首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
牛叠肚幼苗对盐碱胁迫的生理响应及其耐盐阈值   总被引:1,自引:0,他引:1  
以盆栽牛叠肚组培苗为试材,比较研究了不同浓度中性盐(NaCl、Na2SO4)和碱性盐(NaHCO3、Na2CO3)胁迫对其生长和生理指标的影响。结果显示:(1)牛叠肚幼苗生长在碱性盐(NaHCO3、Na2CO3)处理下表现出"低促高抑"现象,而在中性盐(NaCl、Na2SO4)处理下均受到不同程度的抑制。(2)随着盐碱胁迫浓度的升高,牛叠肚叶片的相对电导率呈增加趋势,丙二醛(MDA)积累波动变化;Na2SO4和NaHCO3处理下二者之间的变化趋势相似,而NaCl和Na2CO3处理下二者之间变化趋势则不同。(3)牛叠肚叶片中超氧化物歧化酶(SOD)活性随胁迫浓度增加先升高后下降,而过氧化物酶(POD)活性呈先下降后升高趋势,说明牛叠肚主要通过SOD和POD的互补作用来降低氧化伤害。(4)以相对株高生长量下降50%为标准,求得牛叠肚幼苗对NaCl、Na2SO4、NaHCO3、Na2CO34种单盐的耐受阈值分别为85.18(0.50%,W/V)、40.77(0.58%,W/V)、171.00(1.44%,W/V)、114.20(1.21%,W/V)mmol·L-1。研究表明,各盐碱胁迫使牛叠肚幼苗的生长受到不同程度的抑制,但其在一定浓度范围内通过提高抗氧化酶(SOD、POD)活性来减轻盐碱伤害,维持植株的正常生理代谢;牛叠肚幼苗对碱性盐(NaHCO3、Na2CO3)的耐受能力强于中性盐(NaCl、Na2SO4)。  相似文献   

2.
Unselected and sodium sulfate tolerant callus cultures of Brassica napus L. cv Westar were grown on media supplemented with mannitol, NaCl, or Na2SO4. In all cases, growth of tolerant callus, measured on a fresh weight or dry weight basis, was greater than that of unselected callus, which was also subject to necrosis on high levels of salt. Tissue water potential became more negative in both unselected and tolerant callus grown in the presence of mannitol or Na2SO4. Water potentials in unselected callus were more negative than those of the tolerant tissues; but over a range of Na2SO4 concentrations both cultures displayed osmotic adjustment, maintaining relatively constant turgor. Proline accumulation in both unselected and tolerant callus was low (15 to 20 micromoles per gram dry weight) in the absence of stress, but increased on media supplemented with mannitol, NaCl, or Na2SO4. Increases in proline concentration were approximately linear in tolerant callus, reaching a maximum of 130 to 175 micromoles per gram dry weight. In unselected callus, concentrations were higher, reaching 390 to 520 micromoles per gram dry weight. Proline accumulation was correlated with inhibition of growth, and there was a negative correlation between proline concentration and culture age for tolerant callus.  相似文献   

3.
Callus cultures of Nicotiana tabacum L cv. Wisconsin 38 were initiated and grown on shoot-forming (SF) and callus proliferation (CP) medium with or without Na2SO4. Two cultures were maintained on SF medium with 0, 0.75, 1 or 1.5% Na2SO4 for 2.5 and 3.5 years. In the older culture only callus grown on salt formed shoots throughout the maintenance period, while in the younger culture the control responded best and Na2SO4 was inhibitory. Callus from the older culture which had been grown on salt continued to form shoots in the absence of salt. Na2SO4 caused adventitious shoot formation in three cultures on CP medium. These shoots were present for 7 subcultures after removal of Na2SO4; but established, control callus, did not form shoots when transferred to Na2SO4. Callus initiated and maintained on NaCl or mannitol showed a slight increase in shoot initiation. On NaCl, Na2SO4 or mannitol, the tissue osmotic potential became more negative and proline concentration increased.  相似文献   

4.
四翅滨藜生理生化特征对盐胁迫的响应   总被引:1,自引:0,他引:1  
采用温室盆栽试验研究四翅滨藜(Atriplex canescens)幼苗株高、地径、生物量、净光合速率、蒸腾速率、气孔导度、叶绿素含量、抗氧化酶活性及丙二醛含量对不同浓度NaCl和Na_2SO_4(0、100、200、300和400mmol·L~(-1))胁迫的响应,以探讨四翅滨藜对不同种类及不同浓度盐渍环境的适应机制及其耐盐机理。结果显示:(1)随着盐分浓度的升高,四翅滨藜幼苗的株高、地径及生物量增量呈现出先升高后降低的趋势,低盐浓度下2种盐均促进幼苗生长,盐浓度超过400mmol·L~(-1)时,NaCl对幼苗生长具有明显抑制作用。(2)2种盐处理下,四翅滨藜幼苗净光合速率(Pn)和叶绿素含量(Chl)随盐浓度增大而升高,即2种盐均对幼苗Pn和Chl含量具有促进作用,且Na_2SO_4的促进效果大于NaCl;而幼苗蒸腾速率(Tr)和气孔导度(Gs)随盐浓度升高呈先增大后减小的趋势,且Na_2SO_4的促进作用强于NaCl。(3)与对照相比,四翅滨藜幼苗的丙二醛、SOD、POD酶活性在NaCl和Na_2SO_42种盐处理下,随着盐浓度的升高均呈现出不同程度的增大,且增大幅度总体表现为NaClNa_2SO_4。研究表明,四翅滨藜在NaCl和Na_2SO_4胁迫下,叶绿素的分解速率以及发挥作用的渗透调节物质均有差异,使得幼苗叶片健康程度不同,导致叶片光合能力大小的差异,最终表现为植株的生长差异;四翅滨藜具有较强的耐盐能力,而且对Na_2SO_4的适应能力强于NaCl。  相似文献   

5.
Callus cultures of Brassica napus L. cv. Westar were selected which contained 5 – 6 times more proline than unselected callus. Callus pieces from these cultures were able to survive much better after subculture to medium containing 105 mM Na2SO4 than unselected callus, or unselected callus cultured on exogenous proline before or during transfer to the salt. Exogenous proline was rapidly absorbed. In unselected callus there was a peak in proline accumulation ca. 2 days after transfer to Na2SO4, followed by a decline. In contrast proline accumulation in tolerant callus was linear with time, reaching maximum levels at 8 days. Proline levels induced by exposure to salt were maintained in the absence of stress.Abbreviations DW Dry weight - FW Fresh weight  相似文献   

6.
A developmental toxicity bioassay was used in three experiments to evaluate water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135‐fold by reverse osmosis; select lost disinfection by‐products were spiked back. Concentrate was provided as drinking water to Sprague–Dawley and F344 rats from gestation day 6 to postnatal day 6. Maternal serum levels of luteinizing hormone on gestation day 10 were unaffected by treatment for both strains. Treated dams had increased water consumption, and increased incidences of polyuria, diarrhea, and (in Sprague–Dawley rats) red perinasal staining. Pup weights were reduced. An increased incidence of eye defects was seen in F344 litters. Chemical analysis of the concentrate revealed high sodium (6.6 g/l) and sulfate (10.4 g/l) levels. To confirm that these chemicals caused polyuria and osmotic diarrhea, respectively, Na2SO4 (5–20 g/l) or NaCl (16.5 g/l) was provided to rats in drinking water. Water consumption was increased at 5‐ and 10‐g Na2SO4/l and with NaCl. Pup weights were reduced at 20‐g Na2SO4/l. Dose‐related incidences and severity of polyuria and diarrhea occurred in Na2SO4‐treated rats; perinasal staining was seen at 20 g/l. NaCl caused polyuria and perinasal staining, but not diarrhea. Subsequently, water was concentrated ~120‐fold and sulfate levels were reduced by barium hydroxide before chlorination, yielding lower sodium (≤1.5 g/l) and sulfate (≤2.1 g/l) levels. Treatment resulted in increased water consumption, but pup weight and survival were unaffected. There were no treatment‐related clinical findings, indicating that mixtures produced by the second method are suitable for multigenerational testing. Birth Defects Res (Part B) 00:1–11, 2012. Published 2012 by Wiley Periodicals, Inc.  相似文献   

7.
Sorghum bicolor L. Moench, RS 610, was grown in liquid media salinized with NaCl, KCl, Na2SO4, K2SO4 or with variable mixtures of either NaCl/KCl or Na2SO4/K2SO4 at osmotic potentials ranging from 0 to -0.8 MPa. The purpose was to study the effects of different types and degrees of salinity in growth media on growth and solute accumulation. In 14-day-old plants the severity of leaf growth inhibition at any one level of osmotic potential in the medium increased according to the following order: NaCl < Na2SO4 < KCl = K2SO4. Inhibition of growth by mixtures of Na+ and K+ salts was the same as by K+ salts alone. Roots responded differently. Root growth was not affected by Na+ salts in the range of 0 to -0.2 MPa while it was stimulated by K+ salts. The major cation of leaves was K+ because S. bicolor is a Na+-excluder, while Na+ was the major cation in roots except at low Na+/K+ ratios in media. Anions increased in tissues linearly in relation to total monovalent cation, but not with a constant anion/cation ratio. This ratio increased as the cation concentrations in tissues increased. Sucrose in leaf tissue increased 75 fold in Chloride-plants (plants growing in media in which the only anion of the salinizing salts was Cl?) and 50 fold in Sulphate-plants (the only anion of the salinizing salts was SO42-). Proline increased 60 and 18 fold in Chloride- and Sulphate-plants, respectively, as growth media potentials decreased from 0 to -0.8 MPa. The concentrations of both sucrose and proline were directly proportional to the amount of total monovalent cation in the tissue. Sucrose concentrations began increasing when total monovalent cations exceeded 100 μmol (g fresh weight)?1 (the monovalent cation level in non-stressed plants), but proline did not start accumulating until monovalent cation concentrations exceeded 200 μmol (g fresh weight)?1. Therefore, sucrose seemed to be the solute used for osmotic adjustment under mild conditions of saline stress while proline was involved in osmotic adjustment under more severe conditions of stress. Concentrations of inorganic phosphate, glucose, fructose, total amino acids and malic acid fluctuated in both roots and leaves in patterns that could be somewhat correlated with saline stress and, sometimes, with particular salts in growth media. However, the changes measured were too small (at most a 2–3 fold increase) to be of importance in osmotic adjustment.  相似文献   

8.
刘畅  于涛  高战武  于达夫  蔺吉祥 《生态学报》2016,36(21):6786-6793
为明确燕麦幼苗对松嫩盐碱草地3种主要盐分Na Cl、Na HCO_3和Na_2CO_3的适应机制,设定不同浓度梯度(48—144 mmol/L)的胁迫处理液,测定燕麦幼苗的生长与生理指标变化。结果表明,尽管试验设定的Na Cl浓度并不影响幼苗的存活率,但在各组胁迫处理下,随着浓度的增加,燕麦幼苗的分蘖数、植株高度、茎叶与根系的生物量均呈下降趋势,下降幅度为Na_2CO_3Na HCO_3Na Cl。另外,与Na Cl胁迫相比,Na_2CO_3与Na HCO_3胁迫下茎叶与根中积累了更多的有毒Na~+,同时K~+下降幅度也更大,并且根系中含有更高的Na~+与更低的K~+以及更高的Na~+/K~+。在Na Cl胁迫下,燕麦幼苗积累大量的无机Cl~-和脯氨酸来维持细胞内的渗透与离子平衡,而Na HCO_3与Na_2CO_3胁迫造成了燕麦幼苗体内阴离子的亏缺,此时幼苗主要通过积累大量的有机酸和更多的脯氨酸来维持渗透与离子平衡。上述结果表明,碱性盐Na_2CO_3与Na HCO_3对植物的胁迫伤害程度大于中性盐Na Cl,并且Na_2CO_3的毒害效应最强,而燕麦幼苗对不同的盐分胁迫伤害也有会产生不同的生理适应策略。  相似文献   

9.
Sodium chloride and sodium sulfate are commonly present in extraction tailings waters produced as a result of surface mining and affect plants on reclaimed areas. Red-osier dogwood (Cornus stolonifera Michx) seedlings were demonstrated to be relatively resistant to these high salinity oil sands tailings waters. The objectives of this study were to compare the effects of Na2SO4 and NaCl, on growth, tissue ion content, water relations and gas exchange in red-osier dogwood (Cornus stolonifera Michx) seedlings. In the present study, red-osier dogwood seedlings were grown in aerated half-strength modified Hoagland's mineral solution containing 0, 25, 50 or 100 mM of NaCl or Na2SO4. After four weeks of treatment, plant dry weights decreased and the amount of Na+ in plant tissues increased with increasing salt concentration. Na+ tissue content was higher in plants treated with NaCl than Na2SO4 and it was greater in roots than shoots. However, Cl concentration in the NaCl treated plants was higher in shoots than in roots. The decrease in stomatal conductance and photosynthetic rates observed in presence of salts is likely to contribute to the growth reduction. Our results suggest that red-osier dogwood is able to control the transport of Na+ from roots to shoots when external concentrations are 50 mM or less.  相似文献   

10.
The difference in the enzymatic hydrolysis yield of acid-catalyzed steam-exploded corn stover (ASC) before and after washing with water reached approximately 15 % under the same conditions. The reasons for the difference in the yield between ASC and washed ASC (wASC) were determined through the analysis of the composition of ASC prehydrolyzate and sugar concentration of enzymatic hydrolyzate. Salts produced by neutralization (CaSO4, Na2SO4, K2SO4, and (NH4)2SO4), sugars (polysaccharides, oligosaccharides, and monosaccharides), sugar-degradation products (weak acids and furans), and lignin-degradation products (ethyl acetate extracts and nine main lignin-degradation products) were back-added to wASC. Results showed that these products, except furans, exerted negative effect on enzymatic hydrolysis. According to the characteristics of acid-catalyzed steam explosion pretreatment, the five sugar-degradation products’ mixture and salts [Na2SO4, (NH4)2SO4] showed minimal negative inhibition effect on enzymatic hydrolysis. By contrast, furans demonstrated a promotion effect. Moreover, soluble sugars, such as 13 g/L xylose (decreased by 6.38 %), 5 g/L cellobiose (5.36 %), 10 g/L glucose (3.67 %), as well as lignin-degradation products, and ethyl acetate extracts (4.87 %), exhibited evident inhibition effect on enzymatic hydrolysis. Therefore, removal of soluble sugars and lignin-degradation products could effectively promote the enzymatic hydrolysis performance.  相似文献   

11.
A greenhouse study was designed to test the effects of sodium sulphate (Na2SO4) on red-osier dogwood (Cornus stolonifera Michx) seedlings in the presence and absence of additional calcium (Ca2+). Changes in growth parameters, ion and carbohydrate accumulation and cell wall composition were examined. Calcium alleviated the effect of Na2SO4 on shoot height; however, it did not affect the reduction in shoot and root dry weights. An increased level of sodium (Na+) in roots of plant exposed to Na2SO4 was recorded in the presence of supplemental Ca2+ whereas there was no change in potassium (K+) and Ca2+ levels. In shoots of seedlings treated with Na2SO4, the addition of Ca2+ did not affect Na+, K+ and Ca2+ levels. The amount of soluble carbohydrates was increased in leaves of seedlings treated with Na2SO4 both in the absence and presence of supplemental Ca2+. The decrease in cell wall material in response to salt stress was alleviated by Ca2+ in stem tissues although Ca2+ did not alter the changes in hemicellulose and cellulose. Sugar composition of pectins and hemicellulose were modified in stems and leaves by Na2SO4 and/or Ca2+. The results of this study showed that calcium was able to alleviate the effects of salt stress on shoot height and cell wall content of red-osier dogwood stems. Furthermore, changes occurred in cell wall composition of red osier seedlings treated with Na2SO4.  相似文献   

12.
Low soil temperatures and low water potentials reduce and delay the seed germination of canola (Brassica rapa L., B. napus L.) in western Canada. Germination is also very sensitive to the salinity effects of nitrogen fertiliser placed with the seed, especially when the seed bed is relatively dry. The effects of pre-hydration and re-drying treatment on canola (Brassica rapa L. cv. Tobin) seed germination and seedling emergence at 10°C subjected to either a water or salt stress were determined. Low water potentials, induced by polyethylene glycol (PEG 8000), low soil moisture, or high concentrations of salts, reduced both germination and seedling emergence, and increased the time to 50% germination and emergence of seeds at 10°C. At equal osmotic potentials, Na2SO4 was less inhibitory on low temperature germination than either NaCl or PEG, suggesting that the sulphate ion partially alleviated the inhibitory effects of low water potential. Solutions of NaCI produced more abnormal seedlings compared to Na2SO4, suggesting that NaCl was more toxic than Na2SO4 during seedling development. Pre-hydration and re-drying partially overcame the inhibitory effects of both low water potential and salts on seed germination and seedling emergence at 10°C. The seed treatment increased the germination rate in Petri dishes and seedling emergence from a sandy loam soil. Water potentials or soil water contents required to inhibit 50% germination or emergence at 10°C were lower for treated seeds compared to control seeds. Salt concentrations inhibiting 50% emergence were higher for treated seeds than control seeds. Neither treated nor control seeds produced seedlings which emerged if the soil water content was lower than 9% or when the soil was continuously irrigated with salt solutions of 100 mmol kg-1 of NaCl or 50 mmol kg-1 of Na2SO4. These results suggest that the pre-hydration and re-drying treatment did not lower the base water potentials at which seedling emergence could occur. Abnormal seedlings were observed in both treated and control seeds, particularly if the soil was watered with NaCl solutions; however, the seed treatment reduced the number of abnormal seedlings.  相似文献   

13.
Equilibrium data of aqueous two-phase systems composed of polyethylene glycol (4000 g mol−1 or 6000 g mol−1) and Li2SO4, (NH4)2SO4 or Na2SO4 at pH 6.5 and 25 °C were obtained. The efficiency of these in the partition of amylases derived from Aspergillus niger was determined. The experimental data of binodal curves and tie lines were used to estimate the group interaction parameters using the UNIFAC model. Additionally, the influence of phases on the activity of the enzymes was investigated. The results indicate that the polymer molar mass did not influence the biphasic region size. However, the cations under study presented differences in induction to phase formation. It was verified that the systems formed with the Na+ presented a larger biphasic region. The increase in the molar mass of the polymer caused the increase in the exclusion volume from 3970.732 g mol−1 to 5700.873 g mol−1. The transfer Gibbs free energy of enzymes presented values between −1296.30 kJ mol−1 and −2867.70 kJ mol−1, that is, the process was spontaneous for all systems studied. The systems formed by (NH4)2SO4 and PEG 4000 g mol−1 presented the best Ke result (3.421) and theoretical recovery of 80.35 %.  相似文献   

14.
Summary Sorghum (Sorghum bicolar (L) Moench cv EA-955 Serena) seeds, subjected or not to hydration-dehydration treatment were planted in distilled water, NaCl, and Na2SO4. When seeds were not hydrated-dehydrated the salts inhibited both seed germination and seedling vigour, and caused an increase in the per cent of abnormal seedlings. The salts neither inhibited seed germination nor increased the per cent of abnormal seedlings if the seeds were treated by hydration-dehydration. However, this treatment was not effective in overcoming the inhibitory effect of either NaCl or Na2SO4 on seedling vigour. Application of these principles in growing plants under saline environment is discussed.  相似文献   

15.
NaCl胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性   总被引:18,自引:0,他引:18  
沙枣(Elaeagnus angustifolia L.)耐盐性强,是我国北方生态脆弱地区造林绿化的一个先锋树种。为探讨沙枣的盐适应机制,研究了不同浓度NaCl(0、100和200 mmol/L)胁迫30d对其水培幼苗生物量累积以及不同组织(根、茎、叶)K+、Na+、Ca2+和Mg2+吸收、运输与分配的影响。结果表明:盐胁迫不同程度地促进了沙枣苗根系生长;100 mmol/L NaCl胁迫对幼苗生物量累积无明显影响,而200 mmol/L则显著抑制了生物量累积;盐胁迫幼苗根、茎、叶中Na+含量以及K+-Na+选择性运输系数(S K,Na)和Ca2+-Na+选择性运输系数(S Ca,Na)显著或大幅度增加,而K+、Ca2+、Mg2+含量以及K+/Na+、Ca2+/Na+和Mg2+/Na+比值则显著或大幅度下降;200 mmol/L NaCl胁迫沙枣根Na+含量和根Na+净累积量分别为22.15 mg/g干重和1.87 mg/株(是对照的16.20倍和20.06倍),根成为Na+净累积量增加幅度最大的组织和Na+含量最高的组织;200 mmol/L NaCl胁迫沙枣茎、叶中的Na+含量以及冠组织Na+净累积量分别高达5.15、7.71 mg/g干重和3.29 mg/株(是对照的7.22倍、9.58倍和5.45倍),但幼苗仍能正常生长。综合分析认为,沙枣的盐适应机制是根系拒盐和冠组织耐盐,主要通过根系的补偿生长效应、根系对Na+的聚积与限制作用以及冠组织对Na+的忍耐来实现的,同时也与根、茎和叶对K+、Ca2+选择性运输能力显著增强有关。  相似文献   

16.
In the framework of investigating the dynamics of As species within the planted soil beds of treatment wetlands, the redox dynamics of As species particularly in the root‐near environment of the rhizosphere were investigated. For this purpose, long‐term experiments were carried out using a specially designed macro‐gradient‐free rooted gravel bed reactor, planted with Juncus effusus to treat an artificial wastewater containing As (200 μg As/L). The exceptional quality of the biofilm processes at the helophyte root‐surfaces in treatment wetlands were of special importance in this investigation. The results showed that under C‐deficient conditions, a highly efficient As immobilization (> 85 %), obviously due to adsorption and/or co‐precipitation, was attained. The addition of organic carbon immediately caused an elevated As concentration and enrichment of As(III) (nearly 80 % of total As) in the reactor. Increasing the SO42– concentration in the artificial wastewater inflow facilitated a high As immobilization (> 82 %) under sulfate reducing condition. In principle, a highly efficient microbial dissimilatory sulfate reduction contributed to S2– formation and a greater As immobilization (most likely as As2S3) under C surplus and reducing conditions. Significant differences in As immobilization were observed by varying the inflow of the SO42– concentration (0.2, 5, 10, 25 S/L) under C surplus conditions. More As(III) precipitates (15 % less in the outflow) when the inflow of the SO42– concentration was decreased from 25 mg S/L to 10 mg S/L. Immobilized As showed greater instability by releasing As(V) (up to 85 % of total As) due to changes in the dynamic redox conditions inside the reactor. Re‐oxidation of reduced sulfur into other S species (e.g. S0, SO42–) due to plant‐root mediated O2 release probably caused an oxidative dissolution of already precipitated insoluble As (e.g. As2S3) and as a consequent As remobilization. The findings of this study highlighted the significance of SO42– in relation to organic C supply in planted soil beds treating As‐contaminated wastewater under constructed wetland conditions.  相似文献   

17.
Abstract The regenerated shoots from sodium sulphate (Na2SO4) grown callus of tobacco (Nicotiana tabacum L. cv. Wisconsin 38) were evaluated for Na2SO4 tolerance based on shoot proliferation and rooting in vitro, and seed germination in vivo in response to Na2SO4. An increase in Na2SO4 concentration resulted in significantly decreasing shoot fresh weight, number of shoots, shoot length and leaf size, and increasing per cent shoot dry weight of both control and Na2SO4-grown cultures. In rooting, shoots of Na2SO4-grown cultures exhibited the highest per cent rooting (85%) in the presence of 1% w/v Na2SO4. However, per cent rooting, root number per rooted cutting and root fresh weight decreased significantly with increasing Na2SO4 concentration when shoots were transferred to the medium in the absence of Na2SO4 for 4-monthly passages. Following acclimatization of the rooted shoots of Na2SO4-grown cultures, phenotypic variation was observed during growth and development. There were 13.2% sterile plants. Fertile plants were sorted into normal (N), tolerant (T), and sensitive (S) categories and the respective percentages of plants were 31.6, 44.7 and 10.5, based on per cent germination, germination velocity index and seedling survival to Na2SO4. The response of N, T and S types to Na2SO4 in subsequent shoot proliferation was similar to that of seed germination.  相似文献   

18.
研究了渗透和盐胁迫处理对转Bt基因抗虫棉(Gossypium hirsutum) 99B种子的萌发和幼苗生长的影响,以及幼苗不同器官离子吸收和分配的差异。结果表明:渗透和盐胁迫均对转Bt基因抗虫棉幼苗的生长有抑制作用,其中PEG的抑制作用最强,而3种盐的抑制程度以CaCl2>NaCl>Na2SO4,且在Na+含量相同时,Cl-的毒害大于SO42-。渗透胁迫下使根、茎和叶中的Na+和Cl-含量提高,K+、Ca2+、SO42-含量和K+/Na+、Ca2+/Na+和SO42-/Cl-比值降低,且地上部的变化幅度大于地下部的,其中以PEG的影响最为显著,其次是CaCl2,Na2SO4处理最弱。这些说明,转Bt基因抗虫棉99B的耐盐性较弱。  相似文献   

19.
SO2 inhibited the light-induced increase of extractable adenosine 5′-phosphosulfate sulfotransferase in greening primary leaves of bean seedlings (Phaseolus vulgaris L. cv. Saxa (Radio) Stamm Vatter). In green primary leaves containing appreciable extractable adenosine 5′-phosphosulfate sulfotransferase activity, SO2 treatment for 20 h decreased the activity of the enzyme to between 10 and 20% of the initial level. After removal of SO2 from the air, the extractable adenosine 5′-phosphosulfate sulfotransferase activity increased after a lag, both in green and greening primary leaves, and was back to the control level after about 48 h. The sulfate concentration was increased about fourfold during SO2 treatment. An increase in sulfate sulfur accompanied by a decrease in adenosine 5′-phosphosulfate sulfotransferase was also observed when bean seedlings, after excision of the roots, were transferred to nutrient solutions containing high sulfate concentrations, suggesting that sulfate is involved in the regulation of the enzyme.  相似文献   

20.
Seeds and seedlings of soft wheat (Triticum vulgare Vill.) were used to study seed germination, leaf elongation, and the content of photosynthetic pigments (chlorophylls a, b and carotenoids) as affected by five concentrations of iron-containing nanoparticles (NP): spherical Fe0 NP with the diameter of 80 ± 5 nm and the magnetite Fe3O4 NP measuring 50–80 nm in width and 4–10 nm in height. The effects of FeSO4 solutions were also tested for comparison. The parameters examined varied as a function of the exogenous agent applied, the agent concentration, and the exposure duration. The highest sensitivity of seedlings was observed in the presence of increasing concentrations of iron (II) sulfate in the nutrient medium. This was evident from the decrease in seed germination percentage, inhibition of leaf growth, and the diminished content of photosynthetic pigments. The apparent toxicity of iron nanoforms varied depending on the parameter examined. (1) The strongest inhibition of germination was exerted by Fe0 NP (toxicity assessed from germination percentage was 3.3% higher with Fe0 NP than with magnetite NP); (2) the inhibition of leaf elongation on the 4th day after germination was most evident in the presence of Fe0 NP (a 12% stronger inhibition in the presence of Fe0 NP than in the presence of magnetite NP), whereas on the 7th day the inhibition was most pronounced with magnetite NP (a 9% stronger inhibition in the presence of Fe3SO4 NP than in the presence of Fe0 NP); (3) the lowest total content of photosynthetic pigments on the 4th day of seedling growth was noted in the presence of magnetite NP (8% lower in the presence of Fe3SO4 NP than in the presence of Fe0 NP), whereas on the 7th day the lowest pigment pool was observed in the presence Fe0 NP (a 3% reduction compared to that in the presence of magnetite NP). The highest content of photosynthetic pigments was recorded in the presence of 0.125 and 0.001 g/L of Fe0 NP, 0.5 g/L and 1 μg/L of Fe3O4 NP, and 1 mg/L FeSO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号