首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we test the hypothesis that reactive oxygen metabolites are delivered from neutrophils to simultaneously both the cell surface and cytosol of opsonized YAC erythroleukemic target cells. Using 5′ (or 6′) carboxyl-2′,7′-dichlorodihy-drofluorescein (H2-CDCF) diacetate as starting material, we synthesized its succinimidyl ester derivative. H2-CDCF-conjugated IgG prepared from the succinimidyl ester derivative was used to opsonize targets. In vitro studies have shown that H2-CDCF becomes fluorescent upon exposure to reactive oxygen metabolites, including hydrogen peroxide. Using video intensified epifluorescence microscopy, we observed that reactive oxygen metabolites are deposited on tumor cell membranes during neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC). This deposition process is catalase sensitive. The role of reactive oxygen metabolites produced by neutrophils in triggering the oxidation of H2-CDCF is further supported by the observation that neutrophils from chronic granulomatous disease (CGD) patients did not affect target fluorescence. YAC tumor cells were also labeled with dihydrorhodamine 123 or dihydrotetramethylrosamine. The oxidized forms of these reagents were found within the cytoplasm of YAC cells. During ADCC normal neutrophils, but not neutrophils obtained from CGD patients, triggered the oxidation of dihydrorhodamine 123 and dihydrotetramethyl-rosamine within tumor cells. Using two-color automated epifluorescence micros-copy, we could not detect temporal intermediates with fluorescence in only one compartment, i.e., either solely on the plasma membrane or in the cytoplasm. These observations suggest that reactive oxygen metabolites cross target membranes (<12) sec. These studies show that reactive oxygen metabolites are deposited both onto and into tumor cells during ADCC, wherein both compartments could become vulnerable to oxidant-mediated damage. © 1993 Wiley-Liss, Inc.  相似文献   

2.
In vitro natural killer (NK) activity expressed by blood mononuclear cells from patients with chronic granulomatous disease of childhood (CGD) was equivalent to that expressed by cells from normal, healthy volunteers. Because neutrophils and monocytes from these same donors exhibited extremely depressed oxidative functions, our data could be interpreted to show that a) NK cells derived from a unique and separate cellular lineage unaffected by the disease-related oxidative defect, or b) the in vitro cytolytic mechanism(s) of NK cells were not dependent on oxygen metabolites. These hypotheses were examined by using as NK effector cells large granular lymphocytes (LGL) from healthy donors whose monocytes and neutrophils had normal oxidative functions. Such functions were measured in the nitroblue tetrazolium dye reduction assay, which is a qualitative measurement of superoxide anion production; by reduction of ferric cytochrome c, a more specific and quantitative measurement of superoxide anion production; and in the luminol-enhanced chemiluminescence assay, an extremely sensitive measure of several reactive oxygen radicals, including superoxide anion, hydroxyl radical, and singlet oxygen. Whereas monocytes and neutrophils from healthy donors were readily stimulated with zymosan or phorbol myristate acetate (PMA) in each of these assays. LGL produced no detectable amounts of oxygen metabolites when co-incubated either with K562 erythroleukemia cells, PMA, E. coli endotoxin, or the calcium ionophore A23187. Thus, because NK cell activity is normal in CGD patients with major oxidative defects, and because no reactive oxygen metabolites could be detected in LGL that simultaneously exhibited potent NK activity, we conclude that in vitro NK activity by human mononuclear cells involves a lytic mechanism(s) independent of oxygen metabolites.  相似文献   

3.
Kinetics of neutrophil inactivation was investigated in vitro by Nitroblue tetrazolium (NBT) test in the process of their contact with the substrate. It has been shown that the previous thermostatation results in an exclusive inactivation of neutrophils with high reaction ability leading to their complete inactivation. Such an inactivation is a consequence of cell contacts with the substrate, whose chemical structure and physicochemical properties define the process regularities. The neutrophil inactivation is probably not a consequence of the contact itself but may follow the next scheme: stimulus (contact with substrate)--generation of reactive oxygen metabolites--inactivation. Two functional unequal classes of neutrophils were differentiated on the basis of different levels of their reactive oxygen metabolite generation, and on their ability to inactivation. In vitro cells of one of these classes actively generate reactive oxygen metabolites to be inactivated in consequence of interaction with the substrate, whereas cells of the other class produce reactive oxygen metabolites less actively and are nor inactivated. Evidently, in vivo cells of the are phagocytes and those of the latter fulfill other functions.  相似文献   

4.
Taurine is one of the most abundant non-essential amino acid in mammals and has many physiological functions in the nervous, cardiovascular, renal, endocrine, and immune systems. Upon inflammation, taurine undergoes halogenation in phagocytes and is converted to taurine chloramine (TauCl) and taurine bromamine. In the activated neutrophils, TauCl is produced by reaction with hypochlorite (HOCl) generated by the halide-dependent myeloperoxidase system. TauCl is released from activated neutrophils following their apoptosis and inhibits the production of inflammatory mediators such as, superoxide anion, nitric oxide, tumor necrosis factor-α, interleukins, and prostaglandins in inflammatory cells at inflammatory tissues. Furthermore, TauCl increases the expressions of antioxidant proteins, such as heme oxygenase 1, peroxiredoxin, thioredoxin, glutathione peroxidase, and catalase in macrophages. Thus, a central role of TauCl produced by activated neutrophils is to trigger the resolution of inflammation and protect macrophages and surrounding tissues from being damaged by cytotoxic reactive oxygen metabolites overproduced during inflammation. This is achieved by attenuating further production of proinflammatory cytokines and reactive oxygen metabolites and also by increasing the levels of antioxidant proteins that are able to scavenge and diminish the production of cytotoxic oxygen metabolites. These findings suggest that TauCl released from activated neutrophils may be involved in the recovery processes of cells affected by inflammatory oxidative stresses and thus TauCl could be used as a potential physiological agent to control pathogenic symptoms of chronic inflammatory diseases.  相似文献   

5.
Like neutrophils, phagocytizing macrophages undergo a "respiratory burst" in which significant quantities of oxygen are drawn into the cell. The consumed oxygen is not used in oxidative phosphorylation but, rather, in the formation of superoxide anion (O2) and H2O2. These oxygen metabolites and the products of their interaction, in particular hydroxyl radical (OH), have been implicated in the killing of ingested bacteria by neutrophils. Their role in macrophage microbicidal activity has not been fully defined. However, activated macrophages, which mediate increased resistance to infection in vivo, have a markedly increased capacity to generate O2 and H2O2 in vitro when stimulated by phagocytosis or surface perturbation. The enhanced capacity of activated macrophages to generate highly reactive oxygen metabolites during phagocytosis could contribute to the improved microbicidal and tumoricidal activity of these cells.  相似文献   

6.
The outer membrane protein A (OmpA) of Gram-negative bacteria has been ascribed multiple functions including maintenance of structural membrane integrity and porin activity. OmpA has also been implicated in various host defense processes in that it contributes to bacterial serum resistance and activates certain immune cells. Recently, OmpA was shown to be the molecular target for neutrophil elastase (NE), and Escherichia coli mutants lacking OmpA were resistant to the bactericidal effects of NE. In addition to NE, neutrophils use a variety of other antibacterial effector molecules such as oxygen radicals and bactericidal peptides or proteins. The aim of this study was to investigate the role of E. coli OmpA regarding susceptibility to other neutrophil-derived defense systems. We found that OmpA-deficient (OmpA(-)), but not wild-type isogenic, E. coli activated human neutrophils to produce oxygen radicals intracellularly. This activation was found to require an intact neutrophil cytoskeleton but was independent of bacterial phagocytosis. Furthermore, we found that the OmpA(-) strain was more susceptible to membrane-acting bactericidal peptides than the wild-type strain, although the susceptibility to different oxygen radicals was independent of the presence of OmpA. Taken together, these data suggest an important role for OmpA in the context of bacteria vs. host interactions.  相似文献   

7.
Recent studies have shown that human neutrophils play a significant protective role in mycobacteria infection. When encountered with mycobacteria, neutrophils exhibit the typical early bactericidal responses including phagocytosis and generation of reactive oxygen intermediates (ROI), but the underlying mechanisms are largely unknown. The present study shows that stimulation of neutrophils with an attenuated strain of Mycobacterium tuberculosis H37Ra (Mtb) led to a tyrosine kinase-dependent ROI production in these cells. Stimulation with Mtb induces a rapid and transient tyrosine phosphorylation of several proteins, one of which was identified as phospholipase C gamma 2 (PLC gamma 2). Several tyrosine-phosphorylated proteins were associated with the PLC gamma 2 precipitates from Mtb-stimulated neutrophils, of which pp46 was characterized as the Shc adapter protein. A role for PLC gamma 2-Shc association in the generation of ROI is supported by the observations that stimulation with Mtb causes the activation of p38 mitogen-activated protein kinase (MAPK), a downstream target of the Shc/Ras signaling cascade, and that the effect of genistein on ROI production coincided with its ability to inhibit both PLC gamma 2-Shc association and p38 MAPK activation. Moreover, pretreatment of neutrophils with a PLC inhibitor markedly suppresses the Mtb-stimulated ROI production as well as p38 MAPK activation in these cells. Taken together, these results indicate that stimulation of neutrophils with Mtb triggers the tyrosine phosphorylation of PLC gamma 2 and its association with Shc, and that such association is critical for the Mtb-stimulated ROI production through activating p38 MAPK.  相似文献   

8.
Inflammation is a beneficial host response to foreign challenge involving numerous soluble factors and cell types, including polymorphonuclear granulocytes or neutrophils. Programmed cell death (apoptosis) of neutrophils has been documented in vitro as well as in vivo, and is thought to be important for the resolution of inflammation, as this process allows for engulfment and removal of senescent cells prior to their necrotic disintegration. Studies in recent years have begun to unravel the mechanism of macrophage clearance of apoptotic cells, and evidence has accrued for a critical role of externalization and oxidation of plasma membrane phosphatidylserine, and its subsequent recognition by macrophage receptors, in this process. Activated neutrophils generate vast amounts of reactive oxygen species for the purpose of killing ingested micro-organisms, and these reactive metabolites may also modulate the life-span, as well as the clearance, of the neutrophil itself. This review aims to address the latter topic, as well as to summarize current knowledge on the molecular mechanisms of neutrophil apoptosis and macrophage clearance of these cells at the site of inflammation.  相似文献   

9.
Ly108, a glycoprotein of the signaling lymphocytic activation molecule family of cell surface receptors expressed by T, B, NK, and APCs has been shown to have a role in NK cell cytotoxicity and T cell cytokine responses. In this study, we describe that CD4(+) T cells from mice with a targeted disruption of exons 2 and 3 of Ly108 (Ly108(DeltaE2+3)) produce significantly less IL-4 than wild-type CD4(+) cells, as judged by in vitro assays and by in vivo responses to cutaneous infection with Leishmania mexicana. Surprisingly, neutrophil functions are controlled by Ly108. Ly108(DeltaE2+3) mice are highly susceptible to infection with Salmonella typhimurium, bactericidal activity of Ly108(DeltaE2+3) neutrophils is defective, and their production of IL-6, IL-12, and TNF-alpha is increased. The aberrant bactericidal activity by Ly108(DeltaE2+3) neutrophils is a consequence of severely reduced production of reactive oxygen species following phagocytosis of bacteria. Thus, Ly108 serves as a regulator of both innate and adaptive immune responses.  相似文献   

10.
Reactive oxygen and ischemia/reperfusion injury of the liver   总被引:13,自引:0,他引:13  
Pharmacological experiments suggested that reactive oxygen species contribute to ischemia-reperfusion injury of the liver. Since there is no evidence that quantitatively sufficient amounts of reactive oxygen are generated intracellularly to overwhelm the strong antioxidant defense mechanisms in the liver and cause parenchymal cell injury, the role of reactive oxygen in the pathogenesis remains controversial. This paper reviews the data and conclusions obtained with pharmacological intervention studies in vivo, the sources of reactive oxygen in the liver as well as the growing evidence for the importance of liver macrophages (Kupffer cells) and infiltrating neutrophils in the pathogenesis. A comprehensive hypothesis is presented that focuses on the extracellular generation of reactive oxygen in the hepatic sinusoids, where Kupffer cell-derived reactive oxygen species seem to be involved in the initial vascular and parenchymal cell injury and indirectly also in the recruitment of neutrophils into the liver. Reactive oxygen species may also contribute to the subsequent neutrophil-dependent injury phase as one of the toxic mediators released by these inflammatory cells.  相似文献   

11.
The effect of different concentrations (0.87, 4.35, 8.7, 17.5, 25 and 35 mg/mL) of intravenous immunoglobulin G (Endobulin®) on neutrophil–endothelial cell interaction was studied using an in vitro model of human umbilical cord vein endothelial cells and human neutrophils. Because adherence of neutrophils to endothelial cells is an essential component in inflammatory processes leading to endothelial cell injury the influence of immunoglobulin G on adherence has been investigated. A second aim of the present study was to determine changes in chemiluminescence response of neutrophils during adherence to endothelial cells. Production of oxygen-derived metabolites, measured by chemiluminescence response of neutrophils, decreased significantly in the presence of 8.7 mg immunoglobulin/mL test during coincubation of neutrophils and endothelial cells (p < 0.025). The adherence of neutrophils to endothelial cells was significantly decreased at a concentration of 8.7 mg immunoglobulin/mL test (p < 0.025). The present results indicate that this preparation of immunoglobulin G might exert a protective effect on neutrophil–endothelial cell interaction by decreasing adherence of neutrophils to endothelial cells and by scavenging reactive oxygen metabolites. Therefore, the current investigation points to a probable protective effect of immunoglobulin G in oxidative diseases, such as the adult respiratory distress syndrome.  相似文献   

12.
Human neutrophils are short-lived cells that play important roles in host defense and acute inflammation by releasing hydrolytic and cytotoxic proteins and reactive oxygen derivatives. Apoptosis, a physiological mechanism for cell death, regulates both production and survival of neutrophils, representing a basic biological mechanism for this type of cells. Carotenoids may react with toxic oxygen metabolites released by neutrophils to form a multitude of carotenoid cleavage products that exert, in turn, relevant prooxidative biological effects. Recent data suggest that carotenoid oxidation products may affect neutrophil viability and function by exerting proapoptotic activity and interfering with superoxide production by activated cells. The prooxidant and proapoptotic activities of carotenoid oxidation products could account, at least in some cases, for the procancerogenic properties of carotenoid rich diet.  相似文献   

13.
Glutathione reductase (Gsr) catalyzes the reduction of glutathione disulfide to glutathione, which plays an important role in the bactericidal function of phagocytes. Because Gsr has been implicated in the oxidative burst in human neutrophils and is abundantly expressed in the lymphoid system, we hypothesized that Gsr-deficient mice would exhibit marked defects during the immune response against bacterial challenge. We report in this study that Gsr-null mice exhibited enhanced susceptibility to Escherichia coli challenge, indicated by dramatically increased bacterial burden, cytokine storm, striking histological abnormalities, and substantially elevated mortality. Additionally, Gsr-null mice exhibited elevated sensitivity to Staphylococcus aureus. Examination of the bactericidal functions of the neutrophils from Gsr-deficient mice in vitro revealed impaired phagocytosis and defective bacterial killing activities. Although Gsr catalyzes the regeneration of glutathione, a major cellular antioxidant, Gsr-deficient neutrophils paradoxically produced far less reactive oxygen species upon activation both ex vivo and in vivo. Unlike wild-type neutrophils that exhibited a sustained oxidative burst upon stimulation with phorbol ester and fMLP, Gsr-deficient neutrophils displayed a very transient oxidative burst that abruptly ceased shortly after stimulation. Likewise, Gsr-deficient neutrophils also exhibited an attenuated oxidative burst upon encountering E. coli. Biochemical analysis revealed that the hexose monophosphate shunt was compromised in Gsr-deficient neutrophils. Moreover, Gsr-deficient neutrophils displayed a marked impairment in the formation of neutrophil extracellular traps, a bactericidal mechanism that operates after neutrophil death. Thus, Gsr-mediated redox regulation is crucial for bacterial clearance during host defense against massive bacterial challenge.  相似文献   

14.
The effect of opioid peptides on the production of reactive oxygen by neutrophils in a nonfractionated leukocyte suspension and in a purified fraction of peripheral blood neutrophils was studied. Selective ??- and ??-agonists of peptide origin were shown to stimulate the spontaneous and inhibit zymosan-induced (15 ??g/mL) LDCL (luminol-dependent chemiluminescence) reactions of neutrophils in leukocyte suspension. ??-Endorphin caused a weaker inhibitory effect on zymosan-induced (15 ??g/mL) LDCL, and the ??2-agonost deltorphin II stimulated zymosan-induced (15 ??g/mL) LDCL only for 25 min of the experiment. ??-Endorphin and selective ??- and ??-agonists did not affect spontaneous or inhibited zymosan-induced (15 and 150 ??g/mL) LDCL in a purified fraction of peripheral blood neutrophils. Therefore, opioid peptides play an essential role in direct and indirect regulation of the oxygen-dependent system of neutrophil granulocyte bactericidal activity.  相似文献   

15.
Investigation ofopioid peptide effect on the production of reactive oxygen species by neutrophils in non-fractionated leukocyte suspension and in purified fraction of peripheral blood neutrophils is disclosed in this work. It was determined that selective delta- and micro-agonists of peptide origin stimulated the spontaneous and suppressed 15 mkg/ml zymosan-induced LDCL (luminol-dependent chemiluminescence) reaction of neutrophils in leukocyte suspension. beta-endorphin was found to render less marked suppressive action on 15 mkg/ml zymosan-induced LDCL, and delta2-agonist deltorphin 2 promoted 15 mkg/ml zymosan-induced LDCL only toward the 25 minutes of the experiment. beta-endorphin and selective d- and m- agonists did not affect the spontaneous and suppressed 15 mkg/ml and 150 mkg/ml zymosan-induced neutrophil LDCL. Therefore, opioid peptides play essential role in the process of direct and indirect regulation of oxygen-dependent system of neutrophil granulocyte bactericidal activity.  相似文献   

16.
Surfactant proteins (SP)-A and SP-D have been shown to affect the functions of a variety of innate immune cells and to interact with various immune proteins such as complement and immunoglobulins. The goal of the current study is to test the hypothesis that SP-A regulates IgG-mediated phagocytosis by neutrophils, which are major effector cells of the innate immune response that remove invading pathogens by phagocytosis and by extracellular killing mediated by reactive oxygen and nitrogen. We have previously shown that SP-A stimulates chemotaxis by inflammatory, but not peripheral, neutrophils. To evaluate the ability of SP-A to modulate IgG-mediated phagocytosis, polystyrene beads were coated with BSA and treated with anti-BSA IgG. SP-A significantly and specifically enhanced IgG-mediated phagocytosis by inflammatory neutrophils, but it had no effect on beads not treated with IgG. SP-A bound to IgG-coated beads and enhanced their uptake via direct interactions with the beads as well as direct interactions with the neutrophils. SP-A did not affect reactive oxygen production or binding of IgG to neutrophils and had modest effects on polymerization of actin. These data suggest that SP-A plays an important role in mediating the phagocytic response of neutrophils to IgG-opsonized particles.  相似文献   

17.
Activation of neutrophils induces generation of reactive oxygen species and release of granule enzymes, which not only participate in the bactericidal mechanisms of these cells, but also in possible tissue damage. We studied the effect of carvedilol (CARV) [0.1-100 micromol/l], an antihypertensive and cardiovascular drug with antioxidative properties, on superoxide generation (SO) and myeloperoxidase (MPO) release from isolated human neutrophils stimulated with fMLP, a specific receptor activator, or with PMA, a receptor bypassing stimulus. Unstimulated cells showed neither SO formation nor MPO release after preincubation with drug. CARV decreased fMLP and PMA stimulated MPO release and SO generation dose dependently. The inhibitory effect of CARV may attributed to non-specific action since its effect was not influenced by the type of stimulation. It might inhibit SO generation as well as MPO release either by membrane-operating stimulus (fMLP) or membrane bypassing activator (PMA).  相似文献   

18.
Reactive oxygen metabolites play an important role in ischemia-reperfusion related gastric injury. Primary sources of reactive oxygen metabolites seem to be the xanthine/xanthine oxidase system and neutrophils accumulating within the reperfused tissue. Tissue myeloperoxidase activity is an important index of neutrophil accumulation. The purpose of the present study was to clarify the effect of L-carnitine on the accumulation of neutrophils and neutrophil-induced gastric mucosal damage in rats exposed to ischemia-reperfusion. Rats were randomly divided into three groups: sham-operated, ischemia-reperfusion and ischemia-reperfusion plus L-carnitine groups. Ischemia was induced by clamping the celiac artery for 30 min and then reperfusion was established for 60 min. Gastric injury was assessed by measuring myeloperoxidase activity in gastric tissue. The neutrophil accumulation and hemorrhagic lesions due to ischemia-reperfusion in gastric mucosa were ascertained in a histological study. L-Carnitine (100 mg kg(-1)) administrated intravenously 5 min before ischemia significantly reduced both the gastric injury and myeloperoxidase activity compared with the ischemia-reperfusion group. The results suggest that L-carnitine provides marked protection against ischemia-reperfusion-related gastric injury which could be due to its ability to reduce neutrophil accumulation in ischemic tissue.  相似文献   

19.
The ability of the emulsion of perfluoroorganic compounds stabilized with proxanol 268 to affect the functions of peritoneal neutrophils was evaluated. The functional activity of neutrophils was estimated from the intensity of generation of reactive oxygen species using the method of chemiluminescent analysis. The emulsion was shown to suppress the neutrophil responses to phorbol-12-myristate-13-acetate in a dose-dependent manner. No inhibition of the activity of neutrophils in the presence of the emulsion was observed in N-formylmethionylleucylphenylalanine stimulated cells. The data obtained indirectly confirm the suggestion that the perfluoride emulsion inhibits neutrophil NADPH oxidase activity. In the presence of the perfluoride emulsion, myeloperoxidase plays a more important role in the generation of luminescent responses in both N-formylmethionylleucylphenylalanine- and phorbol-12-myristate-13-acetate-stimulated neutrophils. The effect of perfluoride emulsion results in the preferential myeloperoxidase-produced generation of reactive oxygen species in the neutrophil respiratory burst.  相似文献   

20.
The effect of different concentrations (0.06, 0.6 and 6.0 mmol/L) of ascorbic acid on neutrophil–endothelial interaction was studied using an in vitro model of human umbilical cord vein endothelial cells and human neutrophils. The aim of the study was to determine changes in chemiluminescence response of neutrophils during adherence to endothelial cells. Because adherence of neutrophils to endothelial cells is an essential component in inflammatory processes leading to endothelial cell injury, the influence of ascorbic acid on adherence and endothelial cell injury have been investigated. Production of oxygen-derived metabolites, measured by chemiluminescence response of neutrophils, decreased significantly in the presence of 6 mmol/L ascorbic acid during coincubation of neutrophils and endothelial cells (p < 0.025). The adherence of neutrophils to endothelial cells was significantly decreased at a concentration of 6 mmol/L (p < 0.0005). The inhibition of neutrophil adherence to endothelial cells was correlated with a diminished neutrophil-mediated endothelial cell injury during incubation with 6 mmol/L ascorbic acid (p < 0.0005). The present results indicate that ascorbic acid might exert a protective effect on neutrophil-mediated endothelial cell injury by decreasing adherence of neutrophils to endothelial cells and by scavenging reactive oxygen metabolites. Moreover, the current investigation points to probable protective effect of ascorbic acid on oxidant-mediated cell damage in diseases (e.g., Adult Respiratory Distress Syndrome).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号