首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross‐linked enzyme aggregates (CLEAs) were prepared from several precipitant agents using glutaraldehyde as a cross‐linking agent with and without BSA, finally choosing a 40% saturation of ammonium sulfate and 25 mM of glutaraldehyde. The CLEAs obtained under optimum conditions were biochemically characterized. The immobilized enzyme showed higher thermal activity and a broader range of pH and organic solvent tolerance than the free enzyme. Arylesterase from Gluconobacter oxydans showed activity toward cephalosporin C and 7‐aminocephalosporanic acid. The CLEAs had a Kcat/KM of 0.9 M?1/S?1 for 7‐ACA (7‐aminocephalosporanic acid) and 0.1 M?1/S?1 for CPC (cephalosporin c), whereas free enzyme did not show a typical Michaelis–Menten kinetics. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:36–42, 2016  相似文献   

2.
In this study, polyurethane foam (PUF) was used for immobilization of Yarrowia lipolytica lipase Lip2 via polyethyleneimine (PEI) coating and glutaraldehyde (GA) coupling. The activity of immobilized lipases was found to depend upon the size of the PEI polymers and the way of GA treatment, with best results obtained for covalent-bind enzyme on glutaraldehyde activated PEI-PUF (MW 70,000 Da), which was 1.7 time greater activity compared to the same enzyme immobilized without PEI and GA. Kinetic analysis shows the hydrolytic activity of both free and immobilized lipases on triolein substrate can be described by Michaelis–Menten model. The Km for the immobilized and free lipases on PEI-coated PUF was 58.9 and 9.73 mM, respectively. The Vmax values of free and immobilized enzymes on PEI-coated PUF were calculated as 102 and 48.6 U/mg enzyme, respectively. Thermal stability for the immobilization preparations was enhanced compared with that for free preparations. At 50 °C, the free enzyme lost most of its initial activity after a 30 min of heat treatment, while the immobilized enzymes showed significant resistance to thermal inactivation (retaining about 70% of its initial activity). Finally, the immobilized lipase was used for the production of lauryl laurate in hexane medium. Lipase immobilization on the PEI support exhibited a significantly improved operational stability in esterification system. After re-use in 30 successive batches, a high ester yield (88%) was maintained. These results indicate that PEI, a polymeric bed, could not only bridge support and immobilized enzymes but also create a favorable micro-environment for lipase. This study provides a simple, efficient protocol for the immobilization of Y. lipolytica lipase Lip2 using PUF as a cheap and effective material.  相似文献   

3.
The stabilization achieved by different immobilization protocols have been compared using three different enzymes (glutaryl acylase (GAC), D-aminoacid oxidase (DAAO), and glucose oxidase (GOX)): adsorption on aminated supports, treatment of this adsorbed enzymes with glutaraldehyde, and immobilization on glutaraldehyde pre-activated supports. In all cases, the treatment of adsorbed enzymes on amino-supports with glutaraldehyde yielded the higher stabilizations: in the case of GOX, a stabilization over 400-fold was achieved. After this treatment, the enzymes could no longer be desorbed from the supports using high ionic strength (suggesting the support-protein reaction). Modification of the enzymes immobilized on supports that did not offer the possibility of react with glutaraldehyde showed the same stability that the non modified preparations demonstrating that the mere chemical modification did not have effect on the enzyme stability. This simple strategy seems to permit very good results in terms of immobilization rate and stability, offering some advantages when compared to the immobilization on glutaraldehyde pre-activated supports.  相似文献   

4.
Cephalosporin C amidase was covalently attached using a protein loading of 7.0–200 mg protein/g dry carrier on four epoxy‐activated Sepabeads differing in particle size and pore diameter. Initial‐rate kinetic analysis showed that for Sepabeads with small pore diameters (30–40 nm), the apparent KM of the amidase for hydrolysis of cephalosporin C at 37°C and pH 8.0 increased ~3‐fold in response to increased particle size (~120–400 µm) and increased amount of immobilized enzyme (7.0–70 mg protein/g dry carrier) while maximum specific activity (3.2 U/mg protein; 25% of free amidase) was affected only by particle size. In contrast, for Sepabeads with wide pores (150–250 nm), the KM was independent of the enzyme loading. Internal effectiveness factors calculated from observable Thiele modulus reflected the dependence of KM on geometrical parameters of the particles. A new method for determination of the overall intraparticle pH was developed based on luminescence lifetime measurements in the frequency domain. Sepabeads were doubly labeled using a lipophilic variant of the pH‐sensitive dye fluorescein, and Ru(II) tris(4,7‐diphenyl‐1,10‐phenantroline) whose phosphorescence properties are independent of pH. Luminescent lifetime measurements of doubly labeled particle suspensions showed superior signal‐to‐noise ratio compared to fluorescence intensity‐based measurements using singly labeled particles. The difference at apparent steady state (ΔpH) between bulk (external pH) and intraparticle pH (internal pH) was as large as ~0.6 units. The ΔpH was dependent on substrate concentration, particle size, and pore diameter. Therefore, these results characterize the role of carrier characteristics and reaction parameters in the formation of concentration gradients for substrate and acidic product during hydrolysis of cephalosporin C by immobilized amidase. The strong pH dependence of the immobilized amidase underscores the importance of considering intraparticle pH gradients in the design of an efficient carrier‐bound biocatalyst. Biotechnol. Bioeng. 2010;106: 528–540. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
The aim of this work was to develop a stable immobilized enzyme biocatalyst for the isomerization of d -galactose to d -tagatose at high temperature. l -Arabinose isomerase from the hyperthermophilic bacterium Thermotoga maritima (TMAI) was produced as a (His)6-tagged protein, immobilized on a copper–chelate epoxy support and subjected to several postimmobilization treatments aimed at increasing its operational and structural stability. Treatment with glutaraldehyde and ethylenediamine resulted in a more than twofold increase in the operational stability and in all enzyme subunits linked, directly or indirectly, to the support via covalent bonds. A postimmobilization treatment of the immobilized derivatives with mercaptoethanol for the removal of any remaining copper ions, determined a further increase of the operational biocatalytic activity. Immobilized derivatives subjected to both treatments were used for the bioconversion of 18 g/L d -galactose to d -tagatose at 80°C in a packed bed reactor in three repeated cycles and showed a better operational stability compared with the literature data. This study shows that a postimmobilization stabilization treatment with glutaraldehyde and ethylenediamine can stabilize the multi-subunit structure of an enzyme immobilized on a metal-chelate epoxy support with an increase of its operational stability, results that are not easily achievable with the sole immobilization on epoxy or metal chelate-epoxy supports in the case of complex multimeric enzymes with geometric incongruence with the support.  相似文献   

6.
《Process Biochemistry》1999,34(4):399-405
Cyclodextrin glucosyltransferase from Paenibacillus macerans NRRL B-3186 was immobilized on aminated polyvinylchloride (PVC) by covalent binding with a bifunctional agent (glutaraldehyde). The immobilized activity was affected by the length of the hydrocarbon chain attached to the PVC matrix, the amount of the protein loaded on the PVC carrier, and glutaraldehyde concentration. The activity of the immobilized enzyme was 121 units/gram carrier, the specific activity calculated on bound protein basis was 48% of the soluble enzyme. Compared to the free enzyme, the immobilized form exhibited: a higher optimal reaction temperature and energy of activation, a higher Km (Michaelis constant) and lower Vmax (maximal reaction rate), improved thermal stability and resistance to chemical denaturation. The operational stability was evaluated in repeated batch process and the immobilized enzyme retained about 85% of the initial catalytic activity after being used for 14 cycles.  相似文献   

7.
Lipase B from Candida antarctica (CALB) has been modified using succinic polyethyleneglycol via the carbodiimide route. Immobilized enzyme (on octyl Sepharose or Eupergit C) has been used, to take advantage of the solid phase. Modification of immobilized CALB's native amino groups did not produce a significant alteration of CALB. However, if the enzyme was previously aminated, around 14–15 PEG molecules could be introduced per enzyme molecule. Also, it has been found that succinic groups are far more reactive than acetic acid following this strategy.Even after this drastic double modification, the functional properties of the enzyme have not been impoverished to a large extent: stability decreased only to some extent (by a 5–6 fold factor), activity versus some substrates even increased (e.g., around 60% using p-nitrophenyl butyrate). It has been found that both modifications (amination and pegylation) have very different effects on enzyme properties when performed on CALB immobilized on Eupergit C or octyl Sepharose. For example, activity versus pNPP increased using CALB-octyl Sepharose while it decreased when using Eupergit C following amination and PEGylation. The effects also depend on the reaction and substrate, for example in hydrolysis of methyl mandelate, the activity decreased by 50% using CALB-octyl Sepharose after PEGylation of the aminated enzyme, while using CALB-Eupergit C had no effect. In this last case, enantioselecitvity in this hydrolysis significantly improved after both chemical modifications (from 7.5 to 20), while using CALB-octyl Sepharose almost had no effect.  相似文献   

8.
A novel and efficient immobilization of β-d-galactosidase from Aspergillus oryzae has been developed by using magnetic Fe3O4–chitosan (Fe3O4–CS) nanoparticles as support. The magnetic Fe3O4–CS nanoparticles were prepared by electrostatic adsorption of chitosan onto the surface of Fe3O4 nanoparticles made through co-precipitation of Fe2+ and Fe3+. The resultant material was characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry and thermogravimetric analysis. β-d-Galactosidase was covalently immobilized onto the nanocomposites using glutaraldehyde as activating agent. The immobilization process was optimized by examining immobilized time, cross-linking time, enzyme concentration, glutaraldehyde concentration, the initial pH values of glutaraldehyde and the enzyme solution. As a result, the immobilized enzyme presented a higher storage, pH and thermal stability than the soluble enzyme. Galactooligosaccharide was formed with lactose as substrate by using the immobilized enzyme as biocatalyst, and a maximum yield of 15.5% (w/v) was achieved when about 50% lactose was hydrolyzed. Hence, the magnetic Fe3O4–chitosan nanoparticles are proved to be an effective support for the immobilization of β-d-galactosidase.  相似文献   

9.
In this study, a recombinant cephalosporin C acylase (CCA) was covalently or physically immobilized on an epoxy-activated support LX1000-EPC4 (EP) or its derivatives, EP-polyethyleneimine (EP-PEI) and EP-ethylenediamine (EP-EDA) with cationic groups on the surface. Zeta potential was used as a tool for activated carrier analysis and immobilization analysis. The EP-PEI (the cationic polymer PEI grafted support) showed higher zeta potential than EP-EDA (the small diamine EDA modified support) and EP support. Among these three supports, immobilization of CCA on EP-PEI had the highest specific activity according to the range of enzyme loadings. Michaelis constant Km values of EP-PEI-CCA and EP-EDA-CCA were 22?mM and 30?mM, respectively, which were lower than that of the free enzyme (43?mM), suggesting that the support’s zeta potential is related to the affinity of the enzyme for the substrate. The enzyme immobilized on EP-PEI showed a much higher thermal stability (stabilization factor of 32-fold compared with the free enzyme) than that on the EP-EDA (stabilization factor of 5.5-fold) and EP supports (stabilization factor of 1.7-fold). The adsorption of CCA on EP-PEI support was very strong and reversible. The CCA could be thoroughly desorbed using a high concentration of NaCl (e.g., 2 M) at low pH value (pH 3.0). The regenerated EP-PEI support could then be reused for enzyme immobilization.  相似文献   

10.
α-Galactosidase from tomato has been immobilized on Sepabead EC-EA and Sepabead EC-HA, which were activated with ethylendiamino and hexamethylenediamino groups, respectively. Two strategy was used for the covalent immobilization of α-galactosidase on the aminated Sepabeads: covalent immobilization of enzyme on glutaraldehyde activated support and cross-linking of the adsorbed enzymes on to the support with glutaraldehyde. By using these two methods, all the immobilized enzymes retained very high activity and the stability of the enzyme was also improved. The obtained results showed that, the most stable immobilized α-galactosidase was obtained with the second strategy. The immobilized enzymes were characterized with respect to free counterpart. Some parameters effecting to the enzyme activity and stability were also analyzed. The optimum temperature and pH were found as 60 °C and pH 5.5 for all immobilized enzymes, respectively. All the immobilized α-galactosidases were more thermostable than the free enzyme at 50 °C. The stabilities of the Sepabead EC-EA and EC-HA adsorbed enzymes treated with glutaraldehyde compared to the stability of the free enzyme were a factor of 6 for Sepabead EC-EA and 5.3 for Sepabead EC-HA. Both the free and immobilized enzymes were very stable between pH 3.0 and 6.0 and more than 85% of the initial activities were recovered. Under the identical storage conditions the free enzyme lost its initial activity more quickly than the immobilized enzymes at the same period of time. The immobilized α-galactosidase seems to fulfill the requirements for different industrial applications.  相似文献   

11.
The characterization of the hydrogel was performed using Fourier‐transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. Purified Bacillus pumilus Y7‐derived alkaline protease was immobilized in Poly (vinylimidazole)/clay (PVI/SEP) hydrogel with 95% yield of immobilization. Immobilization decreased the pH optimum from 9 to 6 for free and immobilized enzyme, respectively. Temperature optimum 3°C decreased for immobilized enzyme. The Km, Vm, and kcat of immobilized enzyme were 4.4, 1.7, and 7.5‐fold increased over its free counterpart. Immobilized protease retained about 65% residual activity for 16th reuse. The immobilized protease endured its 35% residual activity in the material after six cycle's batch applications. The results of thermodynamic analysis for casein hydrolysis showed that the ΔG (activation free energy) and ΔGE‐T (activation free energy of transition state formation) obtained for the immobilized enzyme decreased in comparison to those obtained for the free enzyme. On the other hand, the value of ΔGES (free energy of substrate binding) was observed to have increased. These results indicate an increase in the spontaneity of the biochemical reaction post immobilization. Enthalpy value of immobilized enzyme that was 2.2‐fold increased over the free enzyme indicated lower energy for the formation of the transition state, and increased ΔS value implied that the immobilized form of the enzyme was more ordered than its free form.  相似文献   

12.
High activity alkaline protease was obtained when the enzyme was immobilized on Dowex MWA-1 (mesh 20–50) with 10% glutaraldehyde in chilled phosphate buffer (M/15, pH 6.5). Activity yields of the protease and rennet were 27 and 29, respectively. The highest activities appeared at 60°C, pH 10 for alkaline protease and 50°C, pH 4.0 for rennet. The properties of both proteases were not essentially changed by the immobilization except that the Km values of both enzymes were increased about tenfold as a result of immobilization. Both proteases in the immobilized state were more stable than those in the free state at 60°C. Other peptide hydrolases, β-galactosidase, invertase, and glucoamylase, were successfully immobilized with high activities, but lipase, hexokinase, glucose-6-phosphate dehydrogenase, and xanthine oxidase became inactive.  相似文献   

13.
Novel grafted agar disks were prepared for the covalent immobilization of β‐D‐galactosidase (β‐gal). The agar disks were activated through reacting with ethylenediamine or different molecular weights of Polyethyleneimine (PEI), followed by glutaraldehyde (GA). The modification of the agar gel and the binding of the enzyme were verified by Fourier Transform Infrared (FTIR) and elemental analysis. Moreover, the agar's activation process was optimized, and the amount of immobilized enzyme increased 3.44 folds, from 38.1 to 131.2 U/g gel, during the course of the optimization process. The immobilization of β‐gal onto the activated agar disks caused its optimum temperature to increase from 45°C to 45–55°C. The optimum pH of the enzyme was also shifted towards the acidic side (3.6–4.6) after its immobilization. Additionally, the Michaelis‐Menten constant (Km) increased for the immobilized β‐gal as compared to its free counterpart whereas the maximum reaction rate (Vmax) decreased. The immobilized enzyme was also shown to retain 92.99% of its initial activity after being used for 15 consecutive times. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 675–684, 2015.  相似文献   

14.
The purification, immobilization, and characterization of carbonic anhydrase (CA) secreted by Bacillus subtilis VSG-4 isolated from tropical soil have been investigated in this work. Carbonic anhydrase was purified using ammonium sulfate precipitation, Sephadex-G-75 column chromatography, and DEAE-cellulose chromatography, achieving a 24.6-fold purification. The apparent molecular mass of purified CA obtained by SDS-PAGE was found to be 37 kD. The purified CA was entrapped within a chitosan–alginate polyelectrolyte complex (C-A PEC) hydrogel for potential use as an immobilized enzyme. The optimum pH and temperature for both free and immobilized enzymes were 8.2 and 37°C, respectively. The immobilized enzyme had a much higher storage stability than the free enzyme. Certain metal ions, namely, Co2+, Cu2+, and Fe3+, increased the enzyme activity, whereas CA activity was inhibited by Pb2+, Hg2+, ethylenediamine tetraacetic acid (EDTA), 5,5′-dithiobis-(2-nitrobenzoic acid (DTNB), and acetazolamide. Free and immobilized CAs were tested further for the targeted application of the carbonation reaction to convert CO2 to CaCO3. The maximum CO2 sequestration potential was achieved with immobilized CA (480 mg CaCO3/mg protein). These properties suggest that immobilized VSG-4 carbonic anhydrase has the potential to be used for biomimetic CO2 sequestration.  相似文献   

15.
An enzymatic membrane for application in the processes of decomposition and removal of urea from aqueous solutions was prepared: jack bean urease was immobilized on an aminated polysulphone membrane by adsorption. The inhibition of the system by boric acid was studied using procedures based on the MICHAELIS-MENTEN integrated equation (non-linear regression, and the linear transformations of WALKER and SCHMIDT, JENNINGS and NIEMANN, and BOOMAN and NIEMANN). The reaction was carried out in a 100 mM phosphate buffer of pH 7.0, containing 2 mM EDTA, obtained by neutralization of orthophosphoric acid with NaOH, at an initial urea concentration of 10 mM, and a temperature of 25 °C. The reaction was initiated by the addition of the enzyme to the urea solution, and was monitored by removing samples of the reaction mixture for NH3 determinations by the phenol-hypochlorite method until the urea was exhausted. The results were compared with those obtained earlier under the same reaction conditions for free urease and urease covalently immobilized on chitosan. The inhibition was found to be competitive, similar to that of the free enzyme and urease immobilized on chitosan, with inhibition constants Ki equal to 0.36, 0.19 and 0.60 mM. The results show that adsorption of the enzyme on a polysulphone membrane changed the enzyme to a lesser degree than covalent immobilization of the enzyme on a chitosan membrane.  相似文献   

16.
The aim of this study was to produce galactooligosaccharides (GOS) from lactose using β-galactosidase from Aspergillus oryzae immobilized on a low-pressure plasma-modified cellulose acetate (CA) membrane. Specifically, a novel method was developed for multilayer enzyme immobilization involving polyethyleneimine (PEI)-enzyme aggregate formation and growth on a CA membrane. A large amount of enzyme (997 μg/cm2 membrane) was immobilized with 66% efficiency. The K m value for the immobilized enzyme was estimated to be 48 mM, which indicates decreased affinity for the substrate, whereas the Vmax value was smaller. The immobilized enzyme showed good storage and operational stability. The half-life of the immobilized enzyme on the membrane was about 1 month at 30°C and ∼ 60 h at 60°C. Maximum GOS production of 27% (w/w) was achieved with 70% lactose conversion from 320 g/L of lactose at pH 4.5 and 60°C. Trisaccharides were the major types of GOS formed and accounted for about 75% of the total GOS produced. Based on these results, immobilized enzyme technology could be applied to GOS production from lactose.  相似文献   

17.
Five trimeric xylanosomes were successfully assembled on the cell surface of Saccharomyces cerevisiae. Three dockerin‐tagged fungal enzymes, an endoxylanase (XynAc) from Thermomyces lanuginosus, a β‐xylosidase (XlnDt) from Aspergillus niger and an acetylxylan esterase (AwAXEf) from Aspergillus awamori, were displayed for the synergistic saccharification of birchwood xylan. The surface‐expression scaffoldins were modular constructs with or without carbohydrate binding modules from Thermotoga maritima (family 22) or Clostridium thermocellum (family 3). The synergy due to enzyme–enzyme and enzyme–substrate proximity, and the effects of binding domain choice and position on xylan hydrolysis were determined. The scaffoldin‐based enzymes (with no binding domain) showed a 1.6‐fold increase in hydrolytic activity over free enzymes; this can be attributed to enzyme–enzyme proximity within the scaffoldin. The addition of a xylan binding domain from T. maritima improved hydrolysis by 2.1‐fold relative to the scaffoldin without a binding domain (signifying enzyme–substrate synergy), and 3.3‐fold over free enzymes, with a xylose productivity of 105 mg g?1 substrate after 72 h hydrolysis. This system was also superior to the xylanosome carrying the cellulose binding module from C. thermocellum by 1.4‐fold. Furthermore, swapping the xylan binding module position within the scaffoldin resulted in 1.5‐fold more hydrolysis when the binding domain was adjacent to the endoxylanase. These results demonstrate the applicability of designer xylanosomes toward hemicellulose saccharification in yeast, and the importance of the choice and position of the carbohydrate binding module for enhanced synergy. Biotechnol. Bioeng. 2013; 110: 275–285. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The surface carboxylic groups of penicillin G acylase and glutaryl acylase were chemically aminated in a controlled way by reaction with ethylenediamine via the 1-ethyl-3-(dimethylamino-propyl) carbodiimide coupling method. Then, both proteins were immobilized on glyoxyl agarose. In both cases, the immobilization of the chemically modified enzymes improved the enzyme stability compared to the stability of the immobilized but non-modified enzyme (by a four-fold factor in the case of PGA and a 20-fold factor in the case of GA). The chemical modification presented a deleterious effect on soluble enzyme stability. Therefore, the improved stability should be related to a higher multipoint covalent attachment, involving both the lysine amino groups and also the new amino groups chemically introduced on the enzyme. Moreover, the lower pK(a) of the new amino groups permitted to immobilize the enzyme under milder conditions. In fact, the aminated proteins could be immobilized even at pH 9, while the non-modified enzymes could only be immobilized at pH over 10.  相似文献   

19.
We studied the modification of Immobead 150 support by either introducing aldehyde groups using glutaraldehyde (Immobead‐Glu) or carboxyl groups through acid solution (Immobead‐Ac) for enzyme immobilization by covalent attachment or ion exchange, respectively. These two types of immobilization were compared with the use of epoxy groups that are now provided on a commercial support. We used Aspergillus oryzae β‐galactosidase (Gal) as a model protein, immobilizing it on unmodified (epoxy groups, Immobead‐Epx) and modified supports. Immobilization yield and efficiency were tested as a function of protein loading (10–500 mg g?1 support). Gal was efficiently immobilized on the Immobeads with an immobilization efficiency higher than 75% for almost all supports and protein loads. Immobilization yields significantly decreased when protein loadings were higher than 100 mg g?1 support. Gal immobilized on Immobead‐Glu and Immobead‐Ac retained approximately 60% of its initial activity after 90 days of storage at 4°C. The three immobilized Gal derivatives presented higher half‐lifes than the soluble enzyme, where the half‐lifes were twice higher than the free Gal at 73°C. All the preparations were moderately operationally stable when tested in lactose solution, whey permeate, cheese whey, and skim milk, and retained approximately 50% of their initial activity after 20 cycles of hydrolyzing lactose solution. The modification of the support with glutaraldehyde provided the most stable derivative during cycling in cheese whey hydrolysis. Our results suggest that the Immobead 150 is a promising support for Gal immobilization. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:934–943, 2018  相似文献   

20.
To avoid the unwanted and random covalent linkage between the cross-linker and enzyme's active site in covalent immobilization, a genetically encoded “aldehyde tag” was introduced into recombinant lipase and applied for the one-step purification and covalent immobilization of this enzyme. The effects of the immobilization time, temperature and the amount of enzyme were investigated, and the thermo-stability of immobilized lipase was also examined. The specific activity and the kcat/Km of the immobilized lipase using aldehyde tag (IL-AT) were 2.50 and 3.02 fold higher, respectively, than those of the traditionally immobilized lipase using glutaraldehyde (IL-GA). The newly immobilized lipase also presented better thermo-stability than the traditionally immobilized one. The results show that the recombinant enzyme could be conveniently immobilized without glutaraldehyde and that the enzyme's active site was well protected. This is a new immobilization method able to avoid glutaraldehyde or 2,4,6-trichloro-1,3,5-triazine as an activating agent. The greener method without hazardous chemicals for the one-step purification and immobilization of an enzyme using a genetically encoded “aldehyde tag” can be exploited for numerous other enzyme purification and immobilization applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号