首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transmembrane domain of the nicotinic acetylcholine receptor (nAChR) from Torpedo californica electric tissue contains both alpha-helical and beta structures. The secondary structure was investigated by Fourier transform infrared (FTIR) spectroscopy after the extramembrane moieties of the protein from the extracellular and intracellular sides of the membrane were removed by proteolysis using proteinase K. The secondary structure composition of this membrane structure was: alpha-helical 50%, beta structure and turns 40%, random 10%. The alpha-helices are shown to be oriented with respect to the membrane plane in a way allowing them to span the membrane, while no unidirectional structure for the beta structures was observed. These findings contradict previous secondary structure models based on hydropathy plots alone.  相似文献   

2.
The three-dimensional structure of the membrane-bound form of the major coat protein of Pf1 bacteriophage was determined in phospholipid bilayers using orientation restraints derived from both solid-state and solution NMR experiments. In contrast to previous structures determined solely in detergent micelles, the structure in bilayers contains information about the spatial arrangement of the protein within the membrane, and thus provides insights to the bacteriophage assembly process from membrane-inserted to bacteriophage-associated protein. Comparisons between the membrane-bound form of the coat protein and the previously determined structural form found in filamentous bacteriophage particles demonstrate that it undergoes a significant structural rearrangement during the membrane-mediated virus assembly process. The rotation of the transmembrane helix (Q16-A46) around its long axis changes dramatically (by 160°) to obtain the proper alignment for packing in the virus particles. Furthermore, the N-terminal amphipathic helix (V2-G17) tilts away from the membrane surface and becomes parallel with the transmembrane helix to form one nearly continuous long helix. The spectra obtained in glass-aligned planar lipid bilayers, magnetically aligned lipid bilayers (bicelles), and isotropic lipid bicelles reflect the effects of backbone motions and enable the backbone dynamics of the N-terminal helix to be characterized. Only resonances from the mobile N-terminal helix and the C-terminus (A46) are observed in the solution NMR spectra of the protein in isotropic q > 1 bicelles, whereas only resonances from the immobile transmembrane helix are observed in the solid-state 1H/15N-separated local field spectra in magnetically aligned bicelles. The N-terminal helix and the hinge that connects it to the transmembrane helix are significantly more dynamic than the rest of the protein, thus facilitating structural rearrangement during bacteriophage assembly.  相似文献   

3.
Fourier transform infrared spectroscopy (FTIR) was used to study the secondary structure of peptides which imitate the amino acid sequences of the C-terminal domain of the pro-apoptotic protein Bax (Bax-C) when incorporated into different lipid vesicles with or without negatively charged phospholipids. The infrared spectroscopy results showed that while the beta-sheet components are predominant in the membrane-free Bax-C secondary structure as well as in the presence of phosphatidylcholine vesicles, the peptide changes its secondary structure in the presence of negatively charged membranes, including phospholipids such as phosphatidylglycerol or phosphatidylinositol, depending on both the lipid composition and their molar ratio. The negative charges in the model membrane surface caused a marked change from beta-sheet to alpha-helix structure. Moreover, using attenuated total reflection infrared spectroscopy (ATR-FTIR), we investigated the orientation of Bax-C alpha-helical structures with respect to the normal to the internal reflection element. The orientation of Bax-C in membranes was also affected by negatively charged lipids, the presence of phosphatidylglycerol reduced the angle it forms with the normal to the germanium plate from 45 degrees in phosphatidylcholine to 27 degrees in phosphatidylglycerol vesicles. These results highlight the importance of lipid-protein interaction for the correct folding of membrane proteins and they suggest that the C-terminal domain of Bax will only span membranes with a net negative charge in their surface.  相似文献   

4.
Paired intercellular transmembrane channels, termed connexons, comprised of hexameric assemblies of gap junction protein, were isolated and purified from rat liver by exploiting their resistance to either Sarkosyl detergent solubilization or alkali extraction. The secondary structures of the gap junction proteins prepared by these methods were compared by circular dichroism (CD) spectroscopy. Both the spectra and the calculated net secondary structures of the proteins obtained by the two isolation methods were different. The protein isolated by the Sarkosyl treatment was found to be approximately 50% alpha-helical, while protein isolated by alkali extraction had a lower helix content (approximately 40%). In both types of preparations, however, the helical content of the gap junction protein was sufficiently large to be consistent with an all-helical model for the membrane-spanning parts of the structure. CD spectroscopy was also used to examine the effects of proteolytic digestion of the cytoplasmic domain on the net secondary structure of the detergent-treated gap junction protein. The membrane-bound fragments had a slightly higher proportion of their residues that were alpha-helical in nature, suggesting that the transmembrane and/or intra-gap domains are indeed enriched in this type of secondary structure. This information constrains the range of models which can be realistically proposed for the channel structure.  相似文献   

5.
The dermaseptins S are closely related peptides with broad-spectrum antibacterial activity that are produced by the skin of the South American hylid frog, Phyllomedusa sauvagei. These peptides are polycationic (Lys-rich), alpha-helical, and amphipathic, with their polar/charged and apolar amino acids on opposing faces along the long axis of the helix cylinder. The amphipathic alpha-helical structure is believed to enable the peptides to interact with membrane bilayers, leading to permeation and disruption of the target cell. We have identified new members of the dermaseptin S family that do not resemble any of the naturally occurring antimicrobial peptides characterized to date. One of these peptides, designated dermaseptin S9, GLRSKIWLWVLLMIWQESNKFKKM, has a tripartite structure that includes a hydrophobic core sequence encompassing residues 6-15 (mean hydrophobicity, +4.40, determined by the Liu-Deber scale) flanked at both termini by cationic and polar residues. This structure is reminiscent of that of synthetic peptides originally designed as transmembrane mimetic models and that spontaneously become inserted into membranes [Liu, L., and Deber, C. M. (1998) Biopolymers 47, 41-62]. Dermaseptin S9 is a potent antibacterial, acting on gram-positive and gram-negative bacteria. The structure of dermaseptin S9 in aqueous solution and in TFE/water mixtures was analyzed by circular dichroism and two-dimensional NMR spectroscopy combined with molecular dynamics calculations. Dermaseptin S9 is aggregated in water, but a monomeric nonamphipathic alpha-helical conformation, mostly in residues 6-21, is stabilized by the addition of TFE. These results, combined with membrane permeabilization assays and surface plasmon resonance analysis of the peptide binding to zwitterionic and anionic phospholipid bilayers, demonstrate that spatial segregation of hydrophobic and hydrophilic/charged residues on opposing faces along the long axis of a helix is not essential for the antimicrobial activity of cationic alpha-helical peptides.  相似文献   

6.
Synthetic peptides based on the N-terminal domain of human surfactant protein B (SP-B1-25; 25 amino acid residues; NH2-FPIPLPYCWLCRALIKRIQAMIPKG) retain important lung activities of the full-length, 79-residue protein. Here, we used physical techniques to examine the secondary conformation of SP-B1-25 in aqueous, lipid and structure-promoting environments. Circular dichroism and conventional, 12C-Fourier transform infrared (FTIR) spectroscopy each indicated a predominate alpha-helical conformation for SP-B1-25 in phosphate-buffered saline, liposomes of 1-palmitoyl-2-oleoyl phosphatidylglycerol and the structure-promoting solvent hexafluoroisopropanol; FTIR spectra also showed significant beta- and random conformations for peptide in these three environments. In further experiments designed to map secondary structure to specific residues, isotope-enhanced FTIR spectroscopy was performed with 1-palmitoyl-2-oleoyl phosphatidylglycerol liposomes and a suite of SP-B1-25 peptides labeled with 13C-carbonyl groups at either single or multiple sites. Combining these 13C-enhanced FTIR results with energy minimizations and molecular simulations indicated the following model for SP-B1-25 in 1-palmitoyl-2-oleoyl phosphatidylglycerol: beta-sheet (residues 1-6), alpha-helix (residues 8-22) and random (residues 23-25) conformations. Analogous structural motifs are observed in the corresponding homologous N-terminal regions of several proteins that also share the 'saposin-like' (i.e. 5-helix bundle) folding pattern of full-length, human SP-B. In future studies, 13C-enhanced FTIR spectroscopy and energy minimizations may be of general use in defining backbone conformations at amino acid resolution, particularly for peptides or proteins in membrane environments.  相似文献   

7.
Li Y  Tamm LK 《Biophysical journal》2007,93(3):876-885
A thorough understanding of the structure of fusion domains of enveloped viruses in changing lipid environments helps us to formulate mechanistic models on how they might function in mediating viral entry by membrane fusion. We have expressed the N-terminal fusion domain of HIV-1 gp41 as a construct that is water-soluble in the absence of membranes, but that also binds with high affinity to lipid micelles and bilayers in their presence. We have solved the structure and studied the dynamics of this domain bound to dodecylphosphocholine micelles by homo- and heteronuclear NMR spectroscopy. The fusion peptide forms a stable hydrophobic helix from Ile(4) to Ala(14), but is increasingly more disordered and dynamic in a segment of intermediate polarity that stretches from Ala(15) to Ser(23). When bound to lipid bilayers at low concentration, the HIV fusion domain is also largely alpha-helical, as determined by CD and FTIR spectroscopy. However, at higher protein/lipid ratios, the domain is partially converted to form beta-structures in lipid bilayers. Controlled lipid mixing occurs at concentrations that support the alpha-helical, but not the beta-strand conformation.  相似文献   

8.
The cytoplasmic helix domain (fourth cytoplasmic loop, helix 8) of numerous GPCRs such as rhodopsin and the beta-adrenergic receptor exhibits unique structural and functional characteristics. Computational models also predict the existence of such a structural motif within the CB1 cannabinoid receptor, another member of the G-protein coupled receptor superfamily. To gain insights into the conformational properties of this GPCR component, a peptide corresponding to helix 8 of the CB1 receptor with a small contiguous segment from transmembrane helix 7 (TM7) was chemically synthesized and its secondary structure determined by circular dichroism (CD) and solution NMR spectroscopy. Our studies in DPC and SDS micelles revealed significant alpha-helical structure while in an aqueous medium, the peptide exhibited a random coil configuration. The relative orientation of helix 8 within the CB1 receptor was obtained from intermolecular 31P-1H and 1H-1H NOE measurements. Our results suggest that in the presence of an amphipathic membrane environment, helix 8 assumes an alpha helical structure with an orientation parallel to the phospholipid membrane surface and perpendicular to TM7. In this model, positively charged side chains interact with the lipid headgroups while the other polar side chains face the aqueous region. The above observations may be relevant to the activation/deactivation of the CB1 receptor.  相似文献   

9.
The high-affinity receptor for IgE is a tetrameric complex of subunits of the type alpha beta gamma 2. We report here conformational studies of the intact gamma subunit in trifluoroethanol and water/liposomes by circular dichroism and Fourier-transform infrared (FTIR) spectroscopy. In trifluoroethanol, the FTIR amide I' frequencies were consistent with two predominant conformational components, the beta-turn and alpha-helix, whilst in liposomes consisting of D2O and dimyristoylglycerophosphocholine (Myr2GroPCho), three components were observed. The third component present may contain some left-handed extended helix. Spectral simulation was carried out to demonstrate that the CD spectra were consistent with the component conformations identified from FTIR spectroscopy. The stimulated CD spectra were in excellent agreement with the experimental spectra. The intact gamma subunit conformation in trifluoroethanol was shown to possess 72% alpha-helical and 28% beta-turn conformations. In water/Myr2GroPCho liposomes the percentage of each conformational component present is 37%, 38% and 25% for the alpha-helix, beta-turn and extended structures, respectively. Assuming that the transmembrane fragment was alpha-helical, an excellent correlation was found between this derived alpha-helical content in water/liposomes (37%) and from hydrophobicity plots where the percentage of amino acids in the transmembrane domain is predicted by others to be 34%. It is suggested that the beta-turn detected by CD and FTIR was attributable to a 3(10) helix rather than a type I or type III reverse turn.  相似文献   

10.
Krishna AG  Menon ST  Terry TJ  Sakmar TP 《Biochemistry》2002,41(26):8298-8309
The crystal structure of rhodopsin revealed a cytoplasmic helical segment (H8) extending from transmembrane (TM) helix seven to a pair of vicinal palmitoylated cysteine residues. We studied the structure of model peptides corresponding to H8 under a variety of conditions using steady-state fluorescence, fluorescence anisotropy, and circular dichroism spectroscopy. We find that H8 acts as a membrane-surface recognition domain, which adopts a helical structure only in the presence of membranes or membrane mimetics. The secondary structural properties of H8 further depend on membrane lipid composition with phosphatidylserine inducing helical structure. Fluorescence quenching experiments using brominated acyl chain phospholipids and vesicle leakage assays suggest that H8 lies within the membrane interfacial region where amino acid side chains can interact with phospholipid headgroups. We conclude that H8 in rhodopsin, in addition to its role in binding the G protein transducin, acts as a membrane-dependent conformational switch domain.  相似文献   

11.
Infrared spectroscopy was used to study the secondary structure of peptides which imitate the amino acid sequences of the C-terminal domains of the pro-apoptotic protein Bak (Bak-C) and the anti-apoptotic protein Bcl-2 (Bcl-2-C) when incorporated into different lipid vesicles. Whereas beta-pleated sheet was the predominant type of secondary structure of Bak-C in the absence of membranes, the same peptide adopted different structures depending on lipid composition when incorporated into membranes, with the predominance of the alpha-helical structure in the case of DMPC and other phospholipids, such as POPC and POPG. However, beta-pleated sheet was the predominant structure in other membranes containing phospholipids with longer fatty acyl chains and cholesterol, as well as in a mixture which imitates the composition of the outer mitochondrial membrane (OMM). Similarly, Bcl-2-C adopted a structure with a predominance of intermolecularly bound pleated beta-sheet in the absence of membranes, with alpha-helix as the main component in the presence of DMPC and POPG, but intermolecular beta-sheet in the presence of EYPC and cholesterol. Using ATR-IR, it was found that the orientation of the alpha-helical components of both domains was nearly perpendicular to the plane of the membrane in the presence of DMPC membranes, but not in EYPC or OMM membranes. (2)H NMR spectroscopy of DMPC-d(54) confirmed the transmembrane disposition of the domains, revealing that they broadened the phase transition temperature, although the order parameter of the C-D bonds was not affected, as might have been expected for intrinsic peptides. When all these results are taken together, it was concluded that the domains only form transmembrane helices in membranes of reduced thickness and that hydrophobic mismatching occurs in thicker membranes, as happens in the membrane imitating the composition of the OMM, where the peptides were partially located outside the membranes.  相似文献   

12.
Integrin adhesion receptors transduce bidirectional signals across the plasma membrane, with the integrin transmembrane domains acting as conduits in this process. Here, we report the first high-resolution structure of an integrin transmembrane domain. To assess the influence of the membrane model system, structure determinations of the beta3 integrin transmembrane segment and flanking sequences were carried out in both phospholipid bicelles and detergent micelles. In bicelles, a 30-residue linear alpha-helix, encompassing residues I693-H772, is adopted, of which I693-I721 appear embedded in the hydrophobic bicelle core. This relatively long transmembrane helix implies a pronounced helix tilt within a typical lipid bilayer, which facilitates the snorkeling of K716's charged side chain out of the lipid core while simultaneously immersing hydrophobic L717-I721 in the membrane. A shortening of bicelle lipid hydrocarbon tails does not lead to the transfer of L717-I721 into the aqueous phase, suggesting that the reported embedding represents the preferred beta3 state. The nature of the lipid headgroup affected only the intracellular part of the transmembrane helix, indicating that an asymmetric lipid distribution is not required for studying the beta3 transmembrane segment. In the micelle, residues L717-I721 are also embedded but deviate from linear alpha-helical conformation in contrast to I693-K716, which closely resemble the bicelle structure.  相似文献   

13.
Integral membrane proteins containing at least one transmembrane (TM) alpha-helix are believed to account for between 20% and 30% of most genomes. There are several algorithms that accurately predict the number and position of TM helices within a membrane protein sequence. However, these methods tend to disagree over the beginning and end residues of TM helices, posing problems for subsequent modeling and simulation studies. Molecular dynamics (MD) simulations in an explicit lipid and water environment are used to help define the TM helix of the M2 protein from influenza A virus. Based on a comparison of the results of five different secondary structure prediction algorithms, three different helix lengths (an 18mer, a 26mer, and a 34mer) were simulated. Each simulation system contained 127 POPC molecules plus approximately 3500-4700 waters, giving a total of approximately 18,000-21,000 atoms. Two simulations, each of 2 ns duration, were run for the 18mer and 26mer, and five separate simulations were run for the 34mer, using different starting models generated by restrained in vacuo MD simulations. The total simulation time amounted to 11 ns. Analysis of the time-dependent secondary structure of the TM segments was used to define the regions that adopted a stable alpha-helical conformation throughout the simulation. This analysis indicates a core TM region of approximately 20 residues (from residue 22 to residue 43) that remained in an alpha-helical conformation. Analysis of atomic density profiles suggested that the 18mer helix revealed a local perturbation of the lipid bilayer. Polar side chains on either side of this region form relatively long-lived H-bonds to lipid headgroups and water molecules.  相似文献   

14.
The structure of the chlorosome baseplate protein CsmA from Chlorobium tepidum in a 1:1 chloroform:methanol solution was determined using liquid-state NMR spectroscopy. The data reveal that the 59-residue protein is predominantly alpha-helical with a long helical domain extending from residues V6 to L36, containing a putative bacteriochlorophyll a binding domain, and a short helix in the C-terminal part extending from residues M41 to G49. These elements are compatible with a model of CsmA having the long N-terminal alpha-helical stretch immersed into the lipid monolayer confining the chlorosome and the short C-terminal helix protruding outwards, thus available for interaction with the Fenna-Matthews-Olson antenna protein.  相似文献   

15.
Integral membrane proteins often contain proline residues in their alpha-helical transmembrane (TM) fragments, which may strongly influence their folding and association. Pro-scanning mutagenesis of the helical domain of glycophorin A (GpA) showed that replacement of the residues located at the center abrogates helix packing while substitution of the residues forming the ending helical turns allows dimer formation. Synthetic TM peptides revealed that a point mutation of one of the residues of the dimerization motif (L75P) located at the N-terminal helical turn of the GpA TM fragment, adopts a secondary structure and oligomeric state similar to the wild-type sequence in detergents. In addition, both glycosylation mapping in biological membranes and molecular dynamics showed that the presence of a proline residue at the lipid/water interface has as an effect the extension of the helical end. Thus, helix packing can be an important factor that determines appearance of proline in TM helices. Membrane proteins might accumulate proline residues at the two ends of their TM segments in order to modulate the exposition of key amino acid residues at the interface for molecular recognition events while allowing stable association and native folding.  相似文献   

16.
To define the structural basis for cofactor binding to membrane proteins, we introduce a manageable model system, which allows us, for the first time, to study the influence of individual transmembrane helices and of single amino acid residues on the assembly of a transmembrane cytochrome. In vivo as well as in vitro analyses indicate central roles of single amino acid residues for either interaction of the transmembrane helices or for binding of the cofactor. The results clearly show that interaction of the PsbF transmembrane helix is independent from binding of the heme cofactor. On the other hand, binding of the cofactor highly depends on helix-helix interactions. By site-directed mutagenesis critical amino acid residues were identified, which are involved in the assembly of a functional transmembrane cytochrome. Especially, a highly conserved glycine residue is critical for interaction of the transmembrane helices and assembly of the cytochrome. Based on the two-stage-model of alpha-helical membrane protein folding, the presented results clearly indicate a third stage of membrane protein folding, in which a cofactor binds to a pre-assembled transmembrane protein.  相似文献   

17.
李嵘  王喆之   《广西植物》2006,26(5):464-473
采用生物信息学的方法和工具对已在GenBank上注册的橡胶、烟草、辣椒、穿心莲等植物的萜类合成酶3-羟基-3-甲基戊二酰辅酶A还原酶的核酸及氨基酸序列进行分析,并对其组成成分、信号肽、跨膜拓朴结构域、疏水性/亲水性、蛋白质二级及三级结构、分子系统进化关系等进行预测和推断。结果表明该类酶基因的全长包括5′、3′非翻译区和一个开放阅读框,无信号肽,是一个跨膜的亲水性蛋白,包括两个功能HMG-CoA结合motif及两个功能NADPH结合motif,α-螺旋和不规则盘绕是蛋白质二级结构最大量的结构元件,β-转角和延伸链散布于整个蛋白质中,蛋白质的功能域在空间布局上折叠成“V”形,“V”形的两臂由螺旋状的N结构域和S结构域构成,中间部分由L结构域构成。  相似文献   

18.
The secondary structure prediction of 19 microsomal cytochrome P-450s from two different families was made based on their amino acid sequences. It was shown that there is a structural similarity between the heme-binding sites of these enzymes and the bacterial P-450cam. An average predicted secondary structure of cytochrome P-450 proteins with 70% accuracy contains about 46% alpha-helices, 12% beta-strands, 9% beta-turns and 33% random coil. In the region of the 35-120 residues in microsomal P-450s two adjacent beta alpha beta-units (the Rossmann domain) were recognized, which may interact with the NADPH-cytochrome P-450 reductase. Using the procedure of identification of hydrophobic and membrane-associated alpha-helical segments of 23 cytochromes, only one N-terminal transmembrane anchor was predicted. Also the heme-binding site perhaps includes surface-bound helix. A model of vertebrate microsomal P-450s is proposed. That is an amphypathic membrane protein located on the cytoplasmic face of the endoplasmic reticulum, their active center lies out/on the bilayer border.  相似文献   

19.
Secondary structure and membrane topology of cytochrome P450s   总被引:1,自引:0,他引:1  
The secondary structure prediction of 19 microsomal cytochrome P450s from two different families was made on the basis of their amino acid sequences. It was shown that there is structural similarity between the heme-binding sites in these enzymes and those in the bacterial P450cam. An average predicted secondary structure of cytochrome P450 proteins with 70% accuracy contains about 46% alpha-helices, 12% beta-sheets, 9% beta-turns, and 33% random coils. In the region of residues 35-120 in microsomal P450s two adjacent beta alpha beta-units (the Rossmann domain), were recognized and may be available to interact with the NADPH-cytochrome P450 reductase. Using the procedure for identification of hydrophobic and membrane-associated alpha-helical segments, only one N-terminal transmembrane anchor was predicted. Also the heme-binding site may include the surface-bound helix. A model for vertebrate microsomal P450s having an amphipathic membrane protein located on the cytoplasmic side of the endoplasmic reticulum membrane, with their active center lying outside or on the bilayer border, is proposed.  相似文献   

20.
Phospholamban is a 52-amino acid residue membrane protein that regulates Ca(2+)-ATPase activity in the sarcoplasmic reticulum of cardiac muscle cells. The hydrophobic C-terminal 28 amino acid fragment of phospholamban (hPLB) anchors the protein in the membrane and may form part of a Ca(2+)-selective ion channel. We have used polarized attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy along with site-directed isotope labeling to probe the local structure of hPLB. The frequency and dichroism of the amide I and II bands appearing at 1658 cm-1 and 1544 cm-1, respectively, show that dehydrated and hydrated hPLB reconstituted into dimyristoylphosphatidycholine bilayer membranes is predominantly alpha-helical and has a net transmembrane orientation. Specific local secondary structure of hPLB was probed by incorporating 13C at two positions in the protein backbone. A small band seen near 1614 cm-1 is assigned to the amide I mode of the 13C-labeled amide carbonyl group(s). The frequency and dichroism of this band indicate that residues 39 and 46 are alpha-helical, with an axial orientation that is approximately 30 degrees relative to the membrane normal. Upon exposure to 2H2O (D2O), 30% of the peptide amide groups in hPLB undergo a slow deuterium/hydrogen exchange. The remainder of the protein, including the peptide groups of Leu-39 and Leu-42, appear inaccessible to exchange, indicating that most of the hPLB fragment is embedded in the lipid bilayer. By extending spectroscopic characterization of PLB to include hydrated, deuterated as well as site-directed isotope-labeled hPLB films, our results strongly support models of PLB that predict the existence of an alpha-helical hydrophobic region spanning the membrane domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号