analyze the complex surfaces of wood tissues pretreated with NaOH, NaOH–Na2S (kraft pulping), hydrothermolysis, ball‐milling, and organosolvolysis. Japanese cedar wood, one of the most recalcitrant softwood species was selected for the analysis. The binding analysis clarified the linear dependency of the exposure of crystalline and non‐crystalline cellulose surfaces for enzymatic saccharification yield by the organosolv and kraft delignification processes. Ball‐milling for 5–30 min increased saccharification yield up to 77%, but adsorption by the CjCBM–cyan fluorescent proteins (CFPs) was below 5%. Adsorption of CjCBM–CFPs on the hydrothermolysis pulp were less than half of those for organosolvolysis pulp, in coincidence with low saccharification yields. For all the pretreated wood, crystallinity index was not directly correlated with the overall saccharification yield. Fluorescent microscopy revealed that CjCBM3–CFP and CjCBM28–CFP were site‐specifically adsorbed on external fibrous structures and ruptured or distorted fiber surfaces. The assay system with CBM–CFPs is a powerful measure to estimate the initiation sites of hydrolysis and saccharification yields from chemically delignified wood pulps. Biotechnol. Bioeng. 2010; 105: 499–508. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
An amperometric enzyme biosensor for continuous detection of cellobiose has been implemented as an enzyme assay for cellulases. We show that the initial kinetics for cellobiohydrolase I, Cel7A from Trichoderma reesei, acting on different types of cellulose substrates, semi‐crystalline and amorphous, can be monitored directly and in real‐time by an enzyme‐modified electrode based on cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium (Pc). PcCDH was cross‐linked and immobilized on the surface of a carbon paste electrode which contained a mediator, benzoquinone. An oxidation current of the reduced mediator, hydroquinone, produced by the CDH‐catalyzed reaction with cellobiose, was recorded under constant‐potential amperometry at +0.5 V (vs. Ag/AgCl). The CDH‐biosensors showed high sensitivity (87.7 µA mM?1 cm?2), low detection limit (25 nM), and fast response time (t95% ~ 3 s) and this provided experimental access to the transient kinetics of cellobiohydrolases acting on insoluble cellulose. The response from the CDH‐biosensor during enzymatic hydrolysis was corrected for the specificity of PcCDH for the β‐anomer of cello‐oligosaccharides and the approach were validated against HPLC. It is suggested that quantitative, real‐time data on pure insoluble cellulose substrates will be useful in attempts to probe the molecular mechanism underlying enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 2012; 109: 3199–3204. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Eucalyptus was fractionated with mild alkaline process, and the obtained cellulose fraction was pretreated with various ionic liquids (ILs) to enhance the enzymatic saccharification. The results showed that the ILs used was efficient for the hydrolysis of cellulose, with the maximum total reducing sugars (TRS) yield over 80% at 50 °C. The regenerated cellulose substrate exhibited a significant improvement about 4.4–6.4 folds enhancement on saccharification rate during the first 4 h reaction. The crystallinity index (CrI) of cellulose via 1-ally-3-methylimidazolium ([AMIM]Cl) pretreatment was significantly decreased from 70.2% to 31.2%, resulting in structural change from cellulose I to cellulose II, which enabled the cellulase enzymes easier access to hydrolyze cellulose. However, 1-butyl-3methylimidazolium acesulfamate ([BMIM]Ace) pretreatment had no large effect on the CrI although a high conversion yield in glucose was obtained. The surface morphologies of the regenerated substrate which was pretreated via 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) and 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac) showed more porous and incompact network of cellulose when compared with the untreated substrate. This result indicated a better accessibility by cellulases to the cellulose surface. Besides, a certain amount of catalysts such as MgCl2 and H2SO4 could improve the rate of enzymatic saccharification.  相似文献   

4.
Crystalline cellulose Iβ (Avicel) was chemically transformed into cellulose II and IIII producing allomorphs with similar crystallinity indices (ATR-IR and XRD derived). Saccharifications by commercial cellulases at arrayed solids loadings showed cellulose IIII was more readily hydrolysable and less susceptible to increased dry solids levels than cellulose Iβ and II. Analysis by dynamic vapor sorption revealed cellulose II has a distinctively higher absorptive capacity than cellulose I and IIII. When equally hydrated (g water/g cellulose), low-field nuclear magnetic resonance (LF-NMR) relaxometry showed that cellulose II, on average, most constrained water while cellulase IIII left the most free water. LF-NMR spin–spin relaxation time distribution profiles representing distinct water pools suggest cellulose IIII had the most restricted pool and changes in water distribution during enzymatic saccharification were most dramatic with respect to cellulose IIII compared to celluloses Iβ and II.  相似文献   

5.
The chemical characteristics, enzymatic saccharification, and ethanol fermentation of autohydrolyzed lignocellulosic material that was exposed to steam explosion were investigated using bagasse as the sample. The effects of the steam explosion on the change in pH, organic acids production, degrees of polymerization and crystallinity of the cellulose component, and the amount of extractive components in the autohydrolyzated bagasse were examined. The steam explosion decreased the degree of polymerzation up to about 700 but increased the degree of crystallinity and the micelle width of the cellulose component in the bagasse. The steam explosion, at a pressure of 2.55 MPa for 3 mins, was the most effective for the delignification of bagasse. 40 g/L of glucose and 20 g/L of xylose were produced from 100 g/L of the autohydrolyzed bagasse by the enzymatic saccharification using mixed cellulases, acucelase and meicelase. The maximum ethanol concentration, 20 g/L, was obtained from the enzymatic hydrolyzate of 100 g/L of the autohydrolyzed bagasse by the ethanol fermentation usingPichia stipitis CBS 5773; the ethanol yield from sugars was 0.33 g/g sugars.  相似文献   

6.
Ionic liquids (ILs) have been increasingly recognized as novel solvents for dissolution and pretreatment of cellulose. However, cellulases are inactivated in the presence of ILs, even when present at low concentrations. To more fully exploit the benefits of ILs it is critical to develop a compatible IL‐cellulases system in which the IL is able to effectively solubilize and activate the lignocellulosic biomass, and the cellulases possess high stability and activity. In this study, we investigated the stability and activity of a commercially available cellulases mixture in the presence of different concentrations of 1‐ethyl‐3‐methylimidazolium acetate ([Emim][OAc]). A mixture of cellulases and β‐glucosidase (Celluclast1.5L, from Trichoderma reesei, and Novozyme188, from Aspergillus niger, respectively) retained 77% and 65% of its original activity after being pre‐incubated in 15% and 20% (w/v) IL solutions, respectively, at 50°C for 3 h. The cellulases mixture also retained high activity in 15% [Emim][OAc] to hydrolyze Avicel, a model substrate for cellulose analysis, with conversion efficiency of approximately 91%. Notably, the presence of different amounts of yellow poplar lignin did not interfere significantly with the enzymatic hydrolysis of Avicel. Using this IL‐cellulase system (15% [Emim][OAc]), the saccharification of yellow poplar biomass was also significantly improved (33%) compared to the untreated control (3%) during the first hour of enzymatic hydrolysis. Together, these findings provide compelling evidence that [Emim][OAc] was compatible with the cellulase mixture, and this compatible IL‐cellulases system is promising for efficient activation and hydrolysis of native biomass to produce biofuels and co‐products from the individual biomass components. Bioeng. 2011; 108:1042–1048. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
Lignocellulose represents a key sustainable source of biomass for transformation into biofuels and bio‐based products. Unfortunately, lignocellulosic biomass is highly recalcitrant to biotransformation, both microbial and enzymatic, which limits its use and prevents economically viable conversion into value‐added products. As a result, effective pretreatment strategies are necessary, which invariably involves high energy processing or results in the degradation of key components of lignocellulose. In this work, the ionic liquid, 1‐ethyl‐3‐methylimidazolium acetate ([Emim][CH3COO]), was used as a pretreatment solvent to extract lignin from wood flour. The cellulose in the pretreated wood flour becomes far less crystalline without undergoing solubilization. When 40% of the lignin was removed, the cellulose crystallinity index dropped below 45, resulting in >90% of the cellulose in wood flour to be hydrolyzed by Trichoderma viride cellulase. [Emim] [CH3COO] was easily reused, thereby resulting in a highly concentrated solution of chemically unmodified lignin, which may serve as a valuable source of a polyaromatic material as a value‐added product. Biotechnol. Bioeng. 2009;102: 1368–1376. © 2008 Wiley Periodicals, Inc.  相似文献   

8.
Although the effects of cellulose crystallinity and lignin content as two major structural features on enzymatic hydrolysis have been extensively studied, debates regarding their effects still exist. In this study, reconstitution of cellulose and lignin after 1‐ethyl‐3‐methylimidazolium acetate ([C2mim][OAc]) pretreatment was proposed as a new method to study their effects on enzymatic digestibility. Different mechanisms of lignin content for reduction of cellulose hydrolysis were found between the proposed method and the traditional method (mixing of cellulose and lignin). The results indicated that a slight change of the crystallinity of the reconstituted materials may play a minor role in the change of enzyme efficiency. In addition, the present study suggested that the lignin content does not significantly affect the digestibility of cellulose, whereas the conversion of cellulose fibers from the cellulose I to the cellulose II crystal phase plays an important role when an ionic liquid pretreatment of biomass was conducted. Biotechnol. Bioeng. 2013; 110: 729–736. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Since cellulose synthase (CESA) gene was first identified, several dozen CESA mutants have been reported, but almost all mutants exhibit the defective phenotypes in plant growth and development. In this study, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P‐CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%–41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co‐IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low‐DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3‐fold and ethanol productivity by 34%–42%. This study has for the first time reported a direct modification for the low‐DP cellulose production that has broad applications in biomass industries.  相似文献   

10.
Milliliter scale (ligno)cellulose saccharifications suggest general solute concentration and its impact on water availability plays a significant role in detrimental effects associated with high solids lignocellulose conversions. A microtumbler developed to enable free‐fall mixing at dry solids loadings up to 35% (w/w) repeatedly produced known detrimental conversion trends on cellulose, xylan and pretreated lignocellulose with commercial enzymes. Despite this, high concentrations of insoluble nonhydrolysable dextrans did not depress saccharification extents in 5% (w/w) cellulose slurries suggesting mass transfer limitations may not significantly limit hydrolysis extents at high solids loadings. Interestingly, cellulose saccharification by purified cellulases showed increased conversions with increasing dry solids loadings. This prompted investigations into impacts the concentration of soluble species, such as sugar alcohols, low molecular weight enzyme preparation components, and monomer hydrolysis products, have on the hydrolysis environment. Such substances significantly depress conversion rates and were shown to correlatively lower water activity (Aw) in the hydrolysis environment while high insoluble solids concentrations did not. Furthermore, low‐field NMR on concentrated slurries of insoluble complex carbohydrates, including the nonhydrolysable dextrans, showed all solids constrained water significantly more than high concentrations of soluble species (inhibitory) suggesting water constraint may not be as problematic an issue at high solids loadings compared to the availability of water in the system. Additionally, the introduction of soluble species lessened overall water constraint in high solids systems and appears to shift the distribution of water away from insoluble surfaces. This is potentially a critical issue for industrial processes operating at high dry solids levels. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

11.
While many pretreatments attempt to improve the enzymatic digestibility of biomass by removing lignin, this study shows that improving the surface area accessible to cellulase is a more important factor for achieving a high sugar yield. Here we compared the pretreatment of switchgrass by two methods, cellulose solvent‐ and organic solvent‐based lignocellulose fractionation (COSLIF) and soaking in aqueous ammonia (SAA). Following pretreatment, enzymatic hydrolysis was conducted at two cellulase loadings, 15 filter paper units (FPU)/g glucan and 3 FPU/g glucan, with and without BSA blocking of lignin absorption sites. The hydrolysis results showed that the lignin remaining after SAA had a significant negative effect on cellulase performance, despite the high level of delignification achieved with this pretreatment. No negative effect due to lignin was detected for COSLIF‐treated substrate. SEM micrographs, XRD crystallinity measurements, and cellulose accessibility to cellulase (CAC) determinations confirmed that COSLIF fully disrupted the cell wall structure, resulting in a 16‐fold increase in CAC, while SAA caused a 1.4‐fold CAC increase. A surface plot relating the lignin removal, CAC, and digestibility of numerous samples (both pure cellulosic substrates and lignocellulosic materials pretreated by several methods) was also developed to better understand the relative impacts of delignification and CAC on glucan digestibility. Biotechnol. Bioeng. 2011; 108:22–30. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
This work describes the continuous synthesis of ethyl esters via enzymatic catalysis on a packed‐bed continuous reactor, using mixtures of immobilized lipases (combi‐lipases) of Candida antarctica (CALB), Thermomyces lanuginosus (TLL), and Rhizomucor miehei (RML). The influence of the addition of glass beads to the reactor bed, evaluation of the use of different solvents, and flow rate on reaction conditions was studied. All experiments were conducted using the best combination of lipases according to the fatty acid composition of the waste oil (combi‐lipase composition: 40% of TLL, 35% of CALB, and 25% of RML) and soybean oil (combi‐lipase composition: 22.5% of TLL, 50% of CALB, and 27.5% of RML). The best general reaction conditions were found to be using tert‐butanol as solvent, and the flow rate of 0.08 mL min?1. The combi‐lipase reactors operating at steady state for over 30 days (720 h), kept conversion yields of ~50%, with average productivity of 1.94 gethyl esters h?1, regardless of the type of oil in use. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:952–959, 2018  相似文献   

13.
A recombinant Trichoderma reesei cellulase was used for the ultrasound‐mediated hydrolysis of soluble carboxymethyl cellulose (CMC) and insoluble cellulose of various particle sizes. The hydrolysis was carried out at low intensity sonication (2.4–11.8 W cm?2 sonication power at the tip of the sonotrode) using 10, 20, and 40% duty cycles. [A duty cycle of 10%, for example, was obtained by sonicating for 1 s followed by a rest period (no sonication) of 9 s.] The reaction pH and temperature were always 4.8 and 50°C, respectively. In all cases, sonication enhanced the rate of hydrolysis relative to nonsonicated controls. The hydrolysis of CMC was characterized by Michaelis‐Menten kinetics. The Michaelis‐Menten parameter of the maximum reaction rate Vmax was enhanced by sonication relative to controls, but the value of the saturation constant Km was reduced. The optimal sonication conditions were found to be a 10% duty cycle and a power intensity of 11.8 W cm?2. Under these conditions, the maximum rate of hydrolysis of soluble CMC was nearly double relative to control. In the hydrolysis of cellulose, an increasing particle size reduced the rate of hydrolysis. At any fixed particle size, sonication at a 10% duty cycle and 11.8 W cm?2 power intensity improved the rate of hydrolysis relative to control. Under the above mentioned optimal sonication conditions, the enzyme lost about 20% of its initial activity in 20 min. Sonication was useful in accelerating the enzyme catalyzed saccharification of cellulose. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1448–1457, 2013  相似文献   

14.
Pretreatment of high‐crystalline cellulose with N‐methyl‐morpholine‐N‐oxide (NMO or NMMO) to improve bioethanol and biogas production was investigated. The pretreatments were performed at 90 and 120°C for 0.5–15 h in three different modes, including dissolution (85% NMO), ballooning (79% NMO), and swelling (73% NMO). The pretreated materials were then enzymatically hydrolyzed and fermented to ethanol or anaerobically digested to biogas (methane). The pretreatment at 85% NMO, 120°C and 2.5 h resulted in 100% yield in the subsequent enzymatic hydrolysis and around 150% improvement in the yield of ethanol compared to the untreated and water‐treated material. However, the best results of biogas production were obtained when the cellulose was treated with swelling and ballooning mode, which gave almost complete digestion in 15 days. Thus, the pretreatment resulted in 460 g ethanol or 415 L methane from each kg of cellulose. Analysis of the structure of treated and untreated celluloses showed that the dissolution mode can efficiently convert the crystalline cellulose I to cellulose II. However, it decreases the water swelling capacity of the cellulose. On the other hand, swelling and ballooning modes in NMO treatment were less efficient in both water swelling capacity and cellulose crystallinity. No cellulose loss, ambient pressure, relatively moderate conditions, and high efficiency make the NMO a good alternative for pretreatment of high‐crystalline cellulosic materials. Biotechnol. Bioeng. 2010; 105: 469–476. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
Transketolase is a proven biocatalytic tool for asymmetric carbon‐carbon bond formation, both as a purified enzyme and within bacterial whole‐cell biocatalysts. The performance of Pichia pastoris as a host for transketolase whole‐cell biocatalysis was investigated using a transketolase‐overexpressing strain to catalyze formation of l ‐erythrulose from β‐hydroxypyruvic acid and glycolaldehyde substrates. Pichia pastoris transketolase coding sequence from the locus PAS_chr1‐4_0150 was subcloned downstream of the methanol‐inducible AOX1 promoter in a plasmid for transformation of strain GS115, generating strain TK150. Whole and disrupted TK150 cells from shake flasks achieved 62% and 65% conversion, respectively, under optimal pH and methanol induction conditions. In a 300 μL reaction, TK150 samples from a 1L fed‐batch fermentation achieved a maximum l ‐erythrulose space time yield (STY) of 46.58 g L?1 h?1, specific activity of 155 U , product yield on substrate (Yp/s) of 0.52 mol mol?1 and product yield on catalyst (Yp/x) of 2.23g . We have successfully exploited the rapid growth and high biomass characteristics of Pichia pastoris in whole cell biocatalysis. At high cell density, the engineered TK150 Pichia pastoris strain tolerated high concentrations of substrate and product to achieve high STY of the chiral sugar l ‐erythrulose. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:99–106, 2018  相似文献   

16.
Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF‐pretreated corn stover but reached only ~60% for the DA‐pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non‐cellulose accessibility to cellulase (NCAC) based on adsorption of a non‐hydrolytic recombinant protein TGC were measured for the first time. The COSLIF‐pretreated corn stover had a CAC of 11.57 m2/g, nearly twice that of the DA‐pretreated biomass (5.89 m2/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA‐ and COSLIF‐pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility. Biotechnol. Bioeng. 2009;103: 715–724. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
The cellulose synthase (CESA) membrane complex synthesizes microfibrils of cellulose that surround all plant cells. Cellulose is made of sugar (β,1‐4 glucan) and accessing the sugar in cellulose for biofuels is of critical importance to stem the use of fossil fuels and avoid competition with food crops and pristine lands associated with starch‐based biofuel production. The recalcitrance of cellulose to enzymatic conversion to a fermentable form of sugar is related to the degree of hydrogen bonding or crystallization of the glucan chain. Herein, we isolate the first viable low biomass‐crystallinity mutant by screening for altered cell wall structure using X‐ray scattering as well as screening for enzymatic conversion efficiency on a range of cell wall mutants in the model plant Arabidopsis thaliana (L.) Heynh. Through detailed analysis of the kinetics of bioconversion we identified a mutant that met both selection criteria. This mutant is ixr1‐2, which contains a mutation in a highly conserved consensus sequence among the C‐terminal transmembrane regions within CESA3. A 34% lower biomass crystallization index and 151% improvement in the efficiency of conversion from raw biomass to fermentable sugars was measured relative to that of wild type (Col‐0). Recognizing the inherent ambiguities with an insoluble complex substrate like cellulose and how little is still understood regarding the regulation of CESA we propose a general model for how to manipulate CESA enzymes to improve the recalcitrance of cellulose to enzymatic hydrolysis. This study also raises intriguing possibilities as to the functional importance of transmembrane anchoring in CESA complex and microfibril formation.  相似文献   

18.
Effective and efficient breakdown of lignocellulosic biomass remains a primary barrier for its use as a feedstock for renewable transportation fuels. A more detailed understanding of the material properties of biomass slurries during conversion is needed to design cost‐effective conversion processes. A series of enzymatic saccharification experiments were performed with dilute acid pretreated corn stover at initial insoluble solids loadings of 20% by mass, during which the concentration of particulate solids and the rheological property yield stress (τy) of the slurries were measured. The saccharified stover liquefies to the point of being pourable (τy ≤ 10 Pa) at a total biomass conversion of about 40%, after roughly 2 days of saccharification for a moderate loading of enzyme. Mass balance and semi‐empirical relationships are developed to connect the progress of enzymatic hydrolysis with particle concentration and yield stress. The experimental data show good agreement with the proposed relationships. The predictive models developed here are based on established physical principles and should be applicable to the saccharification of other biomass systems. The concepts presented, especially the ability to predict yield stress from extent of conversion, will be helpful in the design and optimization of enzymatic hydrolysis processes that operate at high‐solids loadings. Biotechnol. Bioeng. 2009; 104: 290–300 © 2009 Wiley Periodicals, Inc.  相似文献   

19.
The steady‐state operation of Chinese hamster ovary (CHO) cells in perfusion bioreactors requires the equilibration of reactor dynamics and cell metabolism. Accordingly, in this work we investigate the transient cellular response to changes in its environment and their interactions with the bioreactor hydrodynamics. This is done in a benchtop perfusion bioreactor using MALDI‐TOF MS through isotope labeling of complex intracellular nucleotides (ATP, UTP) and nucleotide sugars (UDP‐Hex, UDP‐HexNAc). By switching to a 13C6 glucose containing feed media during constant operation at 20 × 106 cells and a perfusion rate of 1 reactor volume per day, isotopic steady state was studied. A step change to the 13C6 glucose medium in spin tubes allowed the determination of characteristic times for the intracellular turnover of unlabeled metabolites pools, (≤0.56 days), which were confirmed in the bioreactor. On the other hand, it is shown that the reactor residence time (1 day) and characteristic time for glucose uptake (0.33 days), representative of the bioreactor dynamics, delayed the consumption of 13C6 glucose in the bioreactor and thus the intracellular 13C enrichment. The proposed experimental approach allowed the decoupling of bioreactor hydrodynamics and intrinsic dynamics of cell metabolism in response to a change in the cell culture environment. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1630–1639, 2017  相似文献   

20.
Bioreactor scale‐up is a critical step in the production of therapeutic proteins such as monoclonal antibodies (MAbs). With the scale‐up criterion such as similar power input per volume or O2 volumetric mass transfer coefficient ( ), adequate oxygen supply and cell growth can be largely achieved. However, CO2 stripping in the growth phase is often inadequate. This could cascade down to increased base addition and osmolality, as well as residual lactate increase and compromised production and product quality. Here we describe a practical approach in bioreactor scale‐up and process transfer, where bioreactor information may be limited. We evaluated the sparger and (CO2 volumetric mass transfer coefficient) from a range of bioreactor scales (3–2,000 L) with different spargers. Results demonstrated that for oxygen is not an issue when scaling from small‐scale to large‐scale bioreactors at the same gas flow rate per reactor volume (vvm). Results also showed that sparging CO2 stripping, , is dominated by the gas throughput. As a result, a combination of a minimum constant vvm air or N2 flow with a similar specific power was used as the general scale‐up criterion. An equation was developed to determine the minimum vvm required for removing CO2 produced from cell respiration. We demonstrated the effectiveness of using such scale‐up criterion with five MAb projects exhibiting different cell growth and metabolic characteristics, scaled from 3 to 2,000 L bioreactors across four sites. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1146–1159, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号