首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The study proposes to get a better knowledge of the physicochemical properties of yeast extract (YE) molecules involved in the improvement of CHO cell growth and to reduce YE complexity without losing positive effects. Various chromatographic processes were implemented for fractionation of a nanofiltrated YE (nYE). The nYE was first fractionated by one-step preparative chromatography, either with anion exchange (AEC), hydrophobic interaction (HIC) or size exclusion (SEC) methods. After analysis of its main components, each fraction was added in a control chemically defined medium to assess its impact on CHO cell growth. Results mainly underlined that AEC was the most selective separation process to purify nYE in one step without decreasing cell growth promoting effect. A three-step chromatographic process including successive AEC, HIC, and SEC was then developed to refine the physicochemical properties of nYE compounds. Among fractions that triggered similar cell growth promoting effect than nYE, one also improved IgG specific production. It mainly included cationic and hydrophilic peptides with a great proportion of lysine and arginine, low quantities of polysaccharides and no nucleic acids. Thus, this study allowed us to deepen the YE contribution to animal cell culture as well as to evaluate fractionation strategies to simplify such a complex mixture.  相似文献   

2.
Many studies underlined the great benefits of hydrolysates used as additives in animal free media on cell culture performances. However, to precisely define hydrolysate supplementation strategies, a deeper understanding of their effect on cell growth and protein production is required. In the present study, the effect of addition of one yeast extract (YE) and two yeast peptones (named YP.A and YP.B) in a chemically defined medium was first assessed on cell culture performances. Interestingly, specific effects were found depending on the degree of degradation of yeast hydrolysates. The YE at 1 g L−1 increased the maximal cell density by 70 %, while a mixture of YE (1 g L−1) and YP.A (4 g L−1) increased IgG production by 180 %. These conditions were then evaluated on the CHO cell kinetics all over cultures. Hydrolysates extended the cell growth phase in Erlenmeyer flask and increased the maximal growth rate in bioreactor up to 20 %. Cell growth stimulation induced by hydrolysates addition was linked with energetic metabolism improvement suggesting that they promote oxidative pathway. Furthermore, hydrolysates provided an additional source of substrate that supported cell growth despite glutamine limitation.  相似文献   

3.
In this study, eight commercially available, chemically defined Chinese hamster ovary (CHO) cell culture media from different vendors were evaluated in batch culture using an IgG-producing CHO DG44 cell line as a model. Medium adaptation revealed that the occurrence of even small aggregates might be a good indicator of cell growth performance in subsequent high cell density cultures. Batch experiments confirmed that the culture medium has a significant impact on bioprocess performance, but high amino acid concentrations alone were not sufficient to ensure superior cell growth and high antibody production. However, some key amino acids that were limiting in most media could be identified. Unbalanced glucose and amino acids led to high cell-specific lactate and ammonium production rates. In some media, persistently high glucose concentrations probably induced the suppression of respiration and oxidative phosphorylation, known as Crabtree effect, which resulted in high cell-specific glycolysis rates along with a continuous and high lactate production. In additional experiments, two of the eight basal media were supplemented with feeds from two different manufacturers in six combinations, in order to understand the combined impact of media and feeds on cell metabolism in a CHO fed-batch process. Cell growth, nutrient consumption and metabolite production rates, antibody production, and IgG quality were evaluated in detail. Concentrated feed supplements boosted cell concentrations almost threefold and antibody titers up to sevenfold. Depending on the fed-batch strategy, fourfold higher peak cell concentrations and eightfold increased IgG titers (up to 5.8 g/L) were achieved. The glycolytic flux was remarkably similar among the fed-batches; however, substantially different specific lactate production rates were observed in the different media and feed combinations. Further analysis revealed that in addition to the feed additives, the basal medium can make a considerable contribution to the ammonium metabolism of the cells. The glycosylation of the recombinant antibody was influenced by the selection of basal medium and feeds. Differences of up to 50 % in the monogalacto-fucosylated (G1F) and high mannose fraction of the IgG were observed.  相似文献   

4.
Keen MJ  Rapson NT 《Cytotechnology》1995,17(3):153-163
A serum-free medium, WCM5, has been developed for the large scale propagation of CHO (Chinese hamster ovary) cells which express recombinant protein using dihydrofolate reductase as a selectable marker. WCM5 was prepared by supplementing Iscoves medium without lecithin, albumin or transferrin with a number of components which were shown to benefit growth. WCM5 medium contained 5 mg l–1 human recombinant insulin (Nucellin) but was otherwise protein-free. CHO 3D11* cells which had been engineered to express a humanised antibody, CAMPATH*-1H, were routinely grown using serum-containing medium. From a seeding density of 105 cells ml–1, cells grown in static culture with serum reached a maximal cell density of 6.5×105 cells ml–1 after 6 days in culture and produced a maximal antibody concentration of 69 mg l–1 after 11 days in culture. CHO 3D11* cells grown with serum were washed in serum-free medium then cultured in WCM5 medium. Following a period of adaptation the cell growth and product yield was superior to that achieved with serum-containing medium. CHO cells producing CAMPATH-1H grown in an 8000 l stirred bioreactor seeded with 2×105 cells ml–1 reached a maximal viable cell density of 2.16×106 cells ml–1 after 108 h in culture and a maximal antibody concentration of 131.1 mg l–1 after 122 h in culture.Abbreviations CHO Chinese hamster ovary - dhfr dihydrofolate reductase - dhfr dihydrofolate reductase deficient - MTX methotrexate - H hypoxanthine - T thymidine - T/V trypsin versene - F12 Hams F12 medium - NEAA non essential amino acids  相似文献   

5.
Transporters mediate the uptake of nutrients such as amino acids and the excretion of metabolites. The fact that transporters play crucial roles in regulating cell metabolism suggests that they might be useful targets for cell engineering to enhance the yield and/or quality of monoclonal antibody (MAb) produced by CHO cells. The taurine transporter (TAUT) is stably expressed in CHO‐DXB11 cells and is upregulated late in the culture period. We found that forcing the overexpression of TAUT delayed apoptotic cell death, extending the culture period. Thus, under fed‐batch small‐culture conditions, CHO cells that expressed pHyg‐TAUT plasmid (TAUT/CHO cells), but not those that contained the null plasmid pHyg (HYG/CHO cells), produced more MAb (P < 0.01) and less lactate (P < 0.05). In a 1‐L bioreactor, a representative high‐yield TAUT/CHO cell line (T10) showed >80% viability for more than 1 month and a 47% increase in medium MAb concentration. In T10 cells, the upregulation of TNF‐α mRNA (an apoptosis marker) and the accumulation of ammonia late in the culture period were suppressed. Moreover, if an excess of taurine was added, T10 cells efficiently consumed glutamine but not other amino acids, so T10 cells may have gained a glutamine transporter‐like function. Because a considerable amount of metabolic energy is derived from glutamine, this active glutamine consumption in T10 cells might be a reason for the improved cell viability and MAb concentration. These results demonstrate that forcing the overexpression of TAUT in CHO cells can enhance cell culture performance and increase MAb titer. Biotechnol. Bioeng. 2010;107: 998–1003. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
The variety of compounds present in chemically defined media as well as media supplements makes it difficult to use a mechanistic approach to study the effect of supplement composition on culture functionality. Typical supplements, such as soy protein hydrolysates contain peptides, amino acids, carbohydrates, isoflavones, and saponins. To study the relative contribution of these compound classes, a set of hydrolysates were produced, containing 58‐83% proteinaceous material and 5‐21% carbohydrates. While the content of the different compounds classes varied, the composition (e.g., peptide profiles, carbohydrate composition) did not vary in hydrolysates. The hydrolysates were supplemented to a chemically defined medium in cell culture, based on equal weight and on equal protein levels. The latter showed that an increase in the carbohydrate concentration significantly (P value < 0.004) increased integral viable cell density (IVCD) (R = 0.7) and decreased total IgG (R = ?0.7) and specific IgG production (R = ?0.9). The extrapolation of effects of protein concentration showed that an increase in protein concentration increased total and specific IgG production and suppressed IVCD. In addition to proteins and carbohydrates, the functionality of soy protein hydrolysates may be modulated by the presence of other minor compounds. In the current study, the large differences in the balance between total proteins and total carbohydrates in the supplemented media seem to be a main factor influencing the balance between the viable cell density, total IgG, and specific IgG production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1396–1405, 2015  相似文献   

7.
Synthetic oligopeptides, tri- to pentaglycine and tri- and tetraalanine, were found to enhance viable cell density and culture viability when applied at concentrations higher than milllimolar to the cultures of a model hybridoma line. Oligoalanines, in addition, enhanced monoclonal antibody yields. Oligoglycines promoted solely the cell growth, unless the batch culture was fed with a medium concentrate. Examination of the effects of various tripeptides composed of glycine, alanine, serine, threonine, lysine, and histidine showed that some of the peptides promoted the growth of the culture, while other peptides suppressed the growth and enhanced the monoclonal antibody yield. Determination of the levels of amino acids and peptides in culture media indicated that the observed changes of culture parameters were caused by intact peptide molecules, rather than by amino acids liberated from the peptides by enzymic cleavage.  相似文献   

8.
Previously, we identified six inhibitory metabolites (IMs) accumulating in Chinese hamster ovary (CHO) cultures using AMBIC 1.0 community reference medium that negatively impacted culture performance. The goal of the current study was to modify the medium to control IM accumulation through design of experiments (DOE). Initial over-supplementation of precursor amino acids (AAs) by 100% to 200% in the culture medium revealed positive correlations between initial AA concentrations and IM levels. A screening design identified 5 AA targets, Lys, Ile, Trp, Leu, Arg, as key contributors to IMs. Response surface design analysis was used to reduce initial AA levels between 13% and 33%, and these were then evaluated in batch and fed-batch cultures. Lowering AAs in basal and feed medium and reducing feed rate from 10% to 5% reduced inhibitory metabolites HICA and NAP by up to 50%, MSA by 30%, and CMP by 15%. These reductions were accompanied by a 13% to 40% improvement in peak viable cell densities and 7% to 50% enhancement in IgG production in batch and fed-batch processes, respectively. This study demonstrates the value of tuning specific AA levels in reference basal and feed media using statistical design methodologies to lower problematic IMs.  相似文献   

9.
10.
Uniform stable-isotope labeling of mammalian cells is achieved via a novel formulation of a serum-free cell culture medium that is based on stable-isotope-labeled autolysates and lipid extracts of various microbiological origin. Yeast autolysates allow complete replacement of individual amino acids and organic acids in a chemically defined medium (DMEM/F12), enabling a cost-effective formulation of a stable-isotope-labeled culture medium for mammalian cells. In addition, biomass-derived hydrolysates, autolysates, and lipid extracts of various classes of algae were explored as cell culture components, both separately and in combination with yeast autolysates. Optimal autolysate concentrations were established. Such novel medium formulations were tested on mammalian cell lines, often used for recombinant protein production, i.e., Chinese hamster ovary (CHO) and human embryonic kidney (HEK 293). Special attention was paid to the adaptation of these mammalian cell lines to serum-free media. Formulation of the novel proprietary cell culture medium PLIm, based on yeastolates instead of individual amino acids and organic acids, allows a four- to eightfold cost reduction for 15N and 13C,15N stable-isotope-labeling, respectively, in CHO cells and a three- to sixfold cost reduction in HEK 293 cells. A high level of stable-isotope enrichment of mammalian cells (>90%) was achieved within four passages by complete replacement of carbon and nitrogen sources in the medium with their stable-isotope-labeled analogs. These conditions can be used to more cost-effectively produce labeled recombinant proteins in mammalian cells.  相似文献   

11.
Summary Fractions of bovine colostrum were prepared and their ability to support the growth of mouse-mouse hybridomas in culture was tested. Whey was prepared from defatted colostrum by removal of casein using acid precipitation. An ultrafiltrate was obtained from cleared whey by filtration through membranes with a nominal molecular mass cut-off of 100 000 Da. Colostrum ultrafiltrate contained 1.16 g/l protein, 0.24 g/l immunoglobulin G (IgG) and less than 0.24 EU (endotoxin unit)/ml endotoxins. The effect of defatted colostrum, whey and ultrafiltrate as serum substitutes was examined by cultivation of hybridoma cells in minimal essential medium containing different concentrations of the supplements. Under optimal conditions in ultrafiltrate-supplemented medium, the maximal cell concentration was 35–40% of that obtained using 10% foetal bovine serum, and IgG production per cell was equal to that achieved using serum. In 1% defatted colostrum the maximum hybridoma concentration was about 30% of that in 10% serum, but at higher concentrations hybridoma growth was significantly reduced. The growth-promoting activity of whey was low. The results show that bovine colostrum ultrafiltrate provides a very attractive alternate to serum for production of monoclonal antibodies. Correspondence to: R. Pakkanen  相似文献   

12.
Yeast extract (YE) is commonly used as a key component in the complex media for industrial fermentations. However, the lot-to-lot variation of this raw material frequently requires extensive "use testing" of many lots to identify only the few that support desired fermentation performance. Through extensive fermentation studies and chemical analyses, we have identified adenine and two metabolizable carbon sources, trehalose and lactate, as the principle components in YE that affect the production of a recombinant protein antigen by a yeast strain. Adenine is required for culture growth and the relationship between biomass and measured adenine can be expressed by a Michaelis-Menten model, while the slowly metabolized trehalose serves to maintain the energy supply to the continued antigen synthesis. The rapidly utilized lactate exerts an indirect positive effect by sparing some of the accumulated ethanol from being consumed for growth to being utilized in the product formation. The effects of these YE components are mutually dependent. Based on the database generated from 40 lots at laboratory scale, a relatively high level of carbon sources in YE (trehalose plus lactate, >9.5% w/w) and an intermediate level of adenine (0.14-0.24% w/w) appear to be the minimal requirement of a good lot for this recombinant yeast fermentation. Many poor lots were improved in lab fermenters by rational supplementation of trehalose, lactate, or adenine to compensate for their insufficiencies. At the large production scale, predictions based on adenine and trehalose/lactate contents in various YE lots used correlated reasonably well with culture growth and antigen yield, illustrating the feasibility of such a simple chemical/biochemical analysis as a rapid and reliable initial screening tool. Without incurring any compositional change to an established manufacturing medium, this study demonstrates an effective approach to achieve consistency in fermentations employing complex nutrients and to improve fermentation productivities supported by suboptimal lots of raw material.  相似文献   

13.
AIMS: The aims of this work were to evaluate growth and exopolysaccharide (EPS) production properties of Propionibacterium acidi-propionici DSM 4900 on milk permeate. METHODS AND RESULTS: Anaerobic growth on milk permeate was only possible if supplemented with yeast extract (YE). Fermentation capacities of the strain were significantly improved by further increasing the supplemented YE. At 5 g l(-1) YE, consumption of 45 g l(-1) lactose to produce 9 g l(-1) biomass, 34 g l(-1) organic acids and 0.65 g l(-1) EPS was observed. From a kinetic point of view, EPS production occurred during the bacteria growth phase. At the excreted polysaccharide level, the medium showed shear-thinning behaviour with a relatively high apparent viscosity of up to 30 mPa.s (milli.Pascal.second) at a shear rate of 17 s(-1). CONCLUSION: EPS production by P. acidi-propionici DSM 4900 on milk permeate showed promising rheological behaviour of the milk-derived medium obtained, even at a low production level. SIGNIFICANCE AND IMPACT OF THE STUDY: A kinetic study on EPS production by a food-grade bacterium that could be used in situ in alimentation was carried out.  相似文献   

14.
The recombinant a and bsubunits for human coagulation factor XIII were transfected into Chinese hamster ovary (CHO) cells. CHO cells were amplified and selected with methotrexate in adherent cultures containing serum, and CHO 1-62 cells were later selected in protein-free medium. To develop a recombinant factor XIII production process in a suspension culture, we have investigated the growth characteristics of CHO cells and the maintenance of factor XIII expression in the culture medium. Suspension adaptation of CHO cells was performed in protein-free medium, GC-CHO-PI, by two methods, such as serum weaning and direct switching from serum containing media to protein-free media. Although the growth of CHO cells in suspension culture was affected initially by serum depletion, cell specific productivity of factor XIII showed only minor changes by the direct switching to protein-free medium during a suspension culture. As for the long-term stability of factor XIII, CHO 1-62 cells showed a stable expression of factor XIII in protein-free condition for 1000 h. These results indicate that the CHO 1-62cells can be adapted to express recombinant human factor XIII in a stable maimer in suspension culture using a protein-free medium. Our results demonstrate that enhanced cell growth in a continuous manner is achievable for factor XIII production in a protein-free medium when a perfusion bioreactor culture system with a spin filter is employed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Advantages of using internally developed chemically‐defined (CD) media for cell culture‐based therapeutic protein production over commercial media include better raw material control and medium vendor options, and most importantly, flexibility for process development and subsequent optimization needed for therapeutic protein production. Through several rounds of design of experiment (DOE) screening, and medium component supplementation and optimization studies, we successfully developed a CD basal medium (CDM) for CHO cell culture. The internally prepared liquid CDM demonstrated comparable cell culture performance to that from a commercially available control medium. However, when the same CDM formulation was transferred to two major commercial medium suppliers for manufacturing, cell culture performance utilizing these newly prepared media was significantly reduced compared with the in‐house prepared counterpart. An investigation was launched to assess whether key medium components were sensitive to large‐scale preparation of the final bulk media by the vendors. Further work necessitated the reformulation of the original CDM formulation into a core medium that was suitable for large‐scale media manufacturing. The modified preparation of the core medium with two separate supplements to generate the final CDM was able to recover the expected cell culture performance and monoclonal antibody (mAb) productivity. Confirmation of cell culture robustness in cell growth and production was corroborated in two additional mAb‐expressing cell lines. This work demonstrates that a robust CD medium is not only one that performs during the development stage, but also one that must be reproducible by commercial media vendors. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1163–1171, 2015  相似文献   

16.
Recombinant BHK and CHO cells producing human antithrombin III (rh ATIII) were used to investigate the utilization of phospholipids and free fatty acids from low-serum (0.1% FBS) culture medium. Both cell lines show distinctly different patterns of fatty acid utilization. For rBHK ATIII cells it is shown that under low serum conditions several different combinations of free fatty acids (bound to bovine albumin) elicit an identical growth stimulatory effect although individual consumption and production rates of fatty acids are different. Increased fatty acid concentrations lead to increased uptake rates without any further effect on growth rate being observed. Recombinant antithrombin III formation is found to be a function of combinations and concentrations of fatty acids present in the culture medium.  相似文献   

17.
A mycoplasma contamination event in a biomanufacturing facility can result in costly cleanups and potential drug shortages. Mycoplasma may survive in mammalian cell cultures with only subtle changes to the culture and penetrate the standard 0.2-µm filters used in the clarification of harvested cell culture fluid. Previously, we reported a study regarding the ability of Mycoplasma arginini to persist in a single-use, perfusion rocking bioreactor system containing a Chinese hamster ovary (CHO) DG44 cell line expressing a model monoclonal immunoglobulin G 1 (IgG1) antibody. Our previous work showed that M. arginini affects CHO cell growth profile, viability, nutrient consumption, oxygen use, and waste production at varying timepoints after M. arginini introduction to the culture. Careful evaluation of certain identified process parameters over time may be used to indicate mycoplasma contamination in CHO cell cultures in a bioreactor before detection from a traditional method. In this report, we studied the changes in the IgG1 product quality produced by CHO cells considered to be induced by the M. arginini contamination events. We observed changes in critical quality attributes correlated with the duration of contamination, including increased acidic charge variants and high mannose species, which were further modeled using principal component analysis to explore the relationships among M. arginini contamination, CHO cell growth and metabolites, and IgG1 product quality attributes. Finally, partial least square models using NIR spectral data were used to establish predictions of high levels (≥104 colony-forming unit [CFU/ml]) of M. arginini contamination, but prediction of levels below 104 CFU/ml were not reliable. Contamination of CHO cells with M. arginini resulted in significant reduction of antibody product quality, highlighting the importance of rapid microbiological testing and mycoplasma testing during particularly long upstream bioprocesses to ensure product safety and quality.  相似文献   

18.
Summary The effects of algal extract (AE) and yeast extract (YE) on the growth of Rhizobium japonicum were studied. YE concentrations above 0,1% inhibited growth. Increased concentrations of AE in growth medium increased bacterial yield up to an extract concentration of 1%. At 1% AE concentration maximum yields were achieved which were 3 times greater than those achieved with YE.  相似文献   

19.
The synthesis of extracellular serine proteinase of Lactococcus lactis was studied during the growth in a batch and a continuous culture on chemically defined media. In a batch culture the proteinase synthesis started during the exponential phase of growth and the highest proteinase concentrations were found at the end of the exponential and beginning of the stationary phase of growth. During the growth in a lactose-limited chemostat with amino acids as the sole source of nitrogen, the specific rate of proteinase synthesis was maximal at a μof 0.23 h?1. At higher growth rates the proteinase productin declined. The proteinase synthesis was dependent on the amino acid sources in the medium. In batch cultures of L. lactis grown on a chemically defined medium with amino acids, the proteinase production was increased four-fold compared to media containing casein or a tryptic digest of casein as the sole source of nitrogen. The inhibition of the rate of proteinase synthesis by casein and peptides was also observed during the growth in a chemostat. The addition of the dipeptide leucylproline (final concentration of 100 μM) to a lactose-limited continuous culture during the steady state (D = 0.23 h?1) resulted in a transient inhibition of the rate of proteinase synthesis. This suggested that exogenously supplied peptides control the regulation of proteinase synthesis of L. lactis.  相似文献   

20.
A chemically defined protein free medium, DF6S, was developed for the cultivation of a recombinant Chinese hamster ovary cell line (CHO2DS) producing human prothrombin in suspension batch culture. DF6S was formulated by optimizing DME/F12 with amino acids and supplementing the optimized DME/F12 with aurintricarboxylic acid, ethanolamine, ferric sulfate, Pluronic F68, putrescine and sodium pyruvate. From a seeding density of 2.3 × 105 cells ml–1, CHO2DS cells grown in suspension in DF6S medium reached a maximal cell density of 1.92 × 106 cells ml–1 with an accumulated prothrombin concentration of 16.7 mg l–1 after 6 days in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号