首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杆菌属的芽胞作为益生菌已经应用于人和动物的食品生产和细菌疗法.目前,芽胞作为一种新型的疫苗载体,开始用于破伤风、炭疽等疫苗的研究.与目前的第二代疫苗相比,细菌芽胞热稳定性好,遗传操作方便,是一种理想的疫苗载体.本文就其作为疫苗载体的相关研究进行综述.  相似文献   

2.
Mucosal immunity and vaccination   总被引:7,自引:0,他引:7  
Abstract The gut mucosal immune system is a critical component of the body's defense against pathogenic organisms, especially those responsible for enteric infections associated with diarrhoeal disease. Attempts to vaccinate against infections of mucosal tissues have been less successful than vaccination against systematic infections, to a large extent reflecting a still incomplete knowledge about the most efficient means for inducing protective local immune responses at these sites. Secretory IgA (SIgA) is the predominating immunoglobulin along mucosal surfaces, and SIgA antibodies generated in gastrointestinal, respiratory or genito-urinary mucosal tissues can confer protection against infections affecting or originating in these sites. An efficacious intestinal SIgA immunity-inducing oral vaccine against cholera has been developed recently, and development of oral vaccines against other enteric infections such as those caused by enterotoxigenic Escherichia coli, Shigella and rotaviruses is in progress as well. Based on the concept of a common mucosal immune system through which activated lymphocytes from the gut can disseminate immunity to other mucosal and glandular tissues, there is currently also much interest in the possibility of developing oral vaccines against infections in the respiratory and urogenital tracts. However, the large and repeated antigen doses often required to achieve a protective immune response still makes this vaccination approach impractical for many purified antigens. There is, therefore, a great need to develop strategies for enhancing delivery of antigen to the mucosal immune system as well as to identify mucosa-active immunostimulating agents (adjuvants). These and other aspects of mucosal immunity in relation to immunization and vaccine development are discussed in this short review article.  相似文献   

3.
Almost all vaccinations today are delivered through parenteral routes. Mucosal vaccination offers several benefits over parenteral routes of vaccination, including ease of administration, the possibility of self-administration, elimination of the chance of injection with infected needles, and induction of mucosal as well as systemic immunity. However, mucosal vaccines have to overcome several formidable barriers in the form of significant dilution and dispersion; competition with a myriad of various live replicating bacteria, viruses, inert food and dust particles; enzymatic degradation; and low pH before reaching the target immune cells. It has long been known that vaccination through mucosal membranes requires potent adjuvants to enhance immunogenicity, as well as delivery systems to decrease the rate of dilution and degradation and to target the vaccine to the site of immune function. This review is a summary of current approaches to mucosal vaccination, and it primarily focuses on adjuvants as immunopotentiators and vaccine delivery systems for mucosal vaccines based on protein, DNA or RNA. In this context, we define adjuvants as protein or oligonucleotides with immunopotentiating properties co-administered with pathogen-derived antigens, and vaccine delivery systems as chemical formulations that are more inert and have less immunomodulatory effects than adjuvants, and that protect and deliver the vaccine through the site of administration. Although vaccines can be quite diverse in their composition, including inactivated virus, virus-like particles and inactivated bacteria (which are inert), protein-like vaccines, and non-replicating viral vectors such as poxvirus and adenovirus (which can serve as DNA delivery systems), this review will focus primarily on recombinant protein antigens, plasmid DNA, and alphavirus-based replicon RNA vaccines and delivery systems. This review is not an exhaustive list of all available protein, DNA and RNA vaccines, with related adjuvants and delivery systems, but rather is an attempt to highlight many of the currently available approaches in immunopotentiation of mucosal vaccines.  相似文献   

4.
The use of edible plants for the production and delivery of vaccine proteins could provide an economical alternative to fermentation systems. Genes encoding bacterial and viral antigens are faithfully expressed in edible tissues to form immunogenic proteins. Studies in animals and humans have shown that ingestion of transgenic plants containing vaccine proteins causes production of antigen-specific antibodies in serum and mucosal secretions. In general, the technology is limited by low expression levels for nuclear-integrated transgenes, but recent progress in plant organelle transformation shows promise for enhanced expression. The stability and immunogenicity of orally delivered antigens vary greatly, which necessitates further study on protein engineering to enhance mucosal delivery. These issues are discussed with regard to the further development of plant-based vaccine technology.  相似文献   

5.
Oral vaccination requires an antigen delivery vehicle to protect the antigen and to enhance translocation of the antigen to the mucosa-associated lymphoid tissue. A variety of antigen delivery vehicles including liposomes have been studied for mucosal immunization. The advantages of liposome formulations are their particulate form and the ability to accommodate immunomodulators and targeting molecules in the same package. Many conventional liposomes are variably unstable in acids, pancreatic juice and bile. Nevertheless, carefully designed liposomes have demonstrated an impressive efficacy in inducing mucosal IgA responses, compared to free antigens and other delivery vehicles. However, liposomes as an oral vaccine vehicle are not yet optimized. To design liposomes that are stable in the harsh intestinal environment and are efficiently taken up by the M cells remains a challenge. This review summarizes recent research efforts using liposomes as an antigen carrier for oral vaccines with practical attention to liposome designs and interaction with the M cells.  相似文献   

6.
The induction of mucosal immunity is very important in conferring protection against pathogens that typically invade via mucosal surfaces. Delivery of a vaccine to a mucosal surface optimizes the induction of mucosal immunity. The apparent linked nature of the mucosal immune system allows delivery to any mucosal surface to potentially induce immunity at others. Oral administration is a very straightforward and inexpensive approach to deliver a vaccine to the mucosal lining of the gut. However, vaccines administered by this route are subject to proteolysis in the gastrointestinal tract. Thus, dose levels for protein subunit vaccines are likely to be very high and the antigen may need to be protected from proteolysis for oral delivery to be efficacious. Expression of candidate vaccine antigens in edible recombinant plant material offers an inexpensive means to deliver large doses of vaccines in encapsulated forms. Certain plant tissues can also stably store antigens for extensive periods of time at ambient temperatures, obviating the need for a cold-chain during vaccine storage and distribution, and so further limiting costs. Antigens can be expressed from transgenes stably incorporated into a host plant's nuclear or plastid genome, or from engineered plant viruses infected into plant tissues. Molecular approaches can serve to boost expression levels and target the expressed protein for appropriate post-translational modification. There is a wide range of options for processing plant tissues to allow for oral delivery of a palatable product. Alternatively, the expressed antigen can be enriched or purified prior to formulation in a tablet or capsule for oral delivery. Fusions to carrier molecules can stabilize the expressed antigen, aid in antigen enrichment or purification strategies, and facilitate delivery to effector sites in the gastrointestinal tract. Many antigens have been expressed in plants. In a few cases, vaccine candidates have entered into early phase clinical trials, and in the case of farmed animal vaccines into relevant animal trials.  相似文献   

7.
Most microbial infections are either restricted to the mucosal membranes or the etiologic agents needed to transit the mucosa. Thus, it is desirable to stimulate a mucosal response following vaccination, to block both infection and disease development. Attenuated vaccine carriers mimic natural infections, triggering also mucosal responses. Similar results can be achieved by administering antigens with appropriate adjuvants. However, the delivery of antigens per se is not sufficient to engender a protective response. A successful immunization requires the elicitation of an appropriate type of immune response (e.g. antibodies vs. cell-mediated immunity, Th1 vs. Th2 helper pattern). Therefore, a successful vaccination strategy demands the choice of adequate antigens, and their appropriate delivery and/or formulation to promote the required quality of immune response. Different strategies to optimize the immune responses elicited following vaccine administration by the mucosal route are discussed.  相似文献   

8.
Immunomodulators and delivery systems for vaccination by mucosal routes.   总被引:10,自引:0,他引:10  
Current paediatric immunization programmes include too many injections in the first months of life. Oral or nasal vaccine delivery eliminates the requirement for needles and can induce immunity at the site of infection. However, protein antigens are poorly immunogenic when so delivered and can induce tolerance. Novel ways to enhance immune responses to protein or polysaccharide antigens have opened up new possibilities for the design of effective mucosal vaccines. Here, we discuss the immunological principles underlying mucosal vaccine development and review the application of immunomodulatory molecules and delivery systems to the selective enhancement of protective immune responses at mucosal surfaces.  相似文献   

9.
We have developed a recombinant live oral vaccine using the ice-nucleation protein (Inp) from Pseudomonas syringae to display viral antigens on the surface of Salmonella spp. Fusion proteins containing viral antigens were expressed in the oral vaccine strain, Salmonella typhi Ty21a. Surface localization was verified by immunoblotting and fluorescence-activated cell sorting. The immunogenicity of surface-displayed viral antigens on the recombinant live vaccine strain was assessed in mice inoculated intranasally and intraperitoneally. Inoculation resulted in significantly higher serum antibody level than those induced by viral antigens expressed intracellularly. Thus, this multivalent mucosal live vaccine may provide an effective means for inducing mucosal or systemic immune responses against multiple viral antigens.  相似文献   

10.
Mucosal immunization regimes that employ the oral route of delivery are often compromised by antigen degradation in the stomach. Moreover, tolerance or immunological unresponsiveness to orally delivered vaccine antigens is also a major problem associated with this route of immunization. Immunization by alternative routes including intrarectal (i.r.) and intranasal (i.n.) is becoming increasingly recognized in large animals for generating protective antibody responses at mucosal surfaces. These approaches are particularly useful in ruminant species which have four stomachs that can potentially interfere with antigen presentation to mucosal inductive sites of the gut. Modifications to enhance existing mucosal immunization regimes have also been explored through the use of alternative antigen delivery systems and mucosal adjuvants. The combination of alternative immunization routes and the use of appropriate antigen delivery systems appear to be a rational approach for providing protective immunity at mucosal surfaces. There has been a considerable amount of research conducted on evaluating the efficacy of emerging antigen delivery systems and novel adjuvants for improved immunity to mucosal immunization but very little of this work has been specific to the mucosal compartment of large animals. The aim of this review is therefore to assess the feasibility and practicality of using large animals (particularly sheep, cattle and pigs) for inducing and detecting specific immune responses to alternative mucosal routes of immunization.  相似文献   

11.
为探索以非复制型腺病毒为表达载体的多价轮状病毒(Rotavirus,RV)基因工程疫苗的可行性,在前期工作的基础上,对表达我国G2和G3型RV流行毒株vp7基因的重组腺病毒的免疫效果进行了研究。分别用表达G2和G3型vp7基因的重组腺病毒rvAdG2VP7、rvAdG3VP7经滴鼻和灌胃两种途径免疫Balb/c小鼠,对免疫后小鼠的血清抗体、黏膜抗体和相关的细胞因子水平进行了检测和比较。结果表明,用表达G2和G3型vp7基因的重组腺病毒经滴鼻和灌胃两种途径免疫小鼠后,均可诱导机体产生较强的RV特异性免疫反应,包括体液免疫、细胞免疫和黏膜免疫,并能产生中和抗体。但免疫反应以Th2类为主,Th1类反应也占有相当的比例。本研究为新型RV基因工程疫苗的深入研究奠定了基础。  相似文献   

12.
Gram‐positive, nonpathogenic lactic acid bacteria (LAB) are considered to be promising candidates for the development of novel, safe production and delivery systems of heterologous proteins. Recombinant LAB strains were shown to elicit specific systemic and mucosal immune responses against selected antigens. For this reason, this group of bacteria is considered as a potential replacement of classical, often pathogenic, attenuated microbial carriers. Mucosal administration of recombinant LAB, especially via the best explored and universal oral route, offers many advantages in comparison to systemic inoculation, and is attractive from the immunological and practical point of view. Research aimed at designing efficient, mucosally applied vaccines in combination with improved immunization efficiency, monitoring of in vivo antigen production, determination of optimal dose for vaccination, strain selection and characterization is a priority in modern vaccinology. This paper summarizes and organizes the available knowledge on the application of LAB as live oral vaccine vectors. It constitutes a valuable source of general information for researchers interested in mucosal vaccine development and constructing LAB strains with vaccine potential.  相似文献   

13.
Abstract Attenuated Salmonella strains are currently being evaluated as live vectors for the delivery of heterologous antigens to the mammalian mucosal and systemic immune systems. An approach to improving the stability of heterologous antigen expression during vaccination is to drive expression of the foreign protein from promoters e.g. nirB , that become activated when Salmonella enter the host. Salmonella strains were constructed that harboured similar multicopy plasmids encoding the lacZ gene. In each strain, lacZ expression was driven from either the nirB, htrA or groE promoters. Expression of LacZ increased in all vaccine strains as they were shifted from conditions of low to high temperature. In addition, expression of lacZ driven from the htrA and nirB promoters significantly increased when the Salmonella entered eukaryotic cells, including macrophages. Expression of lacZ from the groE promoter was significantly elevated in macrophages but not in cells derived from epithelia. These promoters may be useful for optimising heterologous antigen expression within immune cells of the host.  相似文献   

14.
目前在疫苗研究中,要求新型疫苗不仅能够激发高效持久的免疫应答,而且应易于接种、生产费用低。减毒或无毒的活微生物作为疫苗载体能够激起持久的系统和黏膜免疫反应,批量制备成本较低,且具有良好的安全性,近年来已成为疫苗研究领域的热点。本文综述了几种活菌疫苗载体,包括沙门氏菌、卡介苗、耶尔森菌等的研究状况及其在疫苗载体方面的应用。  相似文献   

15.
Dental caries remains one of the most common global chronic diseases caused by Streptococcus mutans,which is prevalent all over the world.The caries prevalence of children aged between 5-6 years old in China is still in very high rate.A potent and effective anti-caries vaccine has long been expected for caries prevention but no vaccines have been brought to market till now mainly due to the low ability to induce and maintain protective antibody in oral fluids.This review will give a brief historical retrospect on study of dental caries and pathogenesis,effective targets for anti-caries vaccines,oral immune system and immunization against dental caries.Then,salivary IgA antibodies and the protective responses are discussed in the context of the ontogeny of mucosal immunity to indigenous oral streptococcal.The methods and advancement for induction of specific anticaries salivary sIgA antibodies and enhancement of specific anti-caries salivary sIgA antibodies by intranasal immunization with a safe effective mucosal adjuvant are described.The progress in the enhancement of salivary sIgA antibodies and anticaries protection by intranasal immunization with flagellin-PAc fusion protein will be highlighted.Finally,some of the main strategies that have been used for successful mucosal vaccination of caries vaccine are reviewed,followed by discussion of the mucosal adjuvant choice for achieving protective immunity at oral mucosal membranes for development of a nasal-spray or nasal-drop anti-caries vaccine for human.  相似文献   

16.
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.  相似文献   

17.
Edible genetically modified microorganisms and plants for improved health   总被引:4,自引:0,他引:4  
The development of new strategies for the delivery of vaccine antigens or immune modulators to the mucosal tissue includes innovative approaches such as the use of genetically modified food microorganisms and plants. Even though the 'proof-of-concept' has recently been established for these two systems, key questions mainly related to efficacy and risk of breaking oral tolerance remain to be critically addressed in the immediate future.  相似文献   

18.
Transgenic plants offer many advantages, including low cost of production (by elimination of fermenters), storage and transportation; heat stability; and absence of human pathogens. When therapeutic proteins are orally delivered, plant cells protect antigens in the stomach through bioencapsulation and eliminate the need for expensive purification and sterile injections, in addition to development of both systemic and mucosal immunity. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance and multi-gene expression in a single transformation event. Hyper-expression of vaccine antigens against cholera, tetanus, anthrax, plague or canine parvovirus (4-31% of total soluble protein, tsp) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato), as well as the availability of antibiotic-free selectable markers or the ability to excise selectable marker genes, facilitate oral delivery. Hyper-expression of several therapeutic proteins, including human serum albumin (11.1% tsp), somatotropin (7% tsp), interferon-gamma (6% tsp), anti-microbial peptide (21.5% tsp), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitate assembly of complex multi-subunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLa cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.  相似文献   

19.
The development of vaccine approaches that induce mucosal and systemic immune responses is critical for the effective prevention of several infections. Here, we report on the use of the abundant human oral commensal bacterium Streptococcus mitis as a delivery vehicle for mucosal immunization. Using homologous recombination we generated a stable rS. mitis expressing a Mycobacterium tuberculosis protein (Ag85b). Oral administration of rS. mitis in gnotobiotic piglets resulted in efficient oral colonization and production of oral and systemic anti-Ag85b specific IgA and IgG antibodies. These results support that the commensal S. mitis is potentially a useful vector for mucosal vaccination.  相似文献   

20.
反向遗传学在呼吸道合胞病毒减毒活疫苗研究中的应用   总被引:1,自引:0,他引:1  
人呼吸道合胞病毒(human respiratory syncytial virus, RSV)是引起婴幼儿下呼吸道感染的最重要的病毒病原,减毒RSV活疫苗能模拟自然感染充分活化机体固有免疫系统,并诱导产生体液免疫和细胞免疫,不会产生疾病增强作用,经黏膜途径应用,能突破母传抗体的干扰,因而受到广泛关注,反向遗传学(reverse genetics)在减轻野生型RSV毒力和增强其免疫原性等方面具有传统减毒技术不可比拟的优势,所以综述了反向遗传学在RSV减毒活疫苗研究中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号