首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biomining is defined as biotechnology for metal recovery from minerals, and is promoted by the concerted effort of a consortium of acidophile prokaryotes, comprised of members of the Bacteria and Archaea domains. Ferroplasma acidiphilum and Leptospirillum ferriphilum are the dominant species in extremely acid environments and have great use in bioleaching applications; however, the role of each species in this consortia is still a subject of research. The hypothesis of this work is that F. acidiphilum uses the organic matter secreted by L. ferriphilum for growth, maintaining low levels of organic compounds in the culture medium, preventing their toxic effects on L. ferriphilum. To test this hypothesis, a characterization of Ferroplasma acidiphilum strain BRL‐115 was made with the objective of determining its optimal growth conditions. Subsequently, under the optimal conditions, L. ferriphilum and F. acidiphilum were tested growing in each other's supernatant, in order to define if there was exchange of metabolites between the species. With these results, a mixed culture in batch cyclic operation was performed to obtain main specific growth rates, which were used to evaluate a mixed metabolic model previously developed by our group. It was observed that F. acidiphilum, strain BRL‐115 is a chemomixotrophic organism, and its growth is maximized with yeast extract at a concentration of 0.04% wt/vol. From the experiments of L. ferriphilum growing on F. acidiphilum supernatant and vice versa, it was observed that in both cases cell growth is favorably affected by the presence of the filtered medium of the other microorganism, proving a synergistic interaction between these species. Specific growth rates were obtained in cyclic batch operation of the mixed culture and were used as input data for a Flux Balance Analysis of the mixed metabolic model, obtaining a reasonable behavior of the metabolic fluxes and the system as a whole, therefore consolidating the model previously developed. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1390–1396, 2016  相似文献   

2.

Leptospirillum ferriphilum and Acidithiobacillus caldus are both thermotolerant acidophilic bacteria that frequently co-exist in natural and man-made environments, such as biomining sites. Both are aerobic chemolithotrophs; L. ferriphilum is known only to use ferrous iron as electron donor, while A. caldus can use zero-valent and reduced sulfur, and also hydrogen, as electron donors. It has recently been demonstrated that A. caldus reduces ferric iron to ferrous when grown aerobically on sulfur. Experiments were carried out which demonstrated that this allowed L. ferriphilum to be sustained for protracted periods in media containing very little soluble iron, implying that dynamic cycling of iron occurred in aerobic mixed cultures of these two bacteria. In contrast, numbers of viable L. ferriphilum rapidly declined in mixed cultures that did not contain sulfur. Data also indicated that growth of A. caldus was partially inhibited in the presence of L. ferriphilum. This was shown to be due to greater sensitivity of the sulfur-oxidizer to ferric than to ferrous iron, and to highly positive redox potentials, which are characteristic of cultures containing Leptospirillum spp. The implications of these results in the microbial ecology of extremely acidic environments and in commercial bioprocessing applications are discussed.

  相似文献   

3.
To optimize the rate of bio-oxidation to recover gold from sulfide minerals, it is important to understand the dynamic change of acidophilic bacteria involved in this process. In this study, a batch bio-oxidation experiment was set up to bioleach Au from refractory pyrite and arsenopyrite using a mixed acidophilic culture over the duration of eight days. The 16S rRNA gene clone library and denaturing gradient gel electrophoresis approaches (DGGE) were used to monitor the dynamic succession of the acidophilic bacterial population. The results showed that there were five bacteria in the bio-oxidation reactor: Leptospirillum ferriphilum, Acidithiobacillus caldus, Sulfobacillus thermotolerans, Alicyclobacillus sp. and a heterotrophic iron-oxidizing bacterium. The overall succession pattern was that Acidithiobacillus caldus, a sulfur oxidizer, and Sulfobacillus thermotolerans, a sulfur-iron oxidizer, were predominant at the beginning of the bio-oxidation process, but they were replaced by iron oxidizer L. ferriphilum at a later stage. The competitive advantage of At. caldus and Sb. thermotolerans over L. ferriphilum at the early stage was availability of abundant inorganic sulfur compounds, but lower pH, higher redox potential, and ferrous iron favored L. ferriphilum growth at a later stage. These results have important implications for understanding the role of acidophilic bacterial population in bio-oxidation of refractory gold-containing sulfides.  相似文献   

4.
A metabolic model for Leptospirillum ferrooxidans was developed based on the genomic information of an analogous iron oxidizing bacteria and on the pathways of ferrous iron oxidation, nitrogen and CO2 assimilation based on experimental evidence for L. ferrooxidans found in the literature. From this metabolic reconstruction, a stoichiometric model was built, which includes 86 reactions describing the main catabolic and anabolic aspects of its metabolism. The model obtained has 2 degrees of freedom, so two external fluxes were estimated to achieve a determined and observable system. By using the external oxygen consumption rate and the generation flux biomass as input data, a metabolic flux map with a distribution of internal fluxes was obtained. The results obtained were verified with experimental data from the literature, achieving a very good prediction of the metabolic behavior of this bacterium at steady state. Biotechnol. Bioeng. 2010;107:696–706. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
Earlier, we described a new family of mesophilic, strictly autotrophic Fe2+-oxidizing archaebacteria, Ferroplasmaceae, which belongs to the order Thermoplasmales and includes the genus Ferroplasma and the species F. acidiphilum (strain YT) [1]. The present work is concerned with a comparative study of phenotypic characteristics of the type strain Y and a new strain, F. acidiphilum Y-2, isolated from dense pulps during oxidation of gold-containing arsenopyrite/pyrite concentrates from the Bakyrchikskoe (Kazakhstan) and Olimpiadinskoe (Krasnoyarsk krai) ore deposits, respectively. The G+C content of DNA from strains YT and Y-2 comprised 35.1 and 35.2 mol %, respectively; the level of DNA–DNA homology between the strains was 84%. Restriction profiles of chromosomal DNA from both strains exhibited a similarity coefficient of 0.87. Genotypic characteristics of these strains indicate their affiliation to the same species. The cells of both strains are polymorphic and lack cell walls. Strains of F. acidiphilum oxidized ferrous iron and pyrite as the sole source of energy and fixed carbon dioxide as the sole carbon source. The strains required yeast extract as a growth factor. Optimum pH for cell growth ranged from 1.7 to 1.8; the temperature optima for the growth of strains YT and Y-2 were 34–36 and 40–42°, respectively. Comparative analysis of the total lipids revealed their close similarity in the strains; two glycophospholipids comprised 90% of the total lipids: lipid I, -D-glucopyranosylcaldarchaetidylglycerol (about 55%), and lipid II, trihexosylcaldarchaetidylglycerol (26%), whose isopranyl chains contained no cyclopentane rings. The carbohydrate fraction of lipid I hydrolysate contained only D-glucose, whereas hydrolysate of lipid II contained both D-glucose and D-galactose in a molar ratio of 2 : 1. Thus, it was established that the intraspecies phylogenetic divergence within F. acidiphilum is manifested in the two strains by different temperature optima against a background of similarity in other phenotypic properties.  相似文献   

6.
A thermoacidophilic consortium of chemolithotrophic microorganisms oxidizing the concentrate of high-pyrrhotite pyrite?arsenopyrite ore at 38–40°C was isolated. The most active members of the consortium were identified as Leptospirillum ferriphilum, Acidithiobacillus thiooxidans, Ferroplasma acidiphilum, and Sulfobacillus thermotolerans. Leptospirillum and Thiobacillus species were the most numerous members of the consortium and had the highest activity of ferrous iron and sulfur oxidation, respectively. The optimal temperature values for the growth of both isolates were within 35–38°C. The optimal ranges of initial pH were 1.0–1.2 and 1.75–1.85 for leptospirilla and 1.7–3.3 for thiobacilli with the pH optimum of 1.9. Significant polymorphism and specific cyclic growth with formation of vibrios, spirilla, rods with different end shape, spiral filaments, numerous “pseudococci,” and densely packed spiral filaments surrounded by a sheath were revealed for the Leptospirillum isolate. Two latter morphoforms of L. ferriphilum were not previously described. Differences in ability of the morphoforms to oxidize Fe2+ were revealed. For the first time, the possibility of growth in the presence of organic substances was demonstrated for A. thiooxidans. The rates of growth and substrate oxidation, cell size, and the maximal cell yield decreased insignificantly in comparison with the lithoautotrophic strain.  相似文献   

7.
Leptospirillum ferriphilum has been identified as the dominant, moderately thermophilic, bioleaching microorganism in bioleaching processes. It is an acidic and chemolithoautrophic bacterium that gains electrons from ferrous iron oxidation for energy production and cell growth. Genetic information about this microorganism has been limited until now, which has hindered its further exploration. In this study, the complete genome of L. ferripilum ML-04 is sequenced and annotated. The bacterium has a single circular chromosome of 2,406,157 bp containing 2,471 coding sequences (CDS), 2 rRNA operons, 48 tRNA genes, a large number of mobile genetic elements and 2 genomic islands. In silico analysis shows L. ferriphilum ML-04 fixes carbon through a reductive citric acid (rTCA) cycle, and obtains nitrogen through ammonium assimilation. The genes related to “cell envelope biogenesis, outer membrane” (6.9%) and “DNA replication, recombination and repair” (5.6%) are abundant, and a large number of genes related to heavy metal detoxification, oxidative and acidic stress defense, and signal transduction pathways were detected. The genomic plasticity, plentiful cell envelope components, inorganic element metabolic abilities and stress response mechanisms found the base for this organism’s survival in the bioleaching niche.  相似文献   

8.
Shigella species are able to grow in a variety of environments, including intracellularly in host epithelial cells. Shigella have a number of different iron transport systems that contribute to their ability to grow in these diverse environments. Siderophore iron uptake systems, heme transporters, and ferric and ferrous iron transport systems are present in these bacteria, and the genes encoding some of these systems appear to have spread among the Shigella species by horizontal transmission. Iron is not only essential for growth of Shigella but also plays an important role in regulation of metabolic processes and virulence determinants in Shigella. This regulation is mediated by the repressor protein Fur and the small RNA RyhB.  相似文献   

9.
Leptospirillum ferriphilum and Acidithiobacillus caldus are two important acidophilic microorganisms involved in iron and sulfur oxidation during bioleaching. Cell adsorption to mineral surfaces is important for the direct leaching or contact leaching of minerals. In this study, we report the competitive adsorption of binary mixtures of L. ferriphilum LF-104 and A. caldus MTH-04 onto pyrite surfaces. The Langmuir adsorption parameter (CAm) indicated that these two bacteria underwent competitive adsorption to pyrite. Real-time quantitive PCR was used to quantify the relative amounts of L. ferriphilum and A. caldus adsorbed onto the surfaces of pyrite following exposure to a mixture of these two organisms. The adsorption of L. ferriphilum was not affected by A. caldus. However, adsorption of A. caldus was greatly affected by the presence of L. ferriphilum. Zeta-potential measurements and FT-IR spectroscopic studies showed that L. ferriphilum had a higher electrostatic attraction towards pyrite when compared to A. caldus. Based on the above results, we propose a competitive adsorption model to explain the mechanism by which L. ferriphilum and A. caldus compete in their adsorption to pyrite, although L. ferriphilum dominated in the competitive adsorption process. This work provides a better understanding of the adsorption behavior of mixed microbial populations onto mineral surfaces.  相似文献   

10.
11.
The extreme acid conditions required for scorodite (FeAsO4·2H2O) biomineralization (pH below 1.3) are suboptimal for growth of most thermoacidophilic Archaea. With the objective to develop a continuous process suitable for biomineral production, this research focuses on growth kinetics of thermoacidophilic Archaea at low pH conditions. Ferrous iron oxidation rates were determined in batch-cultures at pH 1.3 and a temperature of 75°C for Acidianus sulfidivorans, Metallosphaera prunea and a mixed Sulfolobus culture. Ferrous iron and CO2 in air were added as sole energy and carbon source. The highest growth rate (0.066 h−1) was found with the mixed Sulfolobus culture. Therefore, this culture was selected for further experiments. Growth was not stimulated by increase of the CO2 concentration or by addition of sulphur as an additional energy source. In a CSTR operated at the suboptimal pH of 1.1, the maximum specific growth rate of the mixed culture was 0.022 h−1, with ferrous iron oxidation rates of 1.5 g L−1 d−1. Compared to pH 1.3, growth rates were strongly reduced but the ferrous iron oxidation rate remained unaffected. Influent ferrous iron concentrations above 6 g L−1 caused instability of Fe2+ oxidation, probably due to product (Fe3+) inhibition. Ferric-containing, nano-sized precipitates of K-jarosite were found on the cell surface. Continuous cultivation stimulated the formation of an exopolysaccharide-like substance. This indicates that biofilm formation may provide a means of biomass retention. Our findings showed that stable continuous cultivation of a mixed iron-oxidizing culture is feasible at the extreme conditions required for continuous biomineral formation.  相似文献   

12.
Bioleaching is an economical method for the recovery of metals that requires low investment and operation costs. Furthermore, it is generally more environmentally friendly than many physicochemical metal extraction processes. The bioleaching of chalcopyrite in shake flasks was investigated with pure and mixed cultures of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Acidithiobacillus caldus, and Leptospirillum ferriphilum. The mixed cultures containing both iron- and sulfur-oxidizing bacteria were more efficient than the pure culture alone. The presence of sulfur-oxidizing bacteria positively increased the dissolution rate and the percentage recovery of copper from chalcopyrite. Mixed cultures consisting of moderately thermophilic L. ferriphilum and A. caldus leached chalcopyrite more effectively than mesophilic A. ferrooxidans pure and mixed cultures. The decrease of the chalcopyrite dissolution rate in leaching systems containing A. ferrooxidans after 12–16 days coincided with the formation of jarosite precipitation as a passivation layer on the mineral surface during bioleaching. Low pH significantly reduces jarosite formation in pure and mixed cultures of L. ferriphilum and A. caldus.  相似文献   

13.
A putative operon encoding an uncharacterized ferrous iron transport (FtrABCD) system was previously identified in cDNA microarray studies. In growth studies using buffered medium at pH values ranging from pH 6.0 to 7.6, Bordetella pertussis and Bordetella bronchiseptica FtrABCD system mutants showed dramatic reductions in growth yields under iron‐restricted conditions at pH 6.0, but had no growth defects at pH 7.6. Supplementation of culture medium with 2 mM ascorbate reductant was inhibitory to alcaligin siderophore‐dependent growth at pH 7.6, but had a neglible effect on FtrABCD system‐dependent iron assimilation at pH 6.0 consistent with its predicted specificity for ferrous iron. Unlike Bordetella siderophore‐dependent and haem iron transport systems, and in agreement with its hypothesized role in transport of inorganic iron from periplasm to cytoplasm, FtrABCD system function did not require the TonB energy transduction complex. Gene fusion analysis revealed that ftrABCD promoter activity was maximal under iron‐restricted growth conditions at acidic pH. The pH of human airway surface fluids ranges from pH 5.5 to 7.9, and the FtrABCD system may supply ferrous iron necessary for Bordetella growth in acidic host microenvironments in which siderophores are ineffective for iron retrieval.  相似文献   

14.
To compare oxidative dissolution rates of chalcopyrite by different consortia of moderately thermophilic acidophiles, various defined mixed cultures of three bacteria Acidithiobacillus caldus s2, Leptospirillum ferriphilum YSK, and Sulfobacillus sp. LN and one archaeon Ferroplasma thermophilum L1 were studied in batch shake flask cultures incubated at 45 °C. Chalcopyrite dissolution was determined by measuring variations of soluble copper, ferric iron, and pH. Microbial population dynamics involved in bioleaching process were monitored using real-time quantitative polymerase chain reaction (PCR) technology. The complex consortia containing both chemoautotrophic (L. ferriphilum and At. caldus) and chemomixotrophic (Sulfobacillus LN and F. thermophilum) moderate thermophiles were found to be the most efficient in all of those tested. Mutualistic interactions between physiologically distinct moderately thermophilic acidophiles, involving transformations of iron and sulfur and transfer of organic compound, were considered to play a critical role in promoting chalcopyrite dissolution. The real-time PCR assay was reliable to analyze population dynamics of moderate thermophiles in bioleaching systems, and the analysis results were consistent with physiological characteristics of these strains.  相似文献   

15.
Construction and analysis of the 16S rDNA clone libraries was used to investigate the species composition of two thermotolerant communities of acidophilic chemolithotrophic microorganisms (ACM) isolated from the pulp of laboratory reactors used for oxidation of different gold-containing ore concentrates. The first community was formed during oxidation of the pyrite-arsenopyrite ore concentrate from the Kyuchus deposit. The clones of the bacterial component of this community belonged to the genera Sulfobacillus (32 clones) and Leptospirillum (33 clones). The Sulfobacillus clones belonged to three groups: Sb. thermosulfidooxidans, Sb. benefaciens, and Sb. thermotolerans. All Leptospirillum clones were closely related to L. ferriphilum. All clones of the archaeal component belonged to Ferroplasma acidiphilum. The microorganisms of this community were used as inoculum for biooxidation of a different mineral concentrate, the pyrrhotite-containing pyrite-arsenopyrite ore concentrate from the Olympiadinskoe deposit, and the structure of the community formed in the process was investigated. The clones of the bacterial component of the second community also belonged to the genera Sulfobacillus (14 clones) and Leptospirillum (48 clones). The Sulfobacillus clones belonged to the species Sb. thermosulfidooxidans (13 clones) and Sb. thermotolerans (1 clone). All Leptospirillum clones were closely related to L. ferriphilum. All clones of the archaeal component belonged to Ferroplasma acidiphilum. During the adaptation of the community to a new oxidized mineral substrate, both the composition and the ratio of the constituent microbial species changed.  相似文献   

16.
The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures was examined, using on-line off-gas analyses to measure the oxygen and carbon dioxide consumption rates continuously. A cell suspension from continuous cultures at steady state was used as the inoculum. It was observed that a dynamic phase occurred in the initial phase of the experiment. In this phase the bacterial ferrous iron oxidation and growth were uncoupled. After about 16 h the bacteria were adapted and achieved a pseudo-steady state, in which the specific growth rate and oxygen consumption rate were coupled and their relationship was described by the Pirt equation. In pseudo-steady state, the growth and oxidation kinetics were accurately described by the rate equation for competitive product inhibition. Bacterial substrate consumption is regarded as the primary process, which is described by the equation for competitive product inhibition. Subsequently the kinetic equation for the specific growth rate, μ, is derived by applying the Pirt equation for bacterial substrate consumption and growth. The maximum specific growth rate, μ max, measured in the batch culture agrees with the dilution rate at which washout occurs in continuous cultures. The maximum oxygen consumption rate, q O2,max, of the cell suspension in the batch culture was determined by respiration measurements in a biological oxygen monitor at excess ferrous iron, and showed changes of up to 20% during the course of the experiment. The kinetic constants determined in the batch culture slightly differ from those in continuous cultures, such that, at equal ferric to ferrous iron concentration ratios, biomass-specific rates are up to 1.3 times higher in continuous cultures. Received: 8 February 1999 / Accepted: 17 February 1999  相似文献   

17.
A moderately thermophilic and acidophilic sulfur-oxidizing bacterium named S2, was isolated from coal heap drainage. The bacterium was motile, Gram-negative, rod-shaped, measured 0.4 to 0.6 by 1 to 2 μm, and grew optimally at 42–45°C and an initial pH of 2.5. The strain S2 grew autotrophically by using elemental sulfur, sodium thiosulfate and potassium tetrathionate as energy sources. The strain did not use organic matter and inorganic minerals including ferrous sulfate, pyrite and chalcopyrite as energy sources. The morphological, biochemical, physiological characterization and analysis based on 16S rRNA gene sequence indicated that the strain S2 is most closely related to Acidithiobacillus caldus (>99% similarity in gene sequence). The combination of the strain S2 with Leptospirillum ferriphilum or Acidithiobacillus ferrooxidans in chalcopyrite bioleaching improved the copper-leaching efficiency. Scanning electron microscope (SEM) analysis revealed that the chalcopyrite surface in a mixed culture of Leptospirillum ferriphilum and Acidithiobacillus caldus was heavily etched. The energy dispersive X-ray (EDX) analysis indicated that Acidithiobacillus caldus has the potential role to enhance the recovery of copper from chalcopyrite by oxidizing the sulfur formed during the bioleaching progress.  相似文献   

18.
The effect of different organic compounds (glucose, fructose, ribose, glycine, alanine, pyruvate, acetate, citrate, and yeast extract) as well as of the wastes of food production (molasses, stillage, sweet whey), on the growth of iron-oxidizing acidophilic microorganisms and biooxidation of ferrous iron was studied. Representatives of the microorganisms predominating in biohydrometallurgical processes—archaea of the family Ferroplasmaceae (A. aeolicum V1T, A. cupricumulans BH2T, Acidiplasma sp. MBA-1, Ferroplasma acidiphilum B-1) and bacteria of the genus Sulfobacillus (S. thermosulfidooxidans SH 10–1, S. thermotolerans Kr1T)—were the subjects of the study. All studied strains most actively grew and oxidized ferrous iron in the presence of yeast extract, which is probably due to the presence of a large number of different growth factors in its composition, while others substrates provided growth of microorganisms and ferrous iron oxidation.  相似文献   

19.
《Process Biochemistry》2007,42(9):1265-1271
The aim of this paper is to determine the efficiency of bioleaching of arsenic in realgar, a Chinese mineral drug, using pure cultures of Acidithiobacillus ferrooxidans or Acidithiobacillus thiooxidans and a mixed culture of A. ferrooxidans and A. thiooxidans. The experiments were carried out in shaker flasks, at 150 rpm, 30 °C at a culture pH of 1.80. To investigate the mechanism of the bioleaching in realgar, media with and without ferrous iron were chosen for the experiments. The results showed that the leaching rate of arsenic in realgar after 20 days was higher (43%) in A. ferrooxidans cultures with ferrous iron compared to cultures without ferrous iron (10%), and the leaching rate of A. thiooxidans cultures only increased from 21% to 23% in the presence of ferrous iron. The leaching rate of arsenic in mixed culture with ferrous iron was greatly enhanced from 16% to 56%, indicating that bioleaching in mixed culture is preferable for the dissolution of realgar.  相似文献   

20.
Three kinds of samples (acid mine drainage, coal mine wastewater, and thermal spring) derived from different sites were collected in China. Thereafter, these samples were combined and then inoculated into a basal salts solution in which different substrates (ferrous sulfate, elemental sulfur, and chalcopyrite) served as energy sources. After that, the mixed cultures growing on different substrates were pooled equally, resulting in a final mixed culture. After being adapted to gradually increasing pulp densities of chalcopyrite concentrate by serial subculturing for more than 2 years, the final culture was able to efficiently leach the chalcopyrite at a pulp density of 20% (wt/vol). At that pulp density, the culture extracted 60.4% of copper from the chalcopyrite in 25 days. The bacterial and archaeal diversities during adaptation were analyzed by denaturing gradient gel electrophoresis and constructing clone libraries of the 16S rRNA gene. The results show that the culture consisted mainly of four species, including Leptospirillum ferriphilum, Acidithiobacillus caldus, Sulfobacillus acidophilus, and Ferroplasma thermophilum, before adapting to a pulp density of 4%. However, L. ferriphilum could not be detected when the pulp density was greater than 4%. Real-time quantitative PCR was employed to monitor the microbial dynamics during bioleaching at a pulp density of 20%. The results show that A. caldus was the predominant species in the initial stage, while S. acidophilus rather than A. caldus became the predominant species in the middle stage. F. thermophilum accounted for the greatest proportion in the final stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号