首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ursodeoxycholic acid (UDCA) is a bile acid of industrial interest as it is used as an agent for the treatment of primary sclerosing cholangitis and the medicamentous, non‐surgical dissolution of gallstones. Currently, it is prepared industrially from cholic acid following a seven‐step chemical procedure with an overall yield of <30%. In this study, we investigated the key enzymatic steps in the chemo‐enzymatic preparation of UDCA—the two‐step reduction of dehydrocholic acid (DHCA) to 12‐keto‐ursodeoxycholic acid using a mutant of 7β‐hydroxysteroid dehydrogenase (7β‐HSDH) from Collinsella aerofaciens and 3α‐hydroxysteroid dehydrogenase (3α‐HSDH) from Comamonas testosteroni. Three different one‐pot reaction approaches were investigated using whole‐cell biocatalysts in simple batch processes. We applied one‐biocatalyst systems, where 3α‐HSDH, 7β‐HSDH, and either a mutant of formate dehydrogenase (FDH) from Mycobacterium vaccae N10 or a glucose dehydrogenase (GDH) from Bacillus subtilis were expressed in a Escherichia coli BL21(DE3) based host strain. We also investigated two‐biocatalyst systems, where 3α‐HSDH and 7β‐HSDH were expressed separately together with FDH enzymes for cofactor regeneration in two distinct E. coli hosts that were simultaneously applied in the one‐pot reaction. The best result was achieved by the one‐biocatalyst system with GDH for cofactor regeneration, which was able to completely convert 100 mM DHCA to >99.5 mM 12‐keto‐UDCA within 4.5 h in a simple batch process on a liter scale. Biotechnol. Bioeng. 2013; 110: 68–77. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Reduction and oxidation of steroids in the human gut are catalyzed by hydroxysteroid dehydrogenases of microorganisms. For the production of 12-ketochenodeoxycholic acid (12-Keto-CDCA) from cholic acid the biocatalytic application of the 12α-hydroxysteroid dehydrogenase of Clostridium group P, strain C 48-50 (HSDH) is an alternative to chemical synthesis. However, due to the intensive costs the necessary cofactor (NADP(+) ) has to be regenerated. The alcohol dehydrogenase of Thermoanaerobacter ethanolicus (ADH-TE) was applied to catalyze the reduction of acetone while regenerating NADP(+) . A mechanistic kinetic model was developed for the process development of cholic acid oxidation using HSDH and ADH-TE. The process model was derived by identifying the parameters for both enzymatic models separately using progress curve measurements of batch processes over a broad range of concentrations and considering the underlying ordered bi-bi mechanism. Both independently derived kinetic models were coupled via mass balances to predict the production of 12-Keto-CDCA with HSDH and integrated cofactor regeneration with ADH-TE and acetone as co-substrate. The prediction of the derived model was suitable to describe the dynamics of the preparative 12-Keto-CDCA batch production with different initial reactant and enzyme concentrations. These datasets were used again for parameter identification. This led to a combined model which excellently described the reaction dynamics of biocatalytic batch processes over broad concentration ranges. Based on the identified process model batch process optimization was successfully performed in silico to minimize enzyme costs. By using 0.1 mM NADP(+) the HSDH concentration can be reduced to 3-4 μM and the ADH concentration to 0.4-0.6 μM to reach the maximal possible conversion of 100 mM cholic acid within 48 h. In conclusion, the identified mechanistic model offers a powerful tool for a cost-efficient process design.  相似文献   

3.
7α‐Hydroxysteroid dehydrogenase (7α‐HSDH) is an NAD(P)H‐dependent oxidoreductase belonging to the short‐chain dehydrogenases/reductases. In vitro, 7α‐HSDH is involved in the efficient biotransformation of taurochenodeoxycholic acid (TCDCA) to tauroursodeoxycholic acid (TUDCA). In this study, a gene encoding novel 7α‐HSDH (named as St‐2‐1) from fecal samples of black bear was cloned and heterologously expressed in Escherichia coli. The protein has subunits of 28.3 kDa and a native size of 56.6 kDa, which suggested a homodimer. We studied the relevant properties of the enzyme, including the optimum pH, optimum temperature, thermal stability, activators, and inhibitors. Interestingly, the data showed that St‐2‐1 differs from the 7α‐HSDHs reported in the literature, as it functions under acidic conditions. The enzyme displayed its optimal activity at pH 5.5 (TCDCA). The acidophilic nature of 7α‐HSDH expands its application environment and the natural enzyme bank of HSDHs, providing a promising candidate enzyme for the biosynthesis of TUDCA or other related chemical entities.  相似文献   

4.
Ursodeoxycholic acid is an important pharmaceutical so far chemically synthesized from cholic acid. Various biocatalytic alternatives have already been discussed with hydroxysteroid dehydrogenases (HSDH) playing a crucial role. Several whole-cell biocatalysts based on a 7α-HSDH-knockout strain of Escherichia coli overexpressing a recently identified 7β-HSDH from Collinsella aerofaciens and a NAD(P)-bispecific formate dehydrogenase mutant from Mycobacterium vaccae for internal cofactor regeneration were designed and characterized. A strong pH dependence of the whole-cell bioreduction of dehydrocholic acid to 3,12-diketo-ursodeoxycholic acid was observed with the selected recombinant E. coli strain. In the optimal, slightly acidic pH range dehydrocholic acid is partly undissolved and forms a suspension in the aqueous solution. The batch process was optimized making use of a second-order polynomial to estimate conversion as function of initial pH, initial dehydrocholic acid concentration, and initial formate concentration. Complete conversion of 72?mM dehydrocholic acid was thus made possible at pH?6.4 in a whole-cell batch process within a process time of 1?h without cofactor addition. Finally, a NADH-dependent 3α-HSDH from Comamonas testosteroni was expressed additionally in the E. coli production strain overexpressing the 7β-HSDH and the NAD(P)-bispecific formate dehydrogenase mutant. It was shown that this novel whole-cell biocatalyst was able to convert 50?mM dehydrocholic acid directly to 12-keto-ursodeoxycholic acid with the formation of only small amounts of intermediate products. This approach may be an efficient process alternative which avoids the costly chemical epimerization at C-7 in the production of ursodeoxycholic acid.  相似文献   

5.
Hydroxysteroid dehydrogenases are of great interest as biocatalysts for transformations involving steroid substrates. They feature a high degree of stereo‐ and regio‐selectivity, acting on a defined atom with a specific configuration of the steroid nucleus. The crystal structure of 7β‐hydroxysteroid dehydrogenase from Collinsella aerofaciens reveals a loop gating active‐site accessibility, the bases of the specificity for NADP+, and the general architecture of the steroid binding site. Comparison with 7α‐hydroxysteroid dehydrogenase provides a rationale for the opposite stereoselectivity. The presence of a C‐terminal extension reshapes the substrate site of the β‐selective enzyme, possibly leading to an inverted orientation of the bound substrate. Proteins 2016; 84:859–865. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
An 11β‐hydroxysteroid dehydrogenase type 1 (11β‐HSD1) produces glucocorticoid (GC) from 11‐keto metabolite, and its modulation has been suggested as a novel approach to treat metabolic diseases. In contrast, type 2 isozyme 11β‐HSD2 is involved in the inactivation of glucocorticoids (GCs), protecting the non‐selective mineralocorticoid receptor (MR) from GCs in kidney. Therefore, when 11β‐HSD1 inhibitors are pursued to treat the metabolic syndrome, preferential selectivity of inhibitors for type 1 over type 2 isozyme is rather important than inhibitory potency. Primarily, to search for cell lines with 11β‐HSD2 activity, we investigated the expression profiles of enzymes or receptors relevant to GC metabolism in breast, colon, and bone‐derived cell lines. We demonstrated that MCF‐7 cells had high expression for 11β‐HSD2, but not for 11β‐HSD1 with its cognate receptor. Next, for the determination of enzyme activity indirectly, we adopted homogeneous time resolved fluorescence (HTRF) cortisol assay. Obviously, the feasibility of HTRF to cellular 11β‐HSD2 was corroborated by constructing inhibitory response to an 11b‐HSD2 inhibitor glycyrrhetinic acid (GA). Taken together, MCF‐7 that overexpresses type 2 but not type 1 enzyme is chosen for cellular 11β‐HSD2 assay, and our results show that a nonradioactive HTRF assay is applicable for type 2 as well as type 1 isozyme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
8.
9.
The present work was aimed to evaluate the protective effects of alpha‐tocopherol (α‐toco) and/or Lactobacillus plantarum (LCB) against testicular atrophy induced by mercuric chloride (MCH). Rats were injected with 5 mg/kg MCH for 5 days consecutively, then treated with 100 mg/kg α‐toco and 6 × 1010 CFU 1.8701/kg LCB alone or together for 3 weeks. The MCH elevated serum TNF‐α, IL‐ 6, caspase‐3, and testicular malondialdehyde. However, serum testosterone, dehydroepiandrosterone, testicular messenger RNA of a steroidogenic acute regulatory protein, 17‐β‐hydroxysteroid dehydrogenase, 3β‐hydroxysteroid dehydrogenase, glutathione level, and superoxide dismutase activity were decreased. Protein expression of Nrf2 was downregulated whereas that of Bax and DNA fragmentation was upregulated in the testicular tissues. Treatment with α‐toco and LCB ameliorated the deviated biochemical parameters and improved tissue injury. It was concluded that the combination of LCB and α‐toco achieved promising results in the amelioration of MCH‐induced testicular atrophy. Nrf2, Bax expressions, and DNA fragmentation are involved in the testicular atrophy induced by MCH.  相似文献   

10.
Objective: Our objective was to demonstrate that the smaller oxoreductase activity of 11β‐HSD1 in women would shift the interconversion of cortisol and cortisone toward cortisone, resulting in a larger amount of generated labeled cortisone in healthy women than in healthy men. Research Methods and Procedures: Using mass spectrometry, the amount of cortisone generated from a continuous infusion (8 am to 6 pm ) of stable‐labeled cortisol (1α,2α‐d‐cortisol) was determined in non‐obese and in obese (BMI >35 kg/m2) men and women during steady‐state conditions (from 2 pm to 6 pm ). In this setting, the amount of generated labeled cortisone (expressed as % of the achieved steady‐state concentrations of labeled cortisol) reflects the sum of the bi‐directional conversion of cortisol into cortisone (and vice versa) by 11β‐hydroxysteroid dehydrogenase. Results: The amount of generated labeled cortisone was higher in men than in women (p < 0.0001). This sex difference was higher in obese than in non‐obese patients (p = 0.0062). Conclusions: The interconversion of cortisol and cortisone during steady‐state conditions is shifted toward cortisol in men as compared with women. This suggests a higher overall oxoreductase activity of 11β‐hydroxysteroid dehydrogenase type 1 in men than in women. This sex‐specific difference is maintained in obesity.  相似文献   

11.
Acetyl‐11‐keto‐β‐boswellic acid (AKBA), an active triterpenoid compound from the extract of Boswellia serrate, has been reported previously in our group to alleviate fibrosis in vascular remodelling. This study aimed to elucidate the in vivo and in vitro efficacy and mechanism of AKBA in renal interstitial fibrosis. The experimental renal fibrosis was produced in C57BL/6 mice via unilateral ureteral obstruction (UUO). Hypoxia‐induced HK‐2 cells were used to imitate the pathological process of renal fibrosis in vitro. Results showed that the treatment of AKBA significantly alleviated UUO‐induced impairment of renal function and improved the renal fibrosis by decreasing the expression of TGF‐β1, α‐SMA, collagen I and collagen IV in UUO kidneys. In hypoxia‐induced HK‐2 cells, AKBA displayed remarkable cell protective effects and anti‐fibrotic properties by increasing the cell viability, decreasing the lactate dehydrogenase (LDH) release and inhibiting fibrotic factor expression. Moreover, in obstructed kidneys and HK‐2 cells, AKBA markedly down‐regulated the expression of TGFβ‐RI, TGFβ‐RII, phosphorylated‐Smad2/3 (p‐Smad2/3) and Smad4 in a dose‐dependent fashion while up‐regulated the expression of Klotho and Smad7 in the same manner. In addition, the effects of AKBA on the Klotho/TGF‐β/Smad signalling were reversed by transfecting with siRNA‐Klotho in HK‐2 cells. In conclusion, our findings provide evidence that AKBA can effectively protect kidney against interstitial fibrosis, and this renoprotective effect involves the Klotho/TGF‐β/Smad signalling pathway. Therefore, AKBA could be considered as a promising candidate drug for renal interstitial fibrosis.  相似文献   

12.
The anuran amphibian Pelophylax esculentus shows an annual cycle of sexual steroid production and spermatogenesis. To more thoroughly comprehend the steroidogenic pathways that govern the seasonal reproductive cycle, we investigated the mRNA expression of key enzymes involved in the androgenic and oestrogenic biosynthesis pathways in the testis of frogs taken in the reproductive and postreproductive period. Furthermore, we also analysed androgen and oestrogen levels and their own receptor gene expressions. Our findings showed that during the reproductive period, 3β‐hydroxysteroid dehydrogenase, 17β‐hydroxysteroid dehydrogenase and 5α‐reductase mRNA levels were higher than those during the postreproductive period. High testosterone and 5α‐dihydrotestosterone titres as well as the expression levels of androgen receptors in the reproductive testis strongly confirmed that the androgenic pathway is necessary for spermatogenesis activation. Conversely, during the postreproductive period, the highest P450 aromatase, estrogen receptor α and β mRNA levels, paralleling with oestradiol titres, indicated that the oestrogenic pathway is essential for the interruption of the reproductive processes. Our findings demonstrated, for the first time in amphibians, that testicular endocrine cyclic activity could be modulated by the up‐regulation of key steroidogenic enzyme gene expressions. This in turn determines the activation of the androgenic pathway in reproductive phase and the oestrogenic one in postreproductive phase.  相似文献   

13.
14.
Eubacterium lentum is a gram-positive, nonsporeforming, nonmotile, asaccharolytic anaerobe. In the present investigations, 3 E. lentum strains (group E) isolated from rat feces were compared with 30 E. lentum strains (groups A, B, C, and D) previously studied by Macdonald et al. (I. A. Macdonald, J. F. Jellet, D. E. Mahony, and L. V. Holdeman, Appl. Environ. Microbiol. 37:992-1000, 1979). All strains alkalized (pH 8 to 8.5) arginine-containing (2 to 15 mg/ml) culture media, and growth of the majority of the strains was stimulated by arginine. All strains converted linoleic acid into transvaccenic acid by shifting the 12,13-cis double bond of linoleic acid into an 11,12-trans(?) double bond followed by biohydrogenation of the 9,10-cis double bond. Hence, biohydrogenation of linoleic acid is a new general characteristic of E. lentum. The 33 strains were also studied for bile acid deconjugase and hydroxysteroid dehydrogenase (HSDH) activities. The 6 strains in group D were steroid inactive; the 27 strains in groups A, B, C, and E were steroid active. The steroid-active group contained bile acid deconjugase-producing strains (groups C and E, plus strain 116 in group A) and nondeconjugating strains. All nondeconjugating strains of groups A and B developed 7 alpha- and 12 alpha-HSDH activities and contained 3 alpha-HSDH-positive strains and 3 alpha-HSDH-negative strains. Deconjugating strains varied in HSDH activities.  相似文献   

15.
16.
In the present study, we have tested the beneficial effects of forskolin in protecting the mancozeb‐induced reproductive toxicity in rats. Adult male Wistar rats were exposed to either mancozeb (500 mg/kg body weight/day) or forskolin (5 mg/kg body weight/day) or both for 65 days and analyzed for spermatogenesis and steroidogenesis and testicular and epididymal oxidative toxicity. A significant decrease in daily sperm production, epididymal sperm count, motile, viable, and hypo‐osmotic swelling‐tail swelled sperm was observed in mancozeb‐treated rats. The activity levels of testicular 3β‐hydroxysteroid dehydrogenase and 17β‐hydroxysteroid dehydrogenase and circulatory testosterone levels were significantly decreased in mancozeb‐treated rats. Exposure to mancozeb resulted in a significant decrease in glutathione levels and superoxide dismutase and catalase activity levels with an increase in lipid peroxidation levels in the testes and epididymis. Coadministration of forskolin mitigated the mancozeb‐induced oxidative toxicity and suppressed steroidogenesis and spermatogenesis.  相似文献   

17.
Glucocorticoids are important for skeletal muscle energy metabolism, regulating glucose utilization, insulin sensitivity, and muscle mass. Nicotinamide adenine dinucleotide phosphate‐dependent 11β‐hydroxysteroid dehydrogenase type 1 (11β‐HSD1)‐mediated glucocorticoid activation in the sarcoplasmic reticulum (SR) is integral to mediating the detrimental effects of glucocorticoid excess in muscle. 11β‐Hydroxysteroid dehydrogenase type 1 activity requires glucose‐6‐phosphate transporter (G6PT)‐mediated G6P transport into the SR for its metabolism by hexose‐6‐phosphate dehydrogenase (H6PDH) for NADPH generation. Here, we examine the G6PT/H6PDH/11β‐HSD1 triad in differentiating myotubes and explore the consequences of muscle‐specific knockout of 11β‐HSD1 and H6PDH. 11β‐Hydroxysteroid dehydrogenase type 1 expression and activity increase with myotube differentiation and in response to glucocorticoids. Hexose‐6‐phosphate dehydrogenase shows some elevation in expression with differentiation and in response to glucocorticoid, while G6PT appears largely unresponsive to these particular conditions. When examining 11β‐HSD1 muscle‐knockout mice, we were unable to detect significant decrements in activity, despite using a well‐validated muscle‐specific Cre transgene and confirming high‐level recombination of the floxed HSD11B1 allele. We propose that the level of recombination at the HSD11B1 locus may be insufficient to negate basal 11β‐HSD1 activity for a protein with a long half‐life. Hexose‐6‐phosphate dehydrogenase was undetectable in H6PDH muscle‐knockout mice, which display the myopathic phenotype seen in global KO mice, validating the importance of SR NADPH generation. We envisage these data and models finding utility when investigating the muscle‐specific functions of the 11β‐HSD1/G6PT/H6PDH triad.  相似文献   

18.
Conversion of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) to the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) is performed by a few species of intestinal bacteria in the genus Clostridium through a multistep biochemical pathway that removes a 7α‐hydroxyl group. The rate‐determining enzyme in this pathway is bile acid 7α‐dehydratase (baiE). In this study, crystal structures of apo‐BaiE and its putative product‐bound [3‐oxo‐Δ4,6‐lithocholyl‐Coenzyme A (CoA)] complex are reported. BaiE is a trimer with a twisted α + β barrel fold with similarity to the Nuclear Transport Factor 2 (NTF2) superfamily. Tyr30, Asp35, and His83 form a catalytic triad that is conserved across this family. Site‐directed mutagenesis of BaiE from Clostridium scindens VPI 12708 confirm that these residues are essential for catalysis and also the importance of other conserved residues, Tyr54 and Arg146, which are involved in substrate binding and affect catalytic turnover. Steady‐state kinetic studies reveal that the BaiE homologs are able to turn over 3‐oxo‐Δ4‐bile acid and CoA‐conjugated 3‐oxo‐Δ4‐bile acid substrates with comparable efficiency questioning the role of CoA‐conjugation in the bile acid metabolism pathway. Proteins 2016; 84:316–331. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
The enzyme 11β‐hydroxysteroid dehydrogenase 1 (11β‐HSD1) is known to catalyse inactive glucocorticoids into active forms, and its dysregulation in adipose and muscle tissues has been implicated in the development of metabolic syndrome. To delineate the molecular mechanism by which active cortisol has an antagonizing effect against insulin, we optimized the metabolic production of cortisol and its biological functions in myotubes (C2C12). Myotubes supplemented with cortisone actively catalysed its conversion into cortisol, which in turn abolished phosphorylation of Akt in response to insulin treatment. This led to diminished uptake of insulin‐induced glucose. This was corroborated by the application of 11β‐HSD1 inhibitor glycyrrhetinic acid and a glucocorticoid receptor antagonist RU‐486, which reversed completely the antagonizing effects of cortisol on insulin action. Therefore, development of specific inhibitors targeting 11β‐HSD1 might be a promising way to improve impaired insulin‐stimulated glucose uptake. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Purpose: Recently sodium alginate (SA)‐poly‐l‐ornithine (PLO) microcapsules containing pancreatic β‐cells that showed good morphology but low cell viability (<27%) was designed. In this study, two new polyelectrolytes, polystyrenic sulfonate (PSS; at 1%) and polyallylamine (PAA; at 2%) were incorporated into a microencapsulated‐formulation, with the aim of enhancing the physical properties of the microcapsules. Following incorporation, the structural characteristics and cell viability were investigated. The effects of the anti‐inflammatory bile acid, ursodeoxycholic acid (UDCA), on microcapsule morphology, size, and stability as well as β‐cell biological functionality was also examined. Methods: Microcapsules were prepared using PLO‐PSS‐PAA‐SA mixture and two types of microcapsules were produced: without UDCA (control) and with UDCA (test). Microcapsule morphology, stability, and size were examined. Cell count, microencapsulation efficiency, cell bioenergetics, and activity were also examined. Results: The new microcapsules showed good morphology but cell viability remained low (29% ± 3%). UDCA addition improved cell viability post‐microencapsulation (42 ± 5, P < 0.01), reduced swelling (P < 0.01), improved mechanical strength (P < 0.01), increased Zeta‐potential (P < 0.01), and improved stability. UDCA addition also increased insulin production (P < 0.01), bioenergetics (P < 0.01), and decreased β‐cell TNF‐α (P < 0.01), IFN‐gamma (P < 0.01), and IL‐6 (P < 0.01) secretions. Conclusions: Addition of 4% UDCA to a formulation system consisting of 1.8% SA, 1% PLO, 1% PSS, and 2% PAA enhanced cell viability post‐microencapsulation and resulted in a more stable formulation with enhanced encapsulated β‐cell metabolism, bioenergetics, and biological activity with reduced inflammation. This suggests potential application of UDCA, when combined with SA, PLO, PSS, and PAA, in β‐cell microencapsulation and diabetes treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:501–509, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号