首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The effects of sodium propionate, acetate, lactate and citrate on cell proliferation, glucose and oxygen consumption, and ATP production in Listeria monocytogenes were investigated in growing and resting cells. Media pH was 6.7-6.8. Growth inhibition increased while glucose consumption continued in the presence of ≥ 1% propionate, ≥ 3% acetate and ≥ 5% lactate in broth during incubation at 35°C, indicating that glucose consumption was uncoupled from cell proliferation. Acetate and propionate were the most effective antilisterials, whereas citrate (5%) was only slightly inhibitory. Of the four salts, only lactate supported growth, oxygen consumption and ATP production. While concentrations of 1 and 5% propionate, acetate and citrate did not have an effect on oxygen consumption, they inhibited ATP production. ATP production in the presence of the four salts was consistently lower at pH 6.0 than at neutral pH. Lactate served as an alternative energy source for L. monocytogenes in the absence of glucose but became toxic to the organism in the presence of the carbohydrate.  相似文献   

2.
PER.C6(R) cell growth, metabolism, and adenovirus production were studied in head-to-head comparisons in stirred bioreactors under different pH conditions. Cell growth rate was found to be similar in the pH range of 7.1-7.6, while a long lag phase and a slower growth rate were observed at pH 6.8. The specific consumption rates of glucose and glutamine decreased rapidly over time during batch cell growth, as did the specific lactate and ammonium production rates. Cell metabolism in both infected and uninfected cultures was very sensitive to culture pH, resulting in dramatic differences in glucose/glutamine consumption and lactate/ammonium production under different pH conditions. It appeared that glucose metabolism was suppressed at low pH but the efficiency of energy production from glucose was enhanced. Adenovirus infection resulted in profound changes in cell growth and metabolism. Cell growth was largely arrested under all pH conditions, while glucose consumption and lactate production were elevated post virus infection. Virus infection induced a reduction in glutamine consumption at low pH but an increase at high pH. The optimal pH for adenovirus production was found to be 7.3 under the experimental conditions used in the study. Deviations from this optimum resulted in significant reductions of virus productivity. The results indicate that culture pH is a very critical process parameter in PER.C6(R) cell culture and adenovirus production.  相似文献   

3.
At early stages of the exponential growth phase in HEK293 cell cultures, the tricarboxylic acid cycle is unable to process all the amount of NADH generated in the glycolysis pathway, being lactate the main by-product. However, HEK293 cells are also able to metabolize lactate depending on the environmental conditions. It has been recently observed that one of the most important modes of lactate metabolization is the cometabolism of lactate and glucose, observed even during the exponential growth phase. Extracellular lactate concentration and pH appear to be the key factors triggering the metabolic shift from glucose consumption and lactate production to lactate and glucose concomitant consumption. The hypothesis proposed for triggering this metabolic shift to lactate and glucose concomitant consumption is that HEK293 cells metabolize extracellular lactate as a response to both extracellular protons and lactate accumulation, by means of cotransporting them (extracellular protons and lactate) into the cytosol. At this point, there exists a considerable controversy about how lactate reaches the mitochondrial matrix: the first hypothesis proposes that lactate is converted into pyruvate in the cytosol, and afterward, pyruvate enters into the mitochondria; the second alternative considers that lactate enters first into the mitochondria, and then, is converted into pyruvate. In this study, lactate transport and metabolization into mitochondria is shown to be feasible, as evidenced by means of respirometry tests with isolated active mitochondria, including the depletion of lactate concentration of the respirometry assay. Although the capability of lactate metabolization by isolated mitochondria is demonstrated, the possibility of lactate being converted into pyruvate in the cytosol cannot be excluded from the discussion. For this reason, the calculation of the metabolic fluxes for an HEK293 cell line was performed for the different metabolic phases observed in batch cultures under pH controlled and noncontrolled conditions, considering both hypotheses. The main objective of this study is to evaluate the redistribution of cellular metabolism and compare the differences or similarities between the phases before and after the metabolic shift of HEK293 cells (shift observed when pH is not controlled). That is from a glucose consumption/lactate production phase to a glucose-lactate coconsumption phase. Interestingly, switching to a glucose and lactate cometabolization results in a better-balanced cell metabolism, with decreased glucose and amino acids uptake rates, affecting minimally cell growth. This behavior could be applied to further develop new approaches in terms of cell engineering and to develop improved cell culture strategies in the field of animal cell technology.  相似文献   

4.
A growing body of knowledge is available on the cellular regulation of overflow metabolism in mammalian hosts of recombinant protein production. However, to develop strategies to control the regulation of overflow metabolism in cell culture processes, the effect of process parameters on metabolism has to be well understood. In this study, we investigated the effect of pH and temperature shift timing on lactate metabolism in a fed‐batch Chinese hamster ovary (CHO) process by using a Design of Experiments (DoE) approach. The metabolic switch to lactate consumption was controlled in a broad range by the proper timing of pH and temperature shifts. To extract process knowledge from the large experimental dataset, we proposed a novel methodological concept and demonstrated its usefulness with the analysis of lactate metabolism. Time‐resolved metabolic flux analysis and PLS‐R VIP were combined to assess the correlation of lactate metabolism and the activity of the major intracellular pathways. Whereas the switch to lactate uptake was mainly triggered by the decrease in the glycolytic flux, lactate uptake was correlated to TCA activity in the last days of the cultivation. These metabolic interactions were visualized on simple mechanistic plots to facilitate the interpretation of the results. Taken together, the combination of knowledge‐based mechanistic modeling and data‐driven multivariate analysis delivered valuable insights into the metabolic control of lactate production and has proven to be a powerful tool for the analysis of large metabolic datasets. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1657–1668, 2015  相似文献   

5.
The lactate concentration gradient and the components of the electrochemical proton gradient (delta micro H+) were determined in cells of Streptococcus cremoris growing in batch culture. The membrane potential (delta psi) and the pH gradient (delta pH) were determined from the accumulation of the lipophilic cation tetraphenylphosphonium and the weak acid benzoate, respectively. During growth the external pH decreased from 6.8 to 5.3 due to the production of lactate. Delta pH increased from 0 to -35 mV, inside alkaline (at an external pH of 5.7), and fell to zero directly after growth stopped. Delta psi was nearly constant at -90 mV during growth and also dissipated within 40 min after termination of growth. The internal lactate concentration decreased from 200 mM at the beginning of growth (at pH 6.8) to 30 mM at the end of growth (at pH 5.3); the external lactate concentration increased from 8 to 30 mM due to the fermentation of lactose. Thus, the lactate gradient decreased from 80 mV to zero as growth proceeded and the external pH decreased. From the data obtained on delta psi, delta pH, and the lactate concentration gradient, the H+/lactate stoichiometry (n) was calculated. The value of n varied with the external pH from 1.9 (at pH 6.8) to 0.9 (at pH values below 6). This implies that especially at high pH values the carrier-mediated efflux of lactate supplies a significant quantity of metabolic energy to S. cremoris cells. At pH 6.8 this energy gain was almost two ATP equivalents per molecule of lactose consumed if the H+/ATP stoichiometry equals 2. These results supply strong experimental evidence for the energy recycling model postulated by Michels et al.  相似文献   

6.
Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 microM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK(-) cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK(-) cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.  相似文献   

7.
Valérie Desquiret 《BBA》2006,1757(1):21-30
Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 μM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.  相似文献   

8.
13C‐metabolic flux analysis was used to understand copper deficiency‐related restructuring of energy metabolism, which leads to excessive lactate production in recombinant protein‐producing CHO cells. Stationary‐phase labeling experiments with U‐13C glucose were conducted on CHO cells grown under high and limiting copper in 3 L fed‐batch bioreactors. The resultant labeling patterns of soluble metabolites were measured by GC‐MS and used to estimate metabolic fluxes in the central carbon metabolism pathways using OpenFlux. Fluxes were evaluated 300 times from stoichiometrically feasible random guess values and their confidence intervals calculated by Monte Carlo simulations. Results from metabolic flux analysis exhibited significant carbon redistribution throughout the metabolic network in cells under Cu deficiency. Specifically, glycolytic fluxes increased (25%–79% relative to glucose uptake) whereas fluxes through the TCA and pentose phosphate pathway (PPP) were lower (15%–23% and 74%, respectively) compared with the Cu‐containing condition. Furthermore, under Cu deficiency, 33% of the flux entering TCA via the pyruvate node was redirected to lactate and malate production. Based on these results, we hypothesize that Cu deficiency disrupts the electron transport chain causing ATP deficiency, redox imbalance, and oxidative stress, which in turn drive copper‐deficient CHO cells to produce energy via aerobic glycolysis, which is associated with excessive lactate production, rather than the more efficient route of oxidative phosphorylation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1179–1186, 2015  相似文献   

9.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutamine, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

10.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutaminE, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

11.
Mammalian cell cultures typically exhibit an energy inefficient phenotype characterized by the consumption of large quantities of glucose and the concomitant production of large quantities of lactate. Under certain conditions, mammalian cells can switch to a more energy efficient state during which lactate is consumed. Using a metabolic model derived from a mouse genome scale model we performed flux balance analysis of Chinese hamster ovary cells before and after a metabolic switch from lactate production (in the presence of glucose) to lactate consumption (after glucose depletion). Despite a residual degree of freedom after accounting for measurements, the calculated flux ranges and associated errors were narrow enough to enable investigation of metabolic changes across the metabolic switch. Surprisingly, the fluxes through the lower part of the TCA cycle from oxoglutarate to malate were very similar (around 60 µmol/gDW/h) for both phases. A detailed analysis of the energy metabolism showed that cells consuming lactate have an energy efficiency (total ATP produced per total C‐mol substrate consumed) six times greater than lactate producing cells. Biotechnol. Bioeng. 2013; 110: 660–666. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The influence of ammonia and lactate on cell growth, metabolic, and antibody production rates was investigated for murine hybridoma cell line 163.4G5.3 during batch culture. The specific growth rate was reduced by one-half in the presence of an initial ammonia concentration of 4 mM. Increasing ammonia levels accelerated glucose and glutamine consumption, decreased ammonia yield from glutamine, and increased alanine yield from glutamine. Although the amount of antibody produced decreased with increasing ammonia concentration, the specific antibody productivity remained relatively constant around a value of 0.22 pg/cell-h. The specific growth rate was reduced by one-half at an initial lactate concentration of 55 mM. Although specific glucose and glutamine uptake rates were increased at high lacatate concentration, they showed a decrease after making corrections for medium osmolarity. The yield coefficient of lactate from glucose decreased at high lactate concentrations. A similar decrease was observed for the ammonia yield coefficient from glutamine. At elevated lactate concentrations, specific antibody productivities increased, possibly due to the increase in medium osmolarity. The specific oxygen uptake rate was insensitive to ammonia and lactate concentrations. Addition of ammonia and lactate increased the calculated metabolic energy production of the cells. At high ammonia and lactate, the contribution of glycolysis to total energy production increased. Decreasing external pH and increasing ammonia concentrations caused cytoplasmic acidification. Effect of lactate on intracellular pH was insignificant, whereas increasing osmolarity caused cytoplasmic alkalinization.  相似文献   

13.
Evaluation of metabolism using stoichiometry in fermentative biohydrogen   总被引:1,自引:0,他引:1  
We first constructed full stoichiometry, including cell synthesis, for glucose mixed-acid fermentation at different initial substrate concentrations (0.8-6 g-glucose/L) and pH conditions (final pH 4.0-8.6), based on experimentally determined electron-equivalent balances. The fermentative bioH2 reactions had good electron closure (-9.8 to +12.7% for variations in glucose concentration and -3 to +2% for variations in pH), and C, H, and O errors were below 1%. From the stoichiometry, we computed the ATP yield based on known fermentation pathways. Glucose-variation tests (final pH 4.2-5.1) gave a consistent fermentation pattern of acetate + butyrate + large H2, while pH significantly shifted the catabolic pattern: acetate + butyrate + large H2 at final pH 4.0, acetate + ethanol + modest H2 at final pH 6.8, and acetate + lactate + trivial H2 at final pH 8.6. When lactate or propionate was a dominant soluble end product, the H2 yield was very low, which is in agreement with the theory that reduced ferredoxin (Fd(red)) formation is required for proton reduction to H2. Also consistent with this hypothesis is that high H2 production correlated with a high ratio of butyrate to acetate. Biomass was not a dominant sink for electron equivalents in H2 formation, but became significant (12%) for the lowest glucose concentration (i.e., the most oligotrophic condition). The fermenting bacteria conserved energy similarly at approximately 3 mol ATP/mol glucose (except 0.8 g-glucose/L, which had approximately 3.5 mol ATP/mol glucose) over a wide range of H2 production. The observed biomass yield did not correlate with ATP conservation; low observed biomass yields probably were caused by accelerated rates of decay or production of soluble microbial products.  相似文献   

14.
Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed‐batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed‐batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth. Biotechnol. Bioeng. 2013; 110: 1735–1747. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Glucose has long been considered the substrate for energy metabolism in the retina. Recently, an alternative hypothesis (metabolic coupling) suggested that mitochondria in retinal neurons utilize preferentially the lactate produced specifically by Müller cells, the principal glial cell in the retina. These two views of retinal metabolism were examined using confluent cultures of photoreceptor cells, Müller cells, ganglion cells, and retinal pigment epithelial cells incubated in modified Dulbecco's minimal essential medium containing glucose or glucose and lactate. The photoreceptor and ganglion cells represented neural elements, and the Müller and pigment epithelial cells represented non-neural cells. The purpose of the present experiments was two-fold: (1) to determine whether lactate is a metabolic product or substrate in retinal cells, and (2) to examine the evidence that supports the two views of retinal energy metabolism. Measurements were made of lactic acid production, cellular ATP levels, and cellular morphology over 4 h. Results showed that all cell types incubated with 5 mM glucose produced lactate aerobically and anaerobically at linear rates, the anaerobic rate being 2-3-fold higher (Pasteur effect). Cells incubated with both 5 mM glucose and 10 mM lactate produced lactate aerobically and anaerobically at rates similar to those found when cells were incubated with glucose alone. Anaerobic ATP content in the cells was maintained at greater than 50% of the control, aerobic value, and cellular morphology was well preserved under all conditions. The results show that the cultured retinal cells produce lactate, even in the presence of a high starting ambient concentration of lactate. Thus, the net direction of the lactic dehydrogenase reaction is toward lactate formation rather than lactate utilization. It is concluded that retinal cells use glucose, and not glial derived lactate, as their major substrate.  相似文献   

16.
The energetic metabolism of rat C6 glioma cells has been investigated as a function of the proliferative and differentiation states under three-dimensional (3-D) growing conditions on microcarrier beads. First, the transient deprivation of glutamine from the culture medium induced a marked decrease in the growth rate and a differentiation of C6 cells through the oligodendrocytic phenotype. Second, the respiratory capacity of the C6 cells during short-term subcultures with or without glutamine continuously declined as a function of the cell density, in part due to the mitochondrial content decrease. During the transition from the early exponential to the plateau growth phase in glutamine-containing medium, the oxygen consumption rate per single cell decreased concomitantly with a decrease in the glucose consumption and lactate production rates. This phenomenon led to a sixfold decrease in the total ATP production flux, without significantly affecting the cellular ATP/ADP ratio, thus indicating that some ATP-consuming processes were simultaneously suppressed during C6 proliferation. In glutamine-free medium, the cellular ATP/ADP ratio transiently increased due to growth arrest and to a reduced ATP turnover. Moreover, the results indicated that glutamine is not an essential respiratory substrate for rat C6 glioma under short-term glutamine deprivation. Worth noting was the high contribution of the mitochondrial oxidative phosphorylation toward the total ATP synthesis (about 80%), regardless of the proliferation or the differentiation status of the C6 cells.  相似文献   

17.
The metabolism of isolated rat kidney tubules suspended in calcium-free physiological saline buffered with phosphate was found to be sensitive to changes in the pH of the suspending medium. Lowering the pH from 7.8 to 6.4 brought about increases in the rates of oxidation of added succinate, glutamate or glutamine as well as in the production of glucose from lactate, glutamine, succinate and fructose. The cellular ATP level was also higher in tubules incubated at pH 6.4 In contrast, the utilization of added glucose was greater at pH 7.8 than at pH 6.4, a substantial amount of lactate being produced at the higher pH. When glucose and either lactate or glutamine were provided as co-substrates glucose was the preferred fuel at pH 7.8 but the alternative substrate was the more readily utilized at pH 6.4. As a consequence of the metabolic activities of the tubules the pH of the suspending medium changed, utilization of lactate, glutamate or glutamine causing a rise in pH while conversion of glucose to lactate caused a fall in pH. In cases where two substrates were metabolized concurrently over a period of 3 h the extracellular pH tended towards a plateau level of approximately pH 7.4. It is proposed that pH-sensitive metabolism in isolated kidney tubules contributes to pH homeostasis in the cellular environment.  相似文献   

18.
The metabolism of isolated rat kidney tubules suspended in calcium-free physiological saline buffered with phosphate was found to be sensitive to changes in the pH of the suspending medium. Lowering the pH from 7.8 to 6.4 brought about increases in the rates of oxidation of added succinate, glutamate or glutamine as well as in the production of glucose from lactate, glutamine, succinate and fructose. The cellular ATP level was also higher in tubules incubated at pH 6.4. In contrast, the utilization of added glucose was greater at pH 7.8 than at pH 6.4, a substantial amount of lactate being produced at the higher pH. When glucose and either lactate or glutamine were provided as co-substrates glucose was the preferred fuel at pH 7.8 but the alternative substrate was the more readily utilized at pH 6.4. As a consequence of the metabolic activities of the tubules the pH of the suspending medium changed, utilization of lactate, glutamate or glutamine causing a rise in pH while conversion of glucose to lactate caused a fall in pH. In cases where two substrates were metabolized concurrently over a period of 3 h the extracellular pH tended towards a plateau level of approximately pH 7.4. It is proposed that pH-sensitive metabolism in isolated kidney tubules contributes to pH homeostasis in the cellular environment.  相似文献   

19.
Mature osteoclasts have an increased citric acid cycle and mitochondrial respiration to generate high ATP production and ultimately lead to bone resorption. However, changes in metabolic pathways during osteoclast differentiation have not been fully illustrated. We report that glycolysis and oxidative phosphorylation characterized by glucose and oxygen consumption as well as lactate production were increased during receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis from RAW264.7 and bone marrow-derived macrophage cells. Cell proliferation and differentiation varied according to glucose concentrations (0 to 100 mM). Maximal cell growth occurred at 20 mM glucose concentration and differentiation occurred at 5 mM concentration. Despite the similar growth rates exhibited when cultured cells were exposed to either 5 mM or 40 mM glucose, their differentiation was markedly decreased in high glucose concentrations. This finding suggests the possibility that osteoclastogenesis could be regulated by changes in metabolic substrate concentrations. To further address the effect of metabolic shift on osteoclastogenesis, we exposed cultured cells to pyruvate, which is capable of promoting mitochondrial respiration. Treatment of pyruvate synergistically increased osteoclastogenesis through the activation of RANKL-stimulated signals (ERK and JNK). We also found that osteoclastogenesis was retarded by blocking ATP production with either the inhibitors of mitochondrial complexes, such as rotenone and antimycin A, or the inhibitor of ATP synthase, oligomycin. Taken together, these results indicate that glucose metabolism during osteoclast differentiation is accelerated and that a metabolic shift towards mitochondrial respiration allows high ATP production and induces enhanced osteoclast differentiation.  相似文献   

20.
Mammalian cells can generate ATP via glycolysis or mitochondrial respiration. Oncogene activation and hypoxia promote glycolysis and lactate secretion. The significance of these metabolic changes to ATP production remains however ill defined. Here, we integrate LC‐MS‐based isotope tracer studies with oxygen uptake measurements in a quantitative redox‐balanced metabolic flux model of mammalian cellular metabolism. We then apply this approach to assess the impact of Ras and Akt activation and hypoxia on energy metabolism. Both oncogene activation and hypoxia induce roughly a twofold increase in glycolytic flux. Ras activation and hypoxia also strongly decrease glucose oxidation. Oxidative phosphorylation, powered substantially by glutamine‐driven TCA turning, however, persists and accounts for the majority of ATP production. Consistent with this, in all cases, pharmacological inhibition of oxidative phosphorylation markedly reduces energy charge, and glutamine but not glucose removal markedly lowers oxygen uptake. Thus, glutamine‐driven oxidative phosphorylation is a major means of ATP production even in hypoxic cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号