首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以湖南会同地区26年生杉木(Cunninghamia lanceolata)人工林为研究对象, 探讨剔除林下植被对土壤呼吸和微生物群落结构的影响。2012年6月将林下植被剔除后, 2012年7月-2014年7月每月测定一次土壤呼吸速率、5 cm土壤温度和含水量, 并分别于2013年7月和2014年7月测定了土壤微生物群落结构和土壤养分数据。研究结果表明: 杉木人工林土壤呼吸具有明显的季节变化规律, 且与5 cm深处的土壤温度呈极显著的正相关关系。林下植被剔除两年内土壤呼吸平均下降了32.8%, 2012年7月-2013年6月下降了42.9%, 2013年7月-2014年7月下降了22.2%。根据土壤呼吸与温度拟合的指数方程所计算出的土壤呼吸的温度敏感性Q10值在对照区为2.10, 林下植被剔除区为1.87, 说明在杉木人工林系统中林下植被剔除2年降低了土壤呼吸的温度敏感性。此外, 林下植被剔除也改变了土壤微生物群落结构。林下植被剔除1年后, 土壤细菌的浓度没有发生改变, 但真菌的浓度降低, 导致真菌与细菌的浓度比值下降。此外, 革兰氏阳性细菌(G+)的浓度及其与革兰氏阴性菌(G-)的比值升高。林下植被剔除2年后, G+浓度和G+与G-的浓度比值降低。该研究表明林下植被剔除可以降低土壤呼吸, 从而减少土壤向大气中释放碳; 同时可改变土壤微生物群落结构, 而且其效应受作用时间的影响。  相似文献   

2.
《植物生态学报》2015,39(8):797
Aims Soil respiration (Rs) is the largest fraction of carbon flux in forest ecosystems, but the effects of forest understory removal on Rs in Chinese fir (Cunninghamia lanceolate) plantations is poorly understood. In order to quantify the effects of forest understory removal on Rs and microbial community composition, a field experiment was conducted in a subtropical Chinese fir plantation. Methods Forest understory was removed manually in June 2012. Rs was measured monthly using a LI-COR 8100 infrared gas analyzer from July 2012 through July 2014. Soil temperature and moisture were also measured at 5 cm depth at the time of Rs measurements. Surface soil (0-10 cm) samples were collected in July 2013 and 2014, respectively, and the soil microbial community structures were determined by phospholipid fatty acids (PLFAs) analysis. Important findings Rs decreased by 32.8% over a two-year period following understory removal (UR), with a greater rate of decrease in the first year (42.9%) than in the second year (22.2%). The temperature sensitivity of Rs was affected by UR, and was 2.10 and 1.87 in the control and UR plots, respectively. UR significantly reduced the concentration of fungal PLFAs by 18.3%, but did not affect the concentration of bacterial PLFAs, resulting in an increase in the fungal:bacterial ratio; it significantly increased the concentration of gram-positive bacterial PLFAs by 24.5%, and the ratio of gram-positive to gram-negative bacterial PLFAs after one year of treatment, but decreased the concentration of gram-positive bacterial PLFAs by 9.4% and the ratio of gram-positive to gram-negative bacterial PLFAs after two years of treatment. The results suggested that Rs and microbial community composition were both affected by UR in Chinese fir plantation, and the effects were dependent of the duration following the UR treatment.  相似文献   

3.
本研究以中亚热带地区广泛分布的毛竹林为对象,采用随机区组实验设计,分析了林下植物剔除对毛竹林土壤微生物群落结构和土壤理化特性的影响,探讨林下植物对毛竹林土壤微生物群落结构的调控机制。结果表明: 林下植物剔除对土壤理化特性产生显著影响,主要表现为土壤全氮、 硝态氮和有效磷含量增加,而土壤铵态氮、全磷含量及土壤pH值降低。此外,林下植物剔除显著降低了总微生物和细菌(B)的PLFAs,增加了真菌(F)PLFAs,从而增加了F/B值。冗余分析表明,林下植物剔除驱动下的土壤pH值降低是土壤真菌含量增加的主要原因;而全磷含量及pH值的降低是土壤细菌含量显著降低的主要原因,其中i14:0、i15:0及i16:0含量的降低主导了细菌总量的降低。毛竹林剔除林下植物降低了土壤微生物生物量,使微生物群落结构由细菌为主导向真菌为主导转移,可能降低微生物的分解功能。建议在发展毛竹人工林过程中保留林下植物。  相似文献   

4.

Background and aims

The impact of understory vegetation control or replacement with selected plant species, which are common forest plantation management practices, on soil C pool and greenhouse gas (GHG, including CO2, CH4 and N2O) emissions are poorly understood. The objective of this paper was to investigate the effects of understory vegetation management on the dynamics of soil GHG emissions and labile C pools in an intensively managed Chinese chestnut (Castanea mollissima Blume) plantation in subtropical China.

Methods

A 12-month field experiment was conducted to study the dynamics of soil labile C pools and GHG emissions in a Chinese chestnut plantation under four different understory management practices: control (Control), understory removal (UR), replacement of understory vegetation with Medicago sativa L. (MS), and replacement with Lolium perenne L. (LP). Soil GHG emissions were determined using the static chamber/GC technique.

Results

Understory management did not change the seasonal pattern of soil GHG emissions; however, as compared with the Control, the UR treatment increased soil CO2 and N2O emissions and CH4 uptake, and the MS and LP treatments increased CO2 and N2O emissions and reduced CH4 uptake (P?<?0.05 for all treatment effects, same below). The total global warming potential (GWP) of GHG emissions in the Control, UR, MS, and LP treatments were 36.56, 39.40, 42.36, and 42.99 Mg CO2 equivalent (CO2-e) ha?1 year?1, respectively, with CO2 emission accounting for more than 95 % of total GWP regardless of the understory management treatment. The MS and LP treatments increased soil organic C (SOC), total N (TN), soil water soluble organic C (WSOC) and microbial biomass C (MBC), while the UR treatment decreased SOC, TN and NO3 ?-N but had no effect on WSOC and MBC. Soil GHG emissions were correlated with soil temperature and WSOC across the treatments, but had no relationship with soil moisture content and MBC.

Conclusions

Although replacing competitive understory vegetation with legume or less competitive non-legume species increased soil GHG emissions and total GWP, such treatments also increased soil C and N pools and are therefore beneficial for increasing soil C storage, maintaining soil fertility, and enhancing the productivity of Chinese chestnut plantations.  相似文献   

5.
该研究综合运用野外调查和室内分析的方法,评估桉树人工林林下植物功能群的组成、分布及更新方式和相关环境因子之间的关系。结果表明:林分更新5 a后,除了非禾本科杂草功能群外,其他林下植物功能群的物种丰富度均呈现不同程度的增加,但与对照组(砍伐迹地)相比,其差异程度均不显著(P0.05);与对照组相比,藤本和蕨类功能群的相对多度也出现增加趋势,但禾本科草本功能群显著减少(P0.05);木本、藤本和蕨类功能群的相对盖度也呈现增加趋势,但禾本科草本功能群与对照组相比显著减少(P0.05);主成分分析(PCA)发现萌芽更新或植苗更新林的林下植物功能群组成和分布与对照组相比均发生了显著的变异,但不同更新方式(萌芽和植苗)下其林下植物功能群组成和分布差异不明显;通过冗余分析(RDA)确定了冠层透光系数、土壤孔隙度、坡向和土壤氮磷比是影响该林地林下植物功能群的主要因子,它们的叠加效应能解释大于75%的林下植物功能群的变异,最终模型通过排序得到冠层透光系数是影响该林地林下植物功能群的最主要因子。短期的研究发现萌芽和植苗这两种不同的更新方式对桉树林下植物功能群的影响有限,这可能与这两种更新方式形成的林冠结构和土壤理化性质差异性较小有关。  相似文献   

6.
通过析因试验设计,研究了科尔沁沙地樟子松人工林生态系统内土壤无机氮(NO3--N+NH4+-N)含量,潜在净氮矿化(PNM)、硝化速率(PNN),微生物生物量碳(MBC)、氮(MBN)及MBC/MBN,土壤脲酶、酸性磷酸单酯酶活性和土壤有效磷(Olsen-P)含量对林下植被管理(对照和去除)和氮添加(对照和添加8g·m-2)的短期响应.结果表明:林下植被去除显著降低了土壤NH4+-N含量、PNM、MBC和MBC/MBN比值,提高了土壤Olsen-P含量,而对土壤NO3--N含量、PNN和土壤酶活性的影响不显著.氮添加提高了土壤NO3--N含量、PNM和PNN,但对其他指标的影响不明显,可能与试验处理时间较短有关.土壤NH4+-N含量对林下植被去除与氮添加的交互作用的响应显著;而NO3--N含量虽对林下植被去除与氮添加处理的交互作用响应不显著,但在氮添加同时进行林下植被去除的样地中的土壤NO3--N含量比只进行氮添加处理的样地提高了27%,有可能导致土壤中NO3-的淋失.林下植被是影响樟子松人工林土壤化学和微生物学性质的重要因素,因此在森林管理和恢复过程中,不能忽视林下植被的作用.  相似文献   

7.
Aims Slash removal is a common practice to prepare recently harvested sites for replanting. However, little is known about its impact on soil carbon (C) dynamics in subtropical plantations. This study evaluates the effects of burning versus manual slash removal site preparation treatments on soil organic carbon (SOC), soil respiration and soil microbial community structure in a Pinus massoniana plantation in southern China.Methods Three areas within a mature P. massoniana plantation were clearcut. Two months following harvesting, slash on one-half of each area was burned (BURN), whereas slash was manually removed (MANR) on the other portion. Slash removal treatments were also compared with adjacent uncut plantation areas (UNCUT). Soil samples, and soil respiration measurements were used to characterize soil properties and microbial communities following slash removal treatments. Important findings Mean soil respiration rates from the MANR and BURN treatments were 26% and 17% lower, respectively, than the UNCUT treatment over 1 year. The MANR and BURN treatment resulted in soils with 27% and 9% reduction in total phospholipid fatty acids (PLFAs) and 18% and 10% reduction in bacterial PLFAs, respectively, compared with the UNCUT treatment. However, no significant differences existed between slash removal treatments with respect to soil chemical properties, SOC chemical compositions, soil respiration and microbial communities; although PLFA patterns were notably different for the burned plots. Most factors affecting C dynamics and microbial communities were not sensitive to the differences imparted to the ecosystem due to manual slash removal or burning. Our results suggested that low-intensity burning after clear-cutting might have no significant effect on soil C pool and its dynamics compared with manual slash removal in subtropical plantations.  相似文献   

8.
Abstract. Patterns of understory colonization by native and naturalized trees and shrubs were evaluated in 4.5-year-old plantations of three exotic tree species, Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala, on a degraded coastal grassland site with reference to overstory composition and understory environmental conditions. 19 secondary forest species were established in the plantation understories (with a total area of 0.52 ha), while no natural regeneration occurred in unplanted, though protected, control areas. The majority of these species (90 %) and the total seedling population (97 %) were zoochorous, indicating the importance of frugivorous bats and particularly birds as facilitators of secondary forest species colonization. Understory species richness and seedling densities were affected significantly by overstory composition, the most abundant regeneration occurring beneath Leucaena and least under Casuarina. Understory colonization rates within mixed-species stands were intermediate between those of single-species stands of the trees comprising their overstories. Significant negative correlations were found between understory species richness and seedling density, and forest floor depth and dry mass, especially for small-seeded ornithochorous species. Higher colonization rates near the peripheries of plantation plots relative to plot interiors were due in part to roosting site preferences by frugivores, particularly bats. The study results indicate that overstory species selection can exert a significant influence on subsequent patterns of colonization by secondary forest species and is an important consideration in the design of plantations for ‘catalyzing’ succession on deforested, degraded sites.  相似文献   

9.
以我国亚热带东部地区48年生樟树人工林为对象,并以未抚育林分为对照,分析了不同林下植被处理对两种林分0~60 cm土层土壤活性有机碳含量及其比率的影响.结果表明: 与对照相比,抚育林分土壤总有机碳和易氧化碳含量均下降,且在0~10和10~20 cm土层之间的差异达到显著水平;而水溶性有机碳(0~10 和10~20 cm土层除外)和轻组有机质含量升高,但差异不显著.抚育林分土壤水溶性有机碳占总有机碳的比率高于对照,而易氧化碳占总有机碳的比率则相反.两种林分土壤中水溶性有机碳、易氧化碳、轻组有机质与总有机碳含量均呈显著或极显著相关,其中,抚育林分的易氧化碳和轻组有机质与总有机碳的相关系数大于对照,而水溶性有机碳与总有机碳则相反.两种林分中,易氧化碳、轻组有机质、总有机碳与土壤养分的相关性均达到显著或极显著水平,而抚育林分土壤水溶性有机碳与水解氮、速效磷、交换性钙和交换性镁的相关性不显著.  相似文献   

10.
土壤微生物是陆地生态系统重要的分解者和地上-地下相互作用的纽带。本文以亚热带杉木(Cunninghamia lanceolateata)人工林为对象, 通过模拟林冠层氮沉降和林下灌草去除, 设置4种处理, 包括: 对照(CK)、灌草去除(UR)、氮沉降(N)和氮沉降加灌草去除(N × UR)的野外控制实验, 研究土壤微生物群落结构的响应。本实验分别于2016年4月(春季)和10月(秋季)采集0-10 cm层土壤样品, 运用磷脂脂肪酸法(PLFAs)分析土壤微生物群落结构。结果表明: (1) 10月份土壤微生物总PLFAs量及其他类群土壤微生物PLFAs量显著高于4月份(P < 0.05), 真菌/细菌比值没有显著差异。土壤微生物PLFAs中细菌占优势, 其次为真菌, 放线菌的占比最小; (2)相比CK处理, UR处理下土壤微生物总PLFAs量、细菌PLFAs量、革兰氏阴性菌PLFAs量和放线菌PLFAs量有增加趋势, 但未达到显著差异水平(P > 0.05); (3)相对CK, UR、N和N × UR处理降低了4月份土壤微生物多样性(H°)和均匀度指数(J), 但提高了10月份土壤微生物多样性指数; (4)冗余分析表明, 土壤硝态氮和总磷含量与土壤微生物群落之间呈现显著相关。本研究表明土壤微生物PLFAs在各处理下都表现出明显的季节动态; 短期内林下灌草去除对土壤微生物PLFAs影响表现出一定的促进作用, 氮沉降对土壤微生物群落影响还不甚明显, 需要长期的监测研究来评估两者及其交互作用对土壤微生物群落及其功能的影响。  相似文献   

11.
黄玉梅  杨万勤  张健  卢昌泰  刘旭  王伟  郭伟  张丹桔 《生态学报》2014,34(15):4183-4192
生物多样性与生态系统功能的关系是生态学领域研究的热点与难点。但因受研究手段的限制,有关森林物种组成及其多样性变化对土壤微生物数量和酶活性影响的研究少有报道。采用人工去除灌草层的实验方法,研究了川西亚高山针叶林灌草层丧失对土壤微生物数量和酶活性的影响。结果表明:1)灌草层去除后,土壤细菌和真菌数量以CK(对照)RH(除草)RS(除灌),而土壤放线菌数量则以RHCKRS;2)灌草层去除后,土壤微生物群落构成发生改变,真菌比例有所下降;3)灌草层去除后,土壤酶活性随之发生变化,各种酶活性均以CKRHRS。表明林下灌草层去除,尤其是灌木层去除,导致土壤微生物数量下降、群落构成发生变化以及土壤酶活性下降,从而在一定程度上影响到森林生态系统的物质循环功能。  相似文献   

12.
Atmospheric nitrogen (N) deposition in subtropical metropolitan regions has increased greatly because of rapid urbanization, and such increase could lead to N-related changes in soil properties and plant diversity in remnant forests of urban ecosystems. To investigate the pattern of atmospheric N deposition along an urban?Crural gradient in metropolitan Guangzhou, southern China, and to assess the potential influence of N deposition on soil properties and understory plant diversity in remnant forests, precipitation, and soil samples were collected and vegetation was surveyed from four forest sites between March 2010 and March 2011. The atmospheric inorganic nitrogen deposition (DIN) decreased with increasing distance from the urban center: DIN inputs were 43.3, 41.2, 35.2, and 30.1?kg?N?ha?1?year?1 in two urban sites, a suburban site and a rural site, respectively. However, forest soil N status (NH4 +-N, NO3 ?-N, and total nitrogen) showed the opposite pattern. Understory herb-layer diversity was negatively correlated to DIN input and positively correlated to soil calcium (Ca) and potassium (K) concentrations and pH; with highest herb-layer diversity found in the rural site receiving the lowest amount of DIN input. These results indicated that higher DIN along with soil acidification and leaching of base cations (Ca and K) might change the current N status and increase nutrients leaching and thereby cause reductions in understory plant diversity. A regional policy linking atmospheric pollution and land protection is needed to protect the most N-sensitive herb species (e.g., forbs and ferns) in these remnant forests.  相似文献   

13.
Exotic tree plantations may serve as catalysts for native forest regeneration in agriculturally degraded landscapes. In 2001, we evaluated plant species regeneration in the understory of a 7‐year‐old experimental Eucalyptus saligna forest in Hawaii approximately 1 year after the cessation of 5 years of herbicide. These forests were organized in a 2 × 2–factorial design of planting density (1 × 1– or 3 × 3–m spacing) and fertilization (unfertilized control and regular fertilization), which resulted in varying resource availabilities. We found that understory biomass was highest under high light conditions, regardless of fertilization treatment, whereas species richness was lowest under fertilized 1 × 1–m plots. The understory was dominated by species exotic to Hawaii. The most common tree species, the noxious weed Citharexylum caudatum, was particularly successful because high light–saturated photosynthesis rates and a low light compensation point allowed for high growth and survival under both light conditions. To assess longer‐term recruitment patterns, we resurveyed a portion of this site in 2006 and also surveyed five Eucalyptus plantations in this region of Hawaii that differed in age (5–23 years), species (E. saligna, E. grandis, E. cloeziana, E. microcorys), and management (experimental, industrial, nonindustrial stewardship); all were established on previous agricultural sites within approximately 3 km of native‐dominated forest. Again, very few native species were present in any of the stands, indicating that within certain landscapes and for native species with certain life history traits, exotic plantations may be ineffective nursery ecosystems for the regeneration of native species.  相似文献   

14.
短期施氮肥降低杉木幼林土壤的根系和微生物呼吸   总被引:1,自引:0,他引:1       下载免费PDF全文
土壤呼吸是陆地生态系统碳循环的重要过程。在人工林生态系统中, 施肥不仅能提高人工林的生产力和固碳能力, 而且还会对土壤呼吸产生影响。为阐明施氮肥对人工林土壤总呼吸、根系和微生物呼吸的影响, 在中亚热带地区的湖南会同, 以5年生杉木(Cunninghamia lanceolata)幼林为研究对象, 施氮肥1年后, 利用LI-8100对土壤呼吸进行为期12个月的野外原位定点观测。结果发现: 施氮肥使土壤总呼吸、根系呼吸和微生物呼吸分别降低了22.7%、19.6%和23.5%; 土壤呼吸的温度敏感性(Q10)为1.81-2.04, 施肥使土壤微生物呼吸的Q10值从对照的2.04降低为1.84, 但土壤总呼吸的Q10值没有发生显著变化; 施肥没有改变土壤呼吸的季节变化, 在双因素模型中, 土壤温度和含水量可以解释土壤呼吸季节变化的69.9%-79.7%。研究表明施氮肥能降低中亚热带地区杉木人工林土壤有机碳分解对温度升高的响应, 在全球变暖背景下有利于增加土壤有机碳储量。  相似文献   

15.
《植物生态学报》2015,39(12):1166
Aims As the primary pathway for CO2 emission from terrestrial ecosystems to the atmosphere, soil respiration is estimated to be 80 Pg C·a-1 to 100 Pg C·a-1, equivalent to 10 fold of fossil fuel emissions. As an important management practice in plantation forests, fertilization does not only increase primary production but also affects soil respiration. To investigate how nitrogen (N) fertilization affects total soil, root and microbial respiration, a N fertilization experiment was conducted in a five-year-old Cunninghamia lanceolata plantation in Huitong, Hunan Province, located in the subtropical region. MethodsOne year after fertilization, soil respiration was monitored monthly by LI-8100 from July 2013 to June 2014. Soil temperature and water content (0-5 cm soil depth) were also measured simultaneously. Available soil nutrients, fine root biomass and microbial communities were analyzed in June 2013. Important findings Total soil, root and microbial respiration rates were 22.7%, 19.6%, and 23.5% lower in the fertilized plots than in the unfertilized plots, respectively. The temperature sensitivity (Q10) of soil respiration ranged from 1.81 to 2.04, and the Q10 value of microbial respiration decreased from 2.04 in the unfertilized plots to 1.84 in the fertilized plots. However, neither the Q10 value nor the patterns of total soil respiration were affected by N fertilization. In the two-factor model, soil temperature and moisture accounted for 69.9%-79.7% of the seasonal variations in soil respiration. These results suggest that N fertilization reduces the response of soil organic carbon decomposition to temperature change and may contribute to the increase of soil carbon storage under global warming in subtropical plantations.  相似文献   

16.
连栽杉木林林下植被生物量动态格局   总被引:8,自引:5,他引:3  
杨超  田大伦  胡曰利  闫文德  方晰  梁小翠 《生态学报》2011,31(10):2737-2747
用空间一致时间连续的定位研究方法,在湖南会同杉木林生态系统国家野外科学观测研究站试验基地的第2集水区,对连栽杉木林林下植被生物量进行了12 a的监测,研究了林下植被种类的变化、生物量动态特征、生物量的组成与分布变化格局。结果表明:连栽杉木林在14a生长发育过程中,林下植物种类呈现波动性的减少趋势,其中木本植物物种数下降率为40.0%,草本植物物种数下降率为47.1%。林下植被生物量由杉木林3年生29.48 t/hm2下降至14年生的2.53 t/hm2,其中木本植物生物量由7.07 t/hm2,下降至1.25 t/hm2,下降了82.3%;草本植物由22.41 t/hm2,下降至1.28 t/hm2,下降了94.3%。在此期间,木本与草本植物生物量的高低均出现波动现象。3年生杉木林下木本植物以乔木树种生物量6068.97 kg/hm2最高,占总生物量85.88%,藤本植物生物量736.97 kg/hm2为次,占10.44%,灌木植物生物量259.87 kg/hm2最低,仅占3.68%。14年生杉木林下木本植物以灌木植物生物量881.87 kg/hm2为首,占总生物量70.73%,藤本植物生物量247.07 kg/hm2为次,占19.82%,乔木树种生物量117.87 kg/hm2最少,只占9.45%。3年生杉木林下草本植物以蕨类植物生物量8391.44 kg/hm2最高,占总生物量的37.44%,过路黄生物量36.77 kg/hm2最低,仅占0.16%。杉木14年生时,以芒生物量573.00 kg/hm2最大,占总生物量44.78%,金毛耳草生物量2.93 kg/hm2最小,仅占0.23%。研究结果,可为研究杉木林养分循环、碳平衡、维护和提高林地地力及可持续经营管理提供科学依据。  相似文献   

17.
孝惠爽  赵杰  傅声雷 《生态学报》2023,43(19):7963-7973
桉树是我国华南地区的重要速生营林树种,具备极高的经济价值,然而我国桉树人工林的发展还存在巨大争议,桉树营林的生态环境效应还有待进一步考究。针对我国华南地区典型尾叶桉(Eucalyptus urophylla)纯林经营的潜在生态问题,选取广东鹤山森林生态系统国家野外研究站的10树种混交林(10 species mixed forest plantation, 10S)、30树种混交林(30 species mixed forest plantation, 30S)和桉树纯林(Eucalyptus monoculture, E)三种林型,另外设置桉树砍伐(Eucalyptus cutting, EC)和桉树砍伐清除林下灌草(Eucalyptus cutting and understory removal, ECUr)这两种常见经营措施的处理,通过比较不同林型和管理措施下土壤理化性质和生物指标的差异,解析了桉树营林对土壤理化特性、土壤微生物以及线虫群落的影响。本结果表明:三种林型间的土壤理化特性没有显著差异,但桉树纯林的土壤真菌生物量、真菌细菌比、食细菌线虫多度显著高于10和30树种混交林...  相似文献   

18.
不同类型杉木人工林林下草本植物多样性特征   总被引:8,自引:6,他引:2  
林下草本多样性是衡量森林群落结构和功能的重要指标。以湖北九华山林场不同类型的杉木(Cunninghamia lanceolata)人工林(杉木纯林(Ⅰ)、杉木-檫木混交林(Ⅱ)、杉木-檫木-亮叶桦混交林(Ⅲ))为研究对象,通过分析林下草本层物种组成及其多样性特征,探讨林地类型与林下草本多样性的相互关系。结果表明:研究区林下草本层共有植物72种,分属于37科65属,其中以蔷薇科(Rosaceae)、金星蕨科(Thelypteridaceae)、禾本科(Gramineae)、菊科(Compositae)植物居多;林下草本植物以多年生草本为主,合计有67种,占全部草本植物的93.06%;物种丰富度指数、Shannon-Wiener指数、Simpson指数以及Pielou均匀度指数均表现为混交林样地(Ⅱ和Ⅲ)高于纯林样地(Ⅰ),但差异性不显著;各样地林下草本层优势物种与林地树种组成密切相关,其中,Ⅰ型样地以高粱泡(Rubus lambertianu)、金星蕨(Parathelypteris glanduligera)和鱼腥草(Houttuynia cordata)为优势种,其重要值分别为13.65%、8.79%和5.27%;Ⅱ型和Ⅲ型样地均以金星蕨、荩草(Arthraxon hispidus)和山马兰(Kalimeris lautureana)为优势种,重要值分别为10.75%、8.37%、7.47%和11.84%、6.16%、5.82%。此外,草本层的优势物种显著影响土壤理化性质:金星蕨与土壤含水量之间呈显著正相关(P<0.05),高粱泡与土壤磷含量显著正相关(P<0.05),而麦冬(Opiopogon japonicus)则与土壤磷含量呈负相关(P<0.05);并且,草本层各优势物种间存在一定的协同、竞争关系(P<0.05)。  相似文献   

19.
Aims Tropical forest plays a key role in global C cycle; however, there are few studies on the C budget in the tropical rainforests in Asia. This study aims to (i) reveal the seasonal patterns of total soil respiration (R T), litter respiration (R L) and soil respiration without surface organic litter (R NL) in the primary and secondary Asian tropical mountain rainforests and (ii) quantify the effects of soil temperature, soil moisture and substrate availability on soil respiration.Methods The seasonal dynamics of soil CO2 efflux was measured by an automatic chamber system (Li-8100), within the primary and secondary tropical mountain rainforests located at the Jianfengling National Reserve in Hainan Island, China. The litter removal treatment was used to assess the contribution of litter to belowground CO2 production.Important findings The annual R T was higher in the primary forest (16.73±0.87 Mg C ha-1) than in the secondary forest (15.10±0.26 Mg C ha-1). The rates of R T, R NL and R L were all significantly higher in the hot and wet season (May–October) than those in the cool and dry season (November–April). Soil temperature at 5cm depth could explain 55–61% of the seasonal variation in R T, and the temperature sensitivity index (Q 10) ranked by R L (Q 10 = 3.39)> R T (2.17)> R NL (1.76) in the primary forest and by R L (4.31)> R T (1.86)> R NL (1.58) in the secondary forest. The contribution of R L to R T was 22–23%, while litter input and R T had 1 month time lag. In addition, the seasonal variation of R T was mainly determined by soil temperature and substrate availability. Our findings suggested that global warming and increased substrate availability are likely to cause considerable losses of soil C in the tropical forests.  相似文献   

20.
植物间交互作用在植物群落和生态系统的组成、结构、功能等方面发挥着重要作用.在过去的森林生态系统研究中,更多地关注上层乔木之间的相互作用或乔木层对下层植被的影响,较少研究林下层植被对上层乔木生理生态和生长的影响.本文综述了去除林下层植被对土壤理化性质、土壤动物区系、凋落物分解及上层乔木生理生态和生长的影响,讨论了外界干扰对林下植被-乔木层竞争关系的影响,提出林下植被对上层乔木影响的生理生态学机理概念模型.研究区域、乔木林龄、地力条件、林下植物种类是影响林下层植被-乔木层竞争关系的重要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号