首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cyclic peptide CC9 that targets cell membrane of mesenchymal stem cells (MSCs) is coupled with Gd‐DOTA to yield a Gd‐DOTA‐CC9 complex as MRI contrast agent. It is used to label human MSCs (hMSCs) via electroporation. Electroporation‐labeling of hMSCs with Gd‐DOTA‐CC9 induces cell‐assembly of Gd‐DOTA‐CC9 nanoclusters in the cytoplasm, significantly promotes cell‐labeling efficacy and intracellular retention time of the agent. In vitro MRI of labeled hMSCs exhibits significant signal reduction under T2‐weighted MRI, which can allow long‐term tracking of labeled cell transplants in in vivo migration. The labeling strategy is safe in cytotoxicity and differentiation potential.  相似文献   

2.
Cell tracking with magnetic resonance imaging (MRI) and iron nanoparticles is commonly used to monitor the fate of implanted cells in preclinical disease models. Few studies have employed these methods to study cancer cells because proliferative iron-labeled cancer cells will lose the label as they divide. In this study, we evaluate the potential for retention of the iron nanoparticle label, and resulting MRI signal, to serve as a marker for slowly dividing cancer cells. Green fluorescent protein-transfected MDA-MB-231 breast cancer cells were labeled with red fluorescent micron-sized superparamagnetic iron oxide (MPIO) nanoparticles. Cells were examined in vitro at multiple time points after labeling by staining for iron-labeled cells and by flow cytometric detection of the fluorescent MPIO. Severe combined immune deficiency (SCID) mice were implanted with 5 x 105 MPIO-labeled or unlabeled cells in the mammary fat pad and MRI was performed weekly until 28 days after injection. Microscopy was performed to validate MRI. In vitro assays revealed a very small percentage of cells that retained MPIO at 14 days after labeling. Regions of signal loss were observed in MRI of primary tumors that developed from iron-labeled cancer cells. Small focal regions of signal loss were detected in images of the axillary and brachial nodes in six of eight mice, at day 14 or later, with microscopy confirming the presence of iron-labeled cancer cells. Our data suggest an interesting role for cell tracking with iron particles since label retention leads to persistent signal void, allowing proliferative status to be determined.  相似文献   

3.
Cellular magnetic resonance imaging (MRI) has been well-established for tracking neural progenitor cells (NPC). Superparamagnetic iron oxide nanoparticles (SPIONs) approved for clinical application are the most common agents used for labeling. Conventionally, transfection agents (TAs) were added with SPIONs to facilitate cell labeling because SPIONs in the native unmodified form were deemed inefficient for intracellular labeling. However, compelling evidence also shows that simple SPION incubation is not invariably ineffective. The labeling efficiency can be improved by prolonged incubation and elevated iron doses. The goal of the present study was to establish simple SPION incubation as an efficient intracellular labeling method. To this end, NPCs derived from the neonatal subventricular zone were incubated with SPIONs (Feridex®) and then evaluated in vitro with regard to the labeling efficiency and biological functions. The results showed that, following 48 hours of incubation at 75 µg/ml, nearly all NPCs exhibited visible SPION intake. Evidence from light microscopy, electron microscopy, chemical analysis, and magnetic resonance imaging confirmed the effectiveness of the labeling. Additionally, biological assays showed that the labeled NPCs exhibited unaffected viability, oxidative stress, apoptosis and differentiation. In the demonstrated in vivo cellular MRI experiment, the hypointensities representing the SPION labeled NPCs remained observable throughout the entire tracking period. The findings indicate that simple SPION incubation without the addition of TAs is an efficient intracellular magnetic labeling method. This simple approach may be considered as an alternative approach to the mainstream labeling method that involves the use of TAs.  相似文献   

4.
Pig hepatocytes are an important investigational tool for optimizing hepatocyte transplantation schemes in both allogeneic and xenogeneic transplant scenarios. MRI can be used to serially monitor the transplanted cells, but only if the hepatocytes can be labeled with a magnetic particle. In this work, we describe culture conditions for magnetic cell labeling of cells from two different pig hepatocyte cell sources; primary pig hepatocytes (ppHEP) and stem cell-derived hepatocytes (PICM-19FF). The magnetic particle is a micron-sized iron oxide particle (MPIO) that has been extensively studied for magnetic cell labeling for MRI-based cell tracking. ppHEP could endocytose MPIO with labeling percentages as high as 70%, achieving iron content as high as ~55 pg/cell, with >75% viability. PICM-19FF had labeling >97%, achieving iron content ~38 pg/cell, with viability >99%. Extensive morphological and functional assays indicated that magnetic cell labeling was benign to the cells. The results encourage the use of MRI-based cell tracking for the development and clinical use of hepatocyte transplantation methodologies. Further, these results generally highlight the importance of functional cell assays in the evaluation of contrast agent biocompatibility.  相似文献   

5.
Cancer stem‐like cells (CSCs) are rare subpopulations of cancer cells. The development of three‐dimensional tissues abundant in CSCs is important to both the understanding and establishment of novel therapeutics targeting them. Here, we describe the fabrication of multicellular tumor spheroids (MTSs) abundant in CSCs by employing alginate microcapsules with spherical cavities templated by cell‐enclosing gelatin microparticles. Encapsulated human pancreatic cancer cell line PANC‐1 cells grew for 14 days until they filled the cavities. The percentage of cells expressing reported CSC markers CD24, CD44, and epithelial‐specific antigen (ESA), increased during this growth period. The percentage at 24 days of incubation, 22%, was 1.6 times higher than that of MTSs formed on a nonadherent surface in the same period of incubation. The MTSs in microcapsules could be cryopreserved in liquid nitrogen using a conventional method. No significant difference in the content of CSC marker‐expressing cells was detected at 3 days of incubation when thawed after cryopreservation for 2 weeks, compared with cells incubated without prior cryopreservation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1071–1076, 2015  相似文献   

6.
High‐resolution tracking of stem cells remains a challenging task. An ultra‐bright contrast agent with extended intracellular retention is suitable for in vivo high‐resolution tracking of stem cells following the implantation. Here, a plasmonic‐active nanoplatform was developed for tracking mesenchymal stromal cells (MSCs) in mice. The nanoplatform consisted of TAT peptide‐functionalized gold nanostars (TAT‐GNS) that emit ultra‐bright two‐photon photoluminescence capable of tracking MSCs under high‐resolution optical imaging. In vitro experiment showed TAT‐GNS‐labeled MSCs retained a similar differentiability to that of non‐labeled MSCs controls. Due to their star shape, TAT‐GNS exhibited greater intracellular retention than that of commercial Q‐Tracker. In vivo imaging of TAT‐GNS‐labeled MSCs five days following intra‐arterial injections in mice kidneys showed possible MSCs implantation in juxta‐glomerular (JG) regions, but non‐specifically in glomeruli and afferent arterioles as well. With future design to optimize GNS labeling specificity and clearance, plasmonic‐active nanoplatforms may be a useful intracellular tracking tool for stem cell research.

An ultra‐bright intracellular contrast agent is developed using TAT peptide‐functionalized gold nanostars (TAT‐GNS). It poses minimal influence on the stem cell differentiability. It exhibits stronger two‐photon photoluminescence and superior labeling efficiency than commercial Q‐Tracker. Following renal implantation, some TAT‐GNS‐labeled MSCs permeate blood vessels and migrate to the juxta‐glomerular region.  相似文献   


7.
Cryopreservation provides the foundation for research, development, and manufacturing operations in the CHO‐based biopharmaceutical industry. Despite its criticality, studies are lacking that explicitly demonstrate that the routine cell banking process and the potential stress and damage during cryopreservation and recovery from thaw have no lasting detrimental effects on CHO cells. Statistics are also scarce on the decline of cell‐specific productivity (Qp) over time for recombinant CHO cells developed using the glutamine synthetase (GS)‐based methionine sulfoximine (MSX) selection system. To address these gaps, we evaluated the impact of freeze‐thaw on 24 recombinant CHO cell lines (generated by the GS/MSX selection system) using a series of production culture assays. Across the panel of cell lines expressing one of three monoclonal antibodies (mAbs), freeze‐thaw did not result in any significant impact beyond the initial post‐thaw passages. Production cultures sourced from cryopreserved cells and their non‐cryopreserved counterparts yielded similar performance (growth, viability, and productivity), product quality (size, charge, and glycosylation distributions), and flow cytometric profiles (intracellular mAb expression). However, many production cultures yielded lower Qp at increased cell age: 17 of the 24 cell lines displayed ≥20% Qp decline after ~2–3 months of passaging, irrespective of whether the cells were previously cryopreserved. The frequency of Qp decline underscores the continued need for understanding the underlying mechanisms and for careful clone selection. Because our experiments were designed to decouple the effects of cryopreservation from those of cell age, we could conclusively rule out freeze‐thaw as a cause for Qp decline. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:463–477, 2018  相似文献   

8.
Cultivation of undifferentiated pluripotent stem cells (PSCs) as aggregates has emerged as an efficient culture configuration, enabling rapid and controlled large scale expansion. Aggregate‐based PSC cryopreservation facilitates the integrated process of cell expansion and cryopreservation, but its feasibility has not been demonstrated. The goals of current study are to assess the suitability of cryopreserving intact mouse embryonic stem cell (mESC) aggregates and investigate the effects of aggregate size and the formulation of cryopreservation solution on mESC survival and recovery. The results demonstrated the size‐dependent cell survival and recovery of intact aggregates. In particular, the generation of reactive oxygen species (ROS) and caspase activation were reduced for small aggregates (109 ± 55 μm) compared to medium (245 ± 77 μm) and large (365 ± 141 μm) ones, leading to the improved cell recovery. In addition, a defined protein‐free formulation was tested and found to promote the aggregate survival, eliminating the cell exposure to animal serum. The cryopreserved aggregates also maintained the pluripotent markers and the differentiation capacity into three‐germ layers after thawing. In summary, the cryopreservation of small PSC aggregates in a defined protein‐free formulation was shown to be a suitable approach toward a fully integrated expansion and cryopreservation process at large scale. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

9.
The migration of cells within a living organism can be observed with magnetic resonance imaging (MRI) in combination with iron oxide nanoparticles as an intracellular contrast agent. This method, however, suffers from low sensitivity and specificty. Here, we developed a quantitative non-invasive in-vivo cell localization method using contrast enhanced multiparametric MRI and support vector machines (SVM) based post-processing. Imaging phantoms consisting of agarose with compartments containing different concentrations of cancer cells labeled with iron oxide nanoparticles were used to train and evaluate the SVM for cell localization. From the magnitude and phase data acquired with a series of T2*-weighted gradient-echo scans at different echo-times, we extracted features that are characteristic for the presence of superparamagnetic nanoparticles, in particular hyper- and hypointensities, relaxation rates, short-range phase perturbations, and perturbation dynamics. High detection quality was achieved by SVM analysis of the multiparametric feature-space. The in-vivo applicability was validated in animal studies. The SVM detected the presence of iron oxide nanoparticles in the imaging phantoms with high specificity and sensitivity with a detection limit of 30 labeled cells per mm3, corresponding to 19 μM of iron oxide. As proof-of-concept, we applied the method to follow the migration of labeled cancer cells injected in rats. The combination of iron oxide labeled cells, multiparametric MRI and a SVM based post processing provides high spatial resolution, specificity, and sensitivity, and is therefore suitable for non-invasive in-vivo cell detection and cell migration studies over prolonged time periods.  相似文献   

10.
Prior to transplantation, preclinical study of safety and efficacy of neural progenitor cells (NPCs) is needed. Therefore, it is important to generate an efficient in vitro platform for neural cell differentiation in large animal models such as pigs. In this study, porcine‐induced pluripotent stem cells (iPSCs) were seeded at high cell density to a neural induction medium containing the dual Sma‐ and Mad‐related protein (SMAD) inhibitors, a TGF‐β inhibitor and BMP4 inhibitor. The dSMADi‐derived NPCs showed NPC markers such as PLAG1, NESTIN and VIMENTIN and higher mRNA expression of Sox1 compared to the control. The mRNA expression of HOXB4 was found to significantly increase in the retinoic acid‐treated group. NPCs propagated in vitro and generated neurospheres that are capable of further differentiation in neurons and glial cells. Gliobalstoma‐cultured medium including injury‐related cytokines treated porcine iPSC‐NPCs survive well in vitro and showed more neuronal marker expression compared to standard control medium. Collectively, the present study developed an efficient method for production of neural commitment of porcine iPSCs into NPCs.  相似文献   

11.
The cadherin/catenin complex plays a key role in the initiation of cell‐cell recognition, and adhesion, and the elaboration of structural and functional organization in multicellular tissues and organs. It is associated with tumor metastasis and also acts as an “invasion suppressor” of cancer cells. Nasopharyngeal carcinoma (NPC) is notorious for its highly metastatic nature. The expression of the E‐cadherin/catenin complex is down‐regulated in NPC tumor specimens. To obtain better insight into the intercellular adhesive property of NPC cells, we used immunofluorescence microscopy, immunoprecipitation, and immunoblot analysis to examine the expression of the classical cadherins and β‐catenin in a NPC cell line, TW‐039. The results demonstrate a change in the distribution of E‐cadherin from cytosolic flakes to cell‐cell contacts with increasing time in culture. Between days 1 and 5 after plating, the detergent‐insoluble fraction of E‐cadherin increased from 20% to 37% of total E‐cadherin, and that for P‐cadherin increased from 33% to 40%. By contrast, the values for β‐catenin remained unchanged (26% and 25%). Both immunofluorescence and immunoblot studies suggested that P‐cadherin may be involved in pioneer contact adhesion of TW‐039 cells. Interestingly, E‐, P‐, and N‐cadherin are co‐expressed in this cell line. Immunoprecipitation studies also showed that other members of the cadherin family may be involved in the contact adhesion of TW‐039 cells. J. Cell. Biochem. 76:161–172, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
Mass spectrometry (MS) analysis combined with stable isotopic labeling is a promising method for the relative quantification of aberrant glycosylation in diseases and disorders. We developed a stable isotopic labeling‐based quantitative targeted glycomics (i‐QTaG) technique for the comparative and quantitative analysis of total N‐glycans using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). We established the analytical procedure with the chemical derivatizations (i.e., sialic acid neutralization and stable isotopic labeling) of N‐glycans using a model glycoprotein (bovine fetuin). Moreover, the i‐QTaG using MALDI‐TOF MS was evaluated with various molar ratios (1:1, 1:2, 1:5) of 13C6/12C6‐2‐aminobenzoic acid‐labeled glycans from normal human serum. Finally, this method was applied to direct comparison of the total N‐glycan profiles between normal human sera (n = 8) and prostate cancer patient sera (n = 17). The intensities of the N‐glycan peaks from i‐QTaG method showed a good linearity (R2 > 0.99) with the amount of the bovine fetuin glycoproteins. The ratios of relative intensity between the isotopically 2‐AA labeled N‐glycans were close to the theoretical molar ratios (1:1, 1:2, 1:5). We also demonstrated that the up‐regulation of the Lewis antigen (~82%) in sera from prostate cancer patients. In this proof‐of‐concept study, we demonstrated that the i‐QTaG method, which enables to achieve a reliable comparative quantitation of total N‐glycans via MALDI‐TOF MS analysis, has the potential to diagnose and monitor alterations in glycosylation associated with disease states or biotherapeutics. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:840–848, 2015  相似文献   

13.
Mesenchymal stem cells (MSCs) can differentiate into neural cells to treat nervous system diseases. Magnetic resonance is an ideal means for cell tracking through labeling cells with superparamagnetic iron oxide (SPIO). However, no studies have described the neural differentiation ability of SPIO-labeled MSCs, which is the foundation for cell therapy and cell tracking in vivo. Our results showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) labeled in vitro with SPIO can be induced into neural-like cells without affecting the viability and labeling efficiency. The cellular uptake of SPIO was maintained after labeled BM-MSCs differentiated into neural-like cells, which were the basis for transplanted cells that can be dynamically and non-invasively tracked in vivo by MRI. Moreover, the SPIO-labeled induced neural-like cells showed neural cell morphology and expressed related markers such as NSE, MAP-2. Furthermore, whole-cell patch clamp recording demonstrated that these neural-like cells exhibited electrophysiological properties of neurons. More importantly, there was no significant difference in the cellular viability and [Ca2+]i between the induced labeled and unlabeled neural-like cells. In this study, we show for the first time that SPIO-labeled MSCs retained their differentiation capacity and could differentiate into neural-like cells with high cell viability and a good cellular state in vitro.  相似文献   

14.
For the purpose of successfully monitoring labeled cells, optimum labeling efficiency without any side effect is a prerequisite. Magnetic cellular imaging is a new and growing field that allows the visualization of implanted cells in vivo. Herein, superparamagnetic iron oxide (SPIO) nanoparticles were conjugated with a non-toxic protein transduction domain (PTD), identified by the authors and termed low molecular weight protamine (LMWP), to generate efficient and non-toxic cell labeling tools. The cells labeled with LMWP-SPIO presented the highest iron content compared to those labeled with naked SPIO and the complex of SPIO with poly-l-lysine, which is currently used as a transfection agent. In addition to the iron content assay, Prussian staining and confocal observation demonstrated the highest intracellular LMWP-SPIO presence, and the labeling procedure did not alter the cell differentiation capacity of mesenchymal stem cells. Taken together, cell permeable magnetic nanoparticles conjugated with LMWP can be suggested as labeling tools for efficient magnetic imaging of transplanted cells.  相似文献   

15.
Superparamagnetic iron oxide nanoparticles (SPIO NPs), utilized as carriers are attractive materials widely applied in biomedical fields, but target-specific SPIO NPs with lower toxicity and excellent biocompatibility are still lacking for intracellular visualization in human brain tumor diagnosis and therapy. Herein, bovine serum albumin (BSA) coated superparamagnetic iron oxide, i.e. γ-Fe2O3 nanoparticles (BSA-SPIO NPs), are synthesized. Tumor-specific ligand folic acid (FA) is then conjugated onto BSA-SPIO NPs to fabricate tumor-targeted NPs, FA-BSA-SPIO NPs as a contrast agent for MRI imaging. The FA-BSA-SPIO NPs are also labeled with fluorescein isothiocyanate (FITC) for intracellular visualization after cellular uptake and internalization by glioma U251 cells. The biological effects of the FA-BSA-SPIO NPs are investigated in human brain tumor U251 cells in detail. These results show that the prepared FA-BSA-SPIO NPs display undetectable cytotoxicity, excellent biocompatibility, and potent cellular uptake. Moreover, the study shows that the made FA-BSA-SPIO NPs are effectively internalized for MRI imaging and intracellular visualization after FITC labeling in the targeted U251 cells. Therefore, the present study demonstrates that the fabricated FITC-FA-BSA-SPIO NPs hold promising perspectives by providing a dual-modal imaging as non-toxic and target-specific vehicles in human brain tumor treatment in future.  相似文献   

16.
Widespread telencephalic neuronal replacement occurs throughout life in birds. We explored the potential relationship between thyroxine (T4) and cell turnover in the adult male zebra finch. We found that many cells in the zebra finch brain, including long‐projection neurons in the high vocal center (HVC), stained positively with an antibody to thyroid hormone receptors (TR). Labeling was generally weak in the ventricular zone (VZ) that gives rise to new neurons but some proliferative VZ cells and/or their progeny, identified by [3H]‐thymidine labeling, co‐labeled with anti‐TR antibody. Acute T4 treatment dramatically increased the number of pyknotic and TUNEL‐positive cells in HVC and other telencephalic regions. In contrast, degenerating cells were never observed in the archistriatum or sub‐telencephalic regions, suggesting that excess T4 augments cell death selectively in regions that show naturally occurring neuronal turnover. VZ mitotic activity was not altered shortly after acute T4 treatment at a dosage that stimulated cell death, although [3H]‐labeling intensity per cell was slightly reduced. Moreover, the incorporation rates for neurons formed shortly before or after acute hormone treatment were no different from control values. Chronic T4 treatment resulted in a reduction in the total number of HVC neurons. Thus, hyperthyroidism augmented neuronal death, which was not compensated for by neuronal replacement. Collectively, these results indicate that excess T4 affects adult neuronal turnover in birds, and raises the possibility that thyroxine plays an important role in the postnatal development of the avian brain and vocal behavior. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 323–341, 2002  相似文献   

17.
Iron is an essential element for nearly all cells and limited iron availability often restricts growth. However, excess iron can also be deleterious, particularly when cells expressing high affinity iron uptake systems transition to iron rich environments. Bacillus subtilis expresses numerous iron importers, but iron efflux has not been reported. Here, we describe the B. subtilis PfeT protein (formerly YkvW/ZosA) as a P1B4‐type ATPase in the PerR regulon that serves as an Fe(II) efflux pump and protects cells against iron intoxication. Iron and manganese homeostasis in B. subtilis are closely intertwined: a pfeT mutant is iron sensitive, and this sensitivity can be suppressed by low levels of Mn(II). Conversely, a pfeT mutant is more resistant to Mn(II) overload. In vitro, the PfeT ATPase is activated by both Fe(II) and Co(II), although only Fe(II) efflux is physiologically relevant in wild‐type cells, and null mutants accumulate elevated levels of intracellular iron. Genetic studies indicate that PfeT together with the ferric uptake repressor (Fur) cooperate to prevent iron intoxication, with iron sequestration by the MrgA mini‐ferritin playing a secondary role. Protection against iron toxicity may also be a key role for related P1B4‐type ATPases previously implicated in bacterial pathogenesis.  相似文献   

18.
19.
The endocytosis‐mediating performances of two types of peptide ligands, cell receptor binding peptide (CRBP) and cell membrane penetrating peptide (CMPP), were analyzed and compared using a common carrier of peptide ligands‐human ferritin heavy chain (hFTH) nanoparticle. Twenty‐four copies of a CMPP(human immunodeficiency virus‐derived TAT peptide) and/or a CRBP (peptide ligand with strong and specific affinity for either human integrin(αvβ3) or epidermal growth factor receptor I (EGFR) that is overexpressed on various cancer cells) were genetically presented on the surface of each hFTH nanopariticle. The quantitative level of endocytosis and intracellular localization of fluorescence dye‐labeled CRBP‐ and CMPP‐presenting nanoparticles were estimated in the in vitro cultures of integrin‐ and EGFR‐overexpressing cancer and human dermal fibroblast cells(control). From the cancer cell cultures treated with the CMPP‐ and CRBP‐presenting nanoparticles, it was notable that CRBPs resulted in quantitatively higher level of endocytosis than CMPP (TAT) and successfully transported the nanoparticles to the cytosol of cancer cells depending on concentration and treatment period of time, whereas TAT‐mediated endocytosis localized most of the nanoparticles within endosomal vesicles under the same conditions. These novel findings provide highly useful informations to many researchers both in academia and in industry who are interested in developing anticancer drug delivery systems/carriers.  相似文献   

20.
The adult mouse brain contains a population of constitutively proliferating subependymal cells that surround the lateral ventricle and are the direct progeny of the neural stem cell. Constitutively proliferating cells divide rapidly; 6 days after labeling, 60% of their progeny undergo cell death, 25% migrate to the olfactory bulbs, and 15% continue to proliferate within the subependyma. We have intraventricularly infused a cell survival factor N‐acetyl‐L ‐cysteine (NAC), which is known to have survival effects without concomitant proliferative effects on cells in vitro, and examined the resulting fate of cells spared from the normally occurring cell death. NAC infusion for 5 days results in a five‐fold increase in the number of retrovirally labeled subependymal cells compared to saline‐infused controls. The increase in the number of subependymal cells is directly proportional to the amount of time during which NAC is present and is not due to increased proliferation. While NAC is able to keep all the normally dying progeny alive, the cells spared from death remain confined to the subependyma lining the lateral ventricles and do not migrate to the olfactory bulbs (one normal fate of constitutively proliferating progeny) or into the surrounding brain parenchyma. When animals survive for an additional 6 days following NAC infusion, the number of retrovirally labeled subependymal cells returns to control values, indicating that the continued presence of NAC is necessary for cell survival. These data suggest that preventing cell death is not sufficient to keep all of the progeny of these cells in a proliferative mode. © 2000 John Wiley & Sons, Inc. J Neurobiol 42: 338–346, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号