首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein-energy malnutrition (PEM) is a common post-stroke problem. PEM can independently induce a systemic acute-phase response, and pre-existing malnutrition can exacerbate neuroinflammation induced by brain ischemia. In contrast, the effects of PEM developing in the post-ischemic period have not been studied. Since excessive inflammation can impede brain remodeling, we investigated the effects of post-ischemic malnutrition on neuroinflammation, the acute-phase reaction, and neuroplasticity-related proteins. Male, Sprague-Dawley rats were exposed to global forebrain ischemia using the 2-vessel occlusion model or sham surgery. The sham rats were assigned to control diet (18% protein) on day 3 after surgery, whereas the rats exposed to global ischemia were assigned to either control diet or a low protein (PEM, 2% protein) diet. Post-ischemic PEM decreased growth associated protein-43, synaptophysin and synaptosomal-associated protein-25 immunofluorescence within the hippocampal CA3 mossy fiber terminals on day 21, whereas the glial response in the hippocampal CA1 and CA3 subregions was unaltered by PEM. No systemic acute-phase reaction attributable to global ischemia was detected in control diet-fed rats, as reflected by serum concentrations of alpha-2-macroglobulin, alpha-1-acid glycoprotein, haptoglobin, and albumin. Acute exposure to the PEM regimen after global brain ischemia caused an atypical acute-phase response. PEM decreased the serum concentrations of albumin and haptoglobin on day 5, with the decreases sustained to day 21. Serum alpha-2-macroglobulin concentrations were significantly higher in malnourished rats on day 21. This provides the first direct evidence that PEM developing after brain ischemia exerts wide-ranging effects on mechanisms important to stroke recovery.  相似文献   

2.
The liver can be a primary target organ for bacterial endotoxins--lipopolysaccharides, which serve as the major triggers of anaphylotoxin's generation. Both lipopolysaccharides and anaphylotoxins induce the acute-phase reaction in the liver. The acute-phase reaction comprises a variety of systemic changes. Synthesis of several plasma proteins in the liver and glucose output from hepatocytes undergo dramatic changes during inflammation. These changes are mediated by soluble factors. Mechanism of signal transduction is reviewed in detail. Attention is payed to the differences between expression of the lipopolysaccharide receptors under normal and inflammatory conditions.  相似文献   

3.
4.
5.
Obesity and type 2 diabetes are associated with increased production of Galectin-3 (Gal-3), a protein that modulates inflammation and clearance of glucose adducts. We used Lean and Diet-induced Obese (DIO) WT and Gal-3 KO mice to investigate the role of Gal-3 in modulation of adiposity, glucose metabolism and inflammation. Deficiency of Gal-3 lead to age-dependent development of excess adiposity and systemic inflammation, as indicated by elevated production of acute-phase proteins, number of circulating pro-inflammatory Ly6Chigh monocytes and development of neutrophilia, microcytic anemia and thrombocytosis in 20-week-old Lean and DIO male Gal-3 KO mice. This was associated with impaired fasting glucose, heightened response to a glucose tolerance test and reduced adipose tissue expression of adiponectin, Gal-12, ATGL and PPARγ, in the presence of maintained insulin sensitivity and hepatic expression of gluconeogenic enzymes in 20-week-old Gal-3 KO mice compared to their diet-matched WT controls. Expression of PGC-1α and FGF-21 in the liver of Lean Gal-3 KO mice was comparable to that observed in DIO animals. Impaired fasting glucose and altered responsiveness to a glucose load preceded development of excess adiposity and systemic inflammation, as demonstrated in 12-week-old Gal-3 KO mice. Finally, a role for the microflora in mediating the fasting hyperglycemia, but not the excessive response to a glucose load, of 12-week-old Gal-3 KO mice was demonstrated by administration of antibiotics. In conclusion, Gal-3 is an important modulator of glucose metabolism, adiposity and inflammation.  相似文献   

6.
7.
A cloning of hepatic cDNAs associated with the early phase of an acute, systemic inflammation was carried out by differential screening of arrayed cDNA clones from rat livers obtained at 4-8 h postchallenge with Freund's complete adjuvant. End sequencing of 174 selected clones provided three cDNA groups that coded for: (i) 23 known acute-phase proteins, (ii) 31 known proteins whose change in hepatic synthesis during an acute phase was so far unsuspected, and (iii) 36 novel proteins whose cDNAs were completely sequenced. For 16 proteins in the third group the hepatic mRNA could be detected and quantitated by Northern blot hybridization in Freund's adjuvant-challenged animals, and an extrahepatic expression in healthy animals was further investigated. Matching the open reading frames of the 36 novel proteins with general and specialized data libraries indicated the potential relationships of 16 of these proteins with known protein families/superfamilies and/or the presence of functional domains previously described in other proteins. Overall, our search for novel inflammation-associated proteins selected mostly known or as yet undescribed proteins with an intracellular or membrane location, which extends our knowledge of the proteins involved in the intracellular metabolism of hepatic cells during a systemic, acute-phase response. Finally, some of the cDNAs above allowed us to successfully identify hepatic mRNAs that are differentially expressed in acute vs chronic (polyarthritis) inflammatory conditions in rat.  相似文献   

8.
Anemia of inflammation in patients with acute or chronic acute-phase activation is a common clinical problem. Hepcidin is a peptide shown to be the principal regulator of the absorption and systemic distribution of iron. Main inducers of hepcidin are iron overload, hypoxia and inflammation, where the latter has been linked to hepcidin via increased interleukin-6 (IL-6). This article addresses the impact and time course of postoperative acute-phase reaction in humans following heart surgery on prohepcidin, hepcidin, hematological markers and IL-6 concentrations. Serum concentrations of prohepcidin, hepcidin, IL-6 and hematological iron parameters were studied in five male patients without infection before and after heart surgery. This study, which is the first to report the impact on serum hepcidin and serum prohepcidin concentrations in patients following surgery, clearly demonstrates the induction of hypoferremia due to the postoperative acute-phase reaction. Significant changes were seen for serum iron concentration, transferrin saturation, total iron binding capacity and hemoglobin concentration. A significant increase in ferritin concentration was seen 96-144 h postoperatively. Additionally, there were significant alterations in both serum hepcidin after 96-144 h and serum prohepcidin after 48 h compared with preoperative values. Serum prohepcidin decreased, whereas serum hepcidin increased. In conclusion, changes in serum prohepcidin were followed by an increase in serum hepcidin. This speaks in favor of a chain of action where proteolytic trimming of serum prohepcidin results in increased serum hepcidin. However, hypoferremia appeared prior to the changes in serum prohepcidin and serum hepcidin.  相似文献   

9.

Background  

Acute-phase response involves the simultaneous altered expression of serum proteins in association to inflammation, infection, injury or malignancy. Studies of the acute-phase response usually involve determination of the levels of individual acute-phase serum proteins. In the present study, the acute-phase response of patients with epithelial (EOCa) and germ-line (GOCa) ovarian carcinoma was investigated using the gel-based proteomic approach, a technique which allowed the simultaneous assessment of the levels of the acute-phase serum high abundance proteins. Data obtained were validated using ELISA and immunostaining of biopsy samples.  相似文献   

10.
Interleukin-6 regulates hepatic transporters during acute-phase response   总被引:2,自引:0,他引:2  
Cholestasis develops during inflammatory conditions characterized by the release of cytokines like interleukin-6 (IL-6), which is the major player in the hepatic acute-phase response. However, the exact contribution of IL-6 to transporter down-regulation is unclear. Therefore, we compared wild-type and IL-6-deficient mice after IL-6-injection and induction of an aseptic (turpentine-injection) or septic (LPS-injection) acute-phase response. Down-regulation of basolateral (Ntcp, Oatp1, and Mrp3) and canalicular (Mrp2, Bsep) transporter mRNA occurred after treatment with IL-6, turpentine, and LPS. In IL-6-deficient mice, turpentine failed to decrease mRNA-levels of basolateral and canalicular transporters, whereas LPS-mediated down-regulation of Ntcp, Mrp3, and Mrp2 was abolished at later time points (24 h). In conclusion, induction of an aseptic and septic acute-phase response leads to the down-regulation of basolateral and canalicular organic anion transporters. IL-6 is required for transporter down-regulation during aseptic inflammation. Furthermore, IL-6 also contributes to transporter regulation during LPS-induced cholestasis at more delayed time points.  相似文献   

11.
12.
T-kininogen gene expression is induced during aging.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

13.
Recruitment of CD4(+) T cells into islets is a critical component of islet inflammation (insulitis) leading to type 1 diabetes; therefore, determining if conditions used to treat diabetes change their trafficking patterns is relevant to the outcome. Cotransfer of CD4(+)BDC2.5 (BDC) cells with non-CD4 splenocytes obtained from newly diabetic NOD mice, but not when they are transferred alone, induces accelerated diabetes. It is unclear whether these splenocytes affect diabetes development by altering the systemic and/or local trafficking and proliferation patterns of BDC cells in target and nontarget tissues. To address these questions, we developed an animal model to visualize BDC cell trafficking and proliferation using whole-body in vivo bioluminescence imaging and used the images to direct tissue sampling for further analyses of the cell distribution within tissues. The whole-body, or macroscopic, trafficking patterns were not dramatically altered in both groups of recipient mice. However, the local patterns of cell distribution were distinct, which led to invasive insulitis only in cotransferred mice with an increased number of islet-infiltrating CD11b(+) and CD11c(+) cells. Taken together, the non-CD4 splenocytes act locally by promoting invasive insulitis without altering the systemic trafficking patterns or proliferation of BDC cells and thus contributing to diabetes by altering the localization within the tissue.  相似文献   

14.
The central nervous system (CNS) regulates innate immune responses through hormonal and neuronal routes. The neuroendocrine stress response and the sympathetic and parasympathetic nervous systems generally inhibit innate immune responses at systemic and regional levels, whereas the peripheral nervous system tends to amplify local innate immune responses. These systems work together to first activate and amplify local inflammatory responses that contain or eliminate invading pathogens, and subsequently to terminate inflammation and restore host homeostasis. Here, I review these regulatory mechanisms and discuss the evidence indicating that the CNS can be considered as integral to acute-phase inflammatory responses to pathogens as the innate immune system.  相似文献   

15.
Iron homeostasis in chronic inflammation   总被引:1,自引:0,他引:1  
Inflammation induced anemia and resistance to erythropoietin are common features in patients with chronic kidney disease (CKD). Elevated levels of cytokines and enhanced oxidative stress, conditions associated with inflammatory states, are implicated in the development of anemia. Accumulating evidence suggests that activation of cytokine cascade and the associated acute-phase response, as it often occurs in patients with CKD, divert iron from erythropoiesis to storage sites within the reticuloendothelial system leading to functional iron deficiency and subsequently to anemia or resistance to erythropoietin. Other processes have also been shown to be involved in the pathogenesis of anemia provoked by the activated immune system including an inhibition of erythroid progenitor proliferation and differentiation, a suppression of erythropoietin production and a blunted response to erythropoietin. The present review concerns the underlying alterations in iron metabolism induced by chronic inflammation that result in anemia.  相似文献   

16.
In the present study, we have analyzed the direct effects of cytokines, which mediate the acute-phase response in liver, on connexin expression and gap-junctional intercellular communication in immortalized MHSV12 mouse hepatocytes. When these cells were stimulated for 24 h with interleukin 1 and interleukin 6, the amount of connexin26 (Cx26) mRNA increased together with β?fibrinogen mRNA, as expected for this positive acute-phase gene. In contrast, connexin32 (Cx32) mRNA expression was not affected under these conditions. Indirect immunfluorescence revealed a drastic decrease in Cx32 signals, whereas slightly more Cx26 signals were found. Stronger stimulation with interleukin 1 and tumor necrosis factor α gave a dose-dependent increase in steady state levels of Cx26 and β-fibrinogen mRNA, but no further change in Cx32 mRNA level was seen. However, when Cx32 protein was analyzed on immunoblots, we found a 5-fold decrease in expression even at low cytokine doses that did not affect Cx32 mRNA expression. Under these conditions, cell to cell transfer of Lucifer yellow, microinjected into immortalized hepatocytes, was decreased by 70%, suggesting that intercellular communication through Cx32 channels was partially inhibited earlier than other genetic alterations characteristic of the acute-phase response. Thus, the major hepatic gap junction protein was largely downregulated at the beginning of the experimental inflammatory reaction, but about 30% of gap-junctional intercellular communication was maintained. This suggests that, during the acute-phase response, the second hepatic Cx26 protein may compensate in part for the downregulation of the Cx32 protein.  相似文献   

17.
Mice treated with lipopolysaccharide (LPS)/D-galactosamine (GalN) selectively develop hepatic failure. The acute-phase protein alpha(1)-acid glycoprotein (AGP) has been demonstrated to protect mice from LPS/GalN-induced lethality. Metallothionein (MT), which is a low-molecular weight, cysteine-rich, metal-binding protein, is also induced in the acute-phase reaction. However, the specific function of MT in acute-phase response remain to be elucidated. We showed that MT-null mice were more sensitive to LPS/GalN-induced lethality than wild-type mice. The increase in vital mediator levels, TNF-alpha and NO were of similar levels in wild-type and MT-null mice. A remarkable increase in plasma platelet-activating factor levels was not observed in our experimental conditions. On the other hands, the mRNA level of AGP in the response to LPS/GalN was decreased in MT-null mice compared to wild-type mice. These results indicated that MT may have the potential to prevent LPS/GalN-induced lethality, at least through the attenuation of AGP induction.  相似文献   

18.
Sensing environmental lipids by dendritic cell modulates its function   总被引:3,自引:0,他引:3  
Because of its oxidative modification during the acute-phase response to an aggression, low density lipoprotein (LDL) can be regarded as a source of lipid mediators that can act both to promote and inhibit inflammation. This can be exemplified by the production of anti-inflammatory oxidized fatty acids and proinflammatory lysophosphatidylcholine (LPC) during LDL oxidation. We have shown previously that oxidized LDL (oxLDL) plays an active role at the interface between innate and adaptive immunity by delivering instructive molecules such as LPC, which promotes mature dendritic cell (DC) generation from differentiating monocytes. It is shown in this study that LPC affects the signaling pathway of peroxisome proliferator-activated receptors (PPARs). LPC-induced DC maturation is associated with complete inhibition of PPARgamma activity and up-regulation of the activity of an uncharacterized nuclear receptor that bind peroxisome proliferator response element. Oxidized fatty acids generated during LDL oxidation are natural ligands for PPARgamma and inhibit oxLDL- and LPC-induced maturation. Inhibition experiments with synthetic PPARgamma ligands suggested a PPARgamma-dependent and independent effect of LPC on DC maturation. Therefore, the relative amount of oxidized fatty acids and LPC influences the immunological functions of oxLDL on DC, in part by regulating the PPAR pathway. By sensing the biochemical composition of lipoprotein particles, the innate immune system may thus identify various endogenous signals that influence the immune response during the acute-phase reaction. The therapeutic emulsion intralipid also blocks LPC action on PPAR activity and DC maturation. Intralipid may thus be an alternative therapeutic strategy for some chronic inflammatory diseases.  相似文献   

19.
The acute-phase response is an immediate reaction of the host against invading microorganisms. We show here that oligodeoxynucleotides (ODNs) containing a CpG motif rapidly induce the major murine acute-phase proteins in vivo , i.e. serum amyloid A (SAA) and serum amyloid P (SAP). Serum levels of these proteins are elevated within 12 h and peak at 24 h after the injection of CpG-ODN or endotoxin. Liver cells produce the proteins with the same kinetics. Injection of interleukin 6 (IL-6), IL-1β and tumour necrosis factor α (TNF-α) induces SAA and SAP in vivo , but the CpG-ODN-mediated induction does not depend on the presence of the TNF receptor p55, as the acute-phase response in TNF receptor p55-deficient mice does not differ from that of wild-type mice. Aside from CpG-ODN, bacterial genomic DNA also induces the acute-phase response in LPS-resistant C3H/Hej mice. The induction of the major acute-phase proteins SAA and SAP is blocked by the simultaneous injection of CpG-ODN together with d -galactosamine ( d -GalN). As d -GalN sensitizes the host for the toxic effects of TNF-α, a possible mechanism could be the prevention of synthesis of the major acute-phase proteins SAA and SAP.  相似文献   

20.
Compromised blood–brain barrier permeability resulting from systemic inflammation has been implicated as a possible cause of brain damage in fetuses and newborns and may underlie white matter damage later in life. Rats at postnatal day (P) 0, P8 and P20 and opossums (Monodelphis domestica) at P15, P20, P35, P50 and P60 and adults of both species were injected intraperitoneally with 0.2–10 mg/kg body weight of 055:B5 lipopolysaccharide. An acute-phase response occurred in all animals. A change in the permeability of the blood–brain barrier to plasma proteins during a restricted period of postnatal development in both species was determined immunocytochemically by the presence of proteins surrounding cerebral blood vessels and in brain parenchyma. Blood vessels in white matter, but not grey matter, became transiently permeable to proteins between 10 and 24 h after lipopolysaccharide injection in P0 and P8 rats and P35–P60 opossums. Brains of Monodelphis younger than P35, rats older than P20 and adults of both species were not affected. Permeability of the blood–cerebrospinal fluid (CSF) barrier to proteins was not affected by systemic inflammation for at least 48 h after intraperitoneal injection of lipopolysaccharide. These results show that there is a restricted period in brain development when the blood–brain barrier, but not the blood–CSF barrier, to proteins is susceptible to systemic inflammation; this does not appear to be attributable to barrier immaturity but to its stage of development and only occurs in white matter.This work was supported by NIH grant number R01 NS043949-01A1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号