首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《植物生态学报》2017,41(11):1140
Aims Variations and potential trade-offs of leaf hydraulic and photosynthetic traits are essential for assessing and predicting the effect of climate change on tree survival, growth and distribution. Our aims were to examine variations and interrelationships of leaf hydraulic and photosynthetic traits in response to changes in site conditions for Dahurian larch (Larix gmelinii)—a dominant tree species in Chinese boreal forests.Methods This study was conducted at the Maoershan Forest Ecosystem Research Station. A transect of 27 year-old Dahurian larch plantation was established that consisted of five plots extending from the valley to the ridge of a slope. The predawn leaf water potential (Ψpre), area- and mass-based leaf hydraulic conductance (Karea and Kmass, respectively), resistance to embolism capacity (P50), leaf mass per area (LMA), net photosynthetic rate (A), and leaf nitrogen content (N) were measured in August 2016.Important findings The Ψpre, Karea, Kmass, P50, A, LMA, and N all varied significantly among the plots (p < 0.05), indicating significant intra-specific variations in these traits in response to the changes in site conditions. The P50 was significantly (p < 0.05) correlated with Ψpre, Karea or Kmass, suggesting that a trade-off between hydraulic efficiency and safety exist within the species to some degree. There were significant (p < 0.05) pairwise correlations between A, LMA, and N. Nevertheless, there was no significant (p < 0.05) correlation between the measured photosynthetic traits and hydraulic traits. We concluded that the intra-specific variations and multiple interrelationships of the leaf hydraulic and photosynthetic traits for the larch reflect the plasticity of its leaf traits and strategies of its survival and growth as a result of its acclimation to diverse site conditions.  相似文献   

2.
Assessing the generality of global leaf trait relationships   总被引:14,自引:0,他引:14  
Global-scale quantification of relationships between plant traits gives insight into the evolution of the world's vegetation, and is crucial for parameterizing vegetation-climate models. A database was compiled, comprising data for hundreds to thousands of species for the core 'leaf economics' traits leaf lifespan, leaf mass per area, photosynthetic capacity, dark respiration, and leaf nitrogen and phosphorus concentrations, as well as leaf potassium, photosynthetic N-use efficiency (PNUE), and leaf N : P ratio. While mean trait values differed between plant functional types, the range found within groups was often larger than differences among them. Future vegetation-climate models could incorporate this knowledge. The core leaf traits were intercorrelated, both globally and within plant functional types, forming a 'leaf economics spectrum'. While these relationships are very general, they are not universal, as significant heterogeneity exists between relationships fitted to individual sites. Much, but not all, heterogeneity can be explained by variation in sample size alone. PNUE can also be considered as part of this trait spectrum, whereas leaf K and N : P ratios are only loosely related.  相似文献   

3.
Taking Elaeagnus mollis Diels and seven dominant woody species in its community from Yicheng County of Shanxi Province as research objects, leaf traits including specific leaf area (SLA), nitrogen content in leaf per unit area ( Narea ) , leaf dry matter content ( LDMC ) and photosynthetic nitrogen use efficiency ( PNUE ) were compared, and correlations of SLA value with LDMC and PNUE values were analyzed. The results show that there are different degree variations in four indexes of leaf traits of E. mollis, Vitex negundo var. heterophylla ( Franch.) Rehd., Broussonetia papyrifera ( Linn.) L' Hér. ex Vent., Lespedeza bicolor Turcz., Caragana microphylla Lam., Rosa xanthina Lindl., Amygdalus davidiana ( Carrière) de Vos ex Henry and Periploca sepium Bunge, in which, SLA value with the largest coefficient of variation ( 404%) , and LDMC value with the lowest coefficient of variation ( 103%) . Compared with other tested species, SLA and PNUE values of E. mollis are the lowest ( 103 cm-2 · g-1 and 108 μmol · mol-1 · s-1 , respectively) , while its Narea value is the highest ( 0243 g · m-2 ) , and its LDMC value is also relatively high ( 0380 g·g-1 ) . SLA value of eight tested species show an extremely significant positive correlation ( P<001) with PNUE value, and a significant negative correlation ( P<005 ) with LDMC value, correlation coefficient are 0923 and -0718, respectively, indicating that SLA value is an important parameter of leaf photosynthetic capacity and resource utilization ability. It is suggested that compared with other dominant woody species, E. mollis is more sensitive to environmental change, and has a poor environmental adaptability.  相似文献   

4.
Aims Elevated nitrogen (N) deposition in tropical regions may accelerate ecosystem phosphorus (P) limitation. However, it is not explicitly addressed that how changes in soil N and P availability affect foliar nutrients and photosynthesis of plants in tropical forests. In this study, we examined the effects of N and P additions on foliar nutrients and net photosynthesis of two dominant understory species, Randia canthioides (R. canthioides) and Cryptocarya concinna (C. concinna) in an N-saturated old-growth tropical forest (>400-year-old) in southern China.Methods A full factorial NP addition experiment (2×2) was established in 2007 and continued through August 2010. Four treatments, including control, N addition (150kg N ha-1 year-1), P addition (150kg P ha-1 year-1) and NP addition (150kg N ha-1 year-1 plus 150kg P ha-1 year-1) were set up in this experiment. Photosynthetic traits (maximum photosynthetic CO2 assimilation (A max), stomatal conductance (g s), leaf transpiration (E), light saturating point, concentrations of chlorophyll a/b and foliar nutrients (N and P) of the two species were measured with standard methods.Important findings Three years of N addition had no significant effects on any measured photosynthetic parameter of either species. However, N addition significantly elevated foliar N and P concentrations of one species (R. canthioides), resulting in lower photosynthetic nitrogen use efficiency (PNUE). N treatments decreased foliar P concentration of the other (C. concinna), resulting in increased photosynthetic phosphorus use efficiency, which was potentially related to N-induced P shortage. In contrast, positive effects of P treatments on g s of R. canthioides, A max and chlorophyll a+b of C. concinna were observed. P treatments also elevated foliar P and PNUE of both species, implying P induced more efficient use of N. Our results suggested a more important role of P than N on influencing photosynthetic traits of these two understory species. Alleviation of P shortage through P addition may enhance photosynthetic performances of some understory species in N-rich tropical forests.  相似文献   

5.
A test of the generality of leaf trait relationships on the Tibetan Plateau   总被引:5,自引:0,他引:5  
He JS  Wang Z  Wang X  Schmid B  Zuo W  Zhou M  Zheng C  Wang M  Fang J 《The New phytologist》2006,170(4):835-848
Leaf mass per area (LMA), nitrogen concentration (on mass and area bases, N(mass) and N(area), respectively), photosynthetic capacity (A(mass) and A(area)) and photosynthetic nitrogen use efficiency (PNUE) are key foliar traits, but few data are available from cold, high-altitude environments. Here, we systematically measured these leaf traits in 74 species at 49 research sites on the Tibetan Plateau to examine how these traits, measured near the extremes of plant tolerance, compare with global patterns. Overall, Tibetan species had higher leaf nitrogen concentrations and photosynthetic capacities compared with a global dataset, but they had a slightly lower A(mass) at a given N(mass). These leaf trait relationships were consistent with those reported from the global dataset, with slopes of the standardized major axes A(mass)-LMA, N(mass)-LMA and A(mass)-N(mass) identical to those from the global dataset. Climate only weakly modulated leaf traits. Our data indicate that covarying sets of leaf traits are consistent across environments and biogeographic regions. Our results demonstrate functional convergence of leaf trait relationships in an extreme environment.  相似文献   

6.
1.  Nitrogen (N) and phosphorus (P) are essential nutrients for photosynthetic carbon assimilation and most frequently limit primary productivity in terrestrial ecosystems. Efficient use of those nutrients is important for plants growing in nutrient-poor environments.
2.  We investigated the pattern of photosynthetic phosphorus-use efficiency (PPUE) in comparison with photosynthetic nitrogen-use efficiency (PNUE) along gradients of P and N availability across biomes with 340 tree and shrub species. We used both total soil N and P concentration and foliar N/P ratios for indicating nutrient-availability gradients.
3.  Photosynthetic phosphorus-use efficiency increased with greater leaf mass per area (LMA) toward decreasing P availability. By contrast, PNUE decreased with greater LMA towards decreasing N and P availability.
4.  The increase in PPUE with decreasing P availability was caused by the net effects of a relatively greater reduction in foliar P concentration and a relatively constant photosynthetic carbon assimilation rate. The decrease in PNUE with decreasing N availability was caused by the effects of a reduction in photosynthetic carbon assimilation rate with greater LMA.
5. Synthesis . Our results suggest that higher PPUE may be an effective leaf-level adaptation to P-poor soils, especially in tropical tree species. Future research should focus on the difference between PPUE and PNUE in relation to leaf economics, physiology and strategy.  相似文献   

7.
太岳山典型阔叶乔木冠层叶片性状的分布格局   总被引:1,自引:1,他引:0  
以太岳山4种阔叶乔木不同冠层高度的叶片为研究对象,用LI-3000A叶面积仪和Li-6400便携式光合作用测定系统分别测定了这4种乔木不同冠层高度叶片的叶面积大小和单位面积的叶光饱和速率(Aarea);同时测定了其叶氮含量;计算了其比叶面积(SLA)、单位面积叶氮含量(Narea)、单位重量叶氮含量(Nmass)、单位重量的叶光饱和速率(Amass)和光合氮素利用效率(PNUE),对植株不同冠层高度叶片的SLA、叶氮和光合特性的空间分布格局进行了比较研究,结果表明:Aarea、Amass、Nmass、PNUE、SLA和Narea在树冠上层、中层和下层的差异均达到了极显著水平(P<0.001),表明树冠不同高度的叶片性状参数差异较大;在相同SLA下,Nmass和Narea在冠层中的分布均表现为中层>上层>下层,并出现平行位移现象;Aarea和Nmass都以中层值最大,表明冠层光合能力分布格局以中层相对较高。  相似文献   

8.
Feng YL  Fu GL  Zheng YL 《Planta》2008,228(3):383-390
Comparisons between invasive and native species may not characterize the traits of invasive species, as native species might be invasive elsewhere if they were introduced. In this study, invasive Oxalis corymbosa and Peperomia pellucida were compared with their respective noninvasive alien congeners. We hypothesized that the invasive species have higher specific leaf (SLA) than their respective noninvasive alien congeners, and analyzed the physiological and ecological consequences of the higher SLA. Higher SLA was indeed the most important trait for the two invaders, which was associated with their lower leaf construction cost, higher nitrogen (N) allocation to photosynthesis and photosynthetic N use efficiency (PNUE). The higher N allocation to photosynthesis of the invaders in turn increased their PNUE, N content in photosynthesis, biochemical capacity for photosynthesis, and therefore light-saturated photosynthetic rate. The above resource capture-, use- and growth-related traits may facilitate the two invaders' invasion, while further comparative studies on a wider range of invasive and noninvasive congeners are needed to understand the generality of this pattern and to fully assess the competitive advantages afforded by these traits.  相似文献   

9.
不同功能型植物叶氮含量与光合特性的关系研究   总被引:3,自引:0,他引:3  
在山西南部的霍山七里峪林场,确定乔木、灌木和草本物种共26个,用Li-3000A叶面积测定仪测量了叶面积的大小、用Li-6400便携式光合作用测定系统测定了叶光饱和速率(Aarea),计算了比叶重(LMA)、单位重量的光饱和光合速率(Amass)、单位面积叶氮含量(Narea)、单位重量叶氮含量(Nmass)及光合氮利用效率(PNUE),研究了它们之间的不同和相互作用关系。结果表明:不同功能型植物的NmassAareaAmassNareaPNUE差异显著(p<0.05),植物叶片氮含量与植物光合生理特性具有显著相关关系,NmassAareaAmassPNUE呈线性显著的正相关(p<0.05);NareaAareaAmassPNUE之间呈极显著的负相关(p<0.01)。  相似文献   

10.
塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配   总被引:4,自引:0,他引:4       下载免费PDF全文
在豆科与非豆科植物光合特性的研究中发现,非豆科植物具有更高的光合速率,与其低的叶氮含量相矛盾。在沙漠中氮素是限制植物生长的关键因子之一,考虑到豆科植物的生物固氮作用和叶氮大部分分配于光合系统,我们假设:(1)非豆科植物具有更低的叶氮含量;(2)分配更少的叶氮于光合系统;(3)具有更高的最大净光合速率(Pmax)和光合氮素利用效率(PNUE)。为了验证这些假设,以塔克拉玛干沙漠南缘的豆科植物骆驼刺(Alhagi sparsifolia)和非豆科植物柽柳(Tamarix ramosissima)、花花柴(Karelinia caspica)为研究对象,比较了它们的叶氮含量、氮分配、Pmax和PNUE等。结果表明:(1)非豆科植物比豆科植物确实有更低的叶氮含量,且差异达到显著水平;(2)非豆科植物分配更少的叶氮于光合系统,但在光合系统内部具有更高效的氮分配机制;(3)非豆科植物具有更高的Pmax和PNUE。在光合系统内部,非豆科植物分配更多的叶氮于羧化系统,而豆科植物分配更多的叶氮于捕光系统。对于非豆科植物而言,其更高的Pmax、PNUE、水分利用效率和表观量子产量,取决于将更多的叶氮投入到羧化和电子传递系统中。这些生理优势决定了塔克拉玛干沙漠南缘非豆科植物高效的资源捕捉和利用能力。  相似文献   

11.
There is a close phylogenetic relationship between Paphiopedilum and Cypripedium, but these two genera diverge considerably in terms of their leaf traits. To understand the evolution and the ecophysiological significance of leaf traits, we investigated the leaf traits of three Paphiopedilum species and three Cypripedium species in southwestern China. Cypripedium tibeticum and C. flavum showed a significantly higher light-saturated photosynthetic rate (P(max) ), stomatal conductance (g(s) ), photosynthetic nitrogen utilization efficiency (PNUE) and specific leaf area (SLA), but lower ratio of leaf carbon to nitrogen content (C/N) and leaf construction cost (CC) than Paphiopedilum. These leaf traits of Cypripedium suggest its high resource use efficiency and high growth rate reflecting adaptation to a short growing period and abundant soil nutrients and water in alpine habitats. Conversely, the low P(max) , g(s) , PNUE, SLA and the ratio of chlorophyll a to chlorophyll b (Chl a/b), but high leaf nitrogen investment in light-harvesting component (P(L) ), CC and C/N in Paphiopedilum indicate its adaptation to a low light, nutrient-poor and limited soil water habitats in karst areas. As a sympatric species of Paphiopedilum, although C. lentiginosum retained the phylogenetic leaf traits of Cypripedium, such as high mass-based light-saturated photosynthetic rate (P(max-M) ), g(s) and PNUE, it had some similar leaf traits to those of Paphiopedilum, such as low mesophyll conductance (g(m) ) and Chl a/b, and high P(L) , which reflected an adaptation to the same habitat. Our results show that the evolution of the leaf traits of Paphiopedilum and Cypripedium are shaped by both phylogeny and environment.  相似文献   

12.
以漓江水陆交错带为研究区,分两个条带分别量测了适生植物的5个叶性状指标:最大净光合速率(A_(max))、比叶重(LMA)、单位质量叶片全氮含量(N_(mass))、单位质量叶片全磷含量(P_(mass))、单位质量叶片全钾含量(K_(mass))。研究重度淹没带与微度淹没带不同功能型植物叶性状间的差异,分析并讨论重度淹没带叶性状间的关系与全球尺度是否存在差异,探究重度淹没带植物对水淹生境的生理响应机制。结果如下:(1)重度淹没带植物叶片的A_(mass)、N_(mass)、P_(mass)显著高于微度淹没带。(2)乔木、灌木叶片的LMA均显著高于草本植物,而A_(mass)、PPUE均显著低于草本植物。(3)重度淹没带草本叶性状指标的N_(mass)、P_(mass)、PNUE均显著高于微度微度淹没带,而乔木、灌木的叶性状在两个条带的差异则不显著。(4)重度淹没带植物叶性状关系与全球尺度基本一致,其植物叶片具有低LMA,高A_(mass)、Nmas s、P_(mass)。分析可知,重度淹没带植物在出露期提高叶片光合效率及相关营养水平可能是其适应水淹胁迫特殊生境的关键策略之一;不同功能型植物对同一环境的适应能力存在一定的差异,草本对于水淹环境的响应更为积极,适应能力更好;重度淹没带也存在叶经济谱,其植物在经济谱中属于"快速投资-收益"型物种。  相似文献   

13.
研究水分和养分添加对植物功能性状的影响, 对于揭示植物对环境变化的响应和适应规律至关重要。该文采用盆栽试验的方法, 进行不同水平水分处理(增水50%, 减水50%, 以498 mm降水量作为对照)和养分添加(无养分添加, 单施氮肥, 单施磷肥, 氮磷共施), 研究羊草(Leymus chinensis)的10种功能性状和地上生物量对水分和养分添加的响应。得出以下结论: (1)双因素方差分析结果表明, 水分主效应对羊草株高、分蘖数、茎生物量、叶生物量、叶面积、叶质量、净光合速率、蒸腾速率、水分利用效率存在显著影响; 养分主效应对羊草分蘖数、茎生物量、净光合速率、蒸腾速率、水分利用效率存在显著影响; 水分和养分的交互作用对羊草分蘖数、茎生物量、蒸腾速率、水分利用效率存在显著影响。(2)各功能性状对降水量的响应在不同养分添加水平是不同的, 分蘖数和叶面积在单施氮肥和氮磷共施条件下随降水量增加而增加, 而在无养分添加和单施磷肥条件下无显著变化; 茎生物量在无养分添加、单施氮肥和单施磷肥条件下随降水量增加而增加, 而在氮磷共施条件下无增加趋势; 比叶面积在单施氮肥条件下增水处理显著低于对照组, 而在其他养分添加条件下无明显变化。(3)短期氮磷处理显著影响羊草叶片光合生理性状, 而对叶形态性状影响不显著。(4)羊草地上生物量随降水量的增加呈现上升趋势, 并且在单施氮肥条件下, 增水处理使地上生物量达到最高, 为522.55 g·m -2。总之, 羊草的功能性状对降水量增加表现出明显的响应, 响应格局在不同养分条件下不同, 反映了其对水肥环境变化的适应。  相似文献   

14.
Photosynthetic nitrogen use efficiency (PNUE, photosynthetic capacity per unit leaf nitrogen) is one of the most important factors for the interspecific variation in photosynthetic capacity. PNUE was analysed in two evergreen and two deciduous species of the genus Quercus. PNUE was lower in evergreen than in deciduous species, which was primarily ascribed to a smaller fraction of nitrogen allocated to the photosynthetic apparatus in evergreen species. Leaf nitrogen was further analysed into proteins in the water‐soluble, the detergent‐soluble, and the detergent‐insoluble fractions. It was assumed that the detergent‐insoluble protein represented the cell wall proteins. The fraction of nitrogen allocated to the detergent‐insoluble protein was greater in evergreen than in deciduous leaves. Thus the smaller allocation of nitrogen to the photosynthetic apparatus in evergreen species was associated with the greater allocation to cell walls. Across species, the fraction of nitrogen in detergent‐insoluble proteins was positively correlated with leaf mass per area, whereas that in the photosynthetic proteins was negatively correlated. There may be a trade‐off in nitrogen partitioning between components pertaining to productivity (photosynthetic proteins) and those pertaining to persistence (structural proteins). This trade‐off may result in the convergence of leaf traits, where species with a longer leaf life‐span have a greater leaf mass per area, lower photosynthetic capacity, and lower PNUE regardless of life form, phyllogeny, and biome.  相似文献   

15.
北京植物园不同功能型植物叶经济谱   总被引:2,自引:1,他引:1  
通过对北京植物园不同功能型植物的叶片光合参数、叶绿素荧光参数、叶面积、叶干质量以及叶氮含量等性状参数进行测定,分析了不同功能型植物的叶经济谱.结果表明: 生活型中草本植物、生活史中一年生植物、光合型中C4植物靠近叶经济谱中快速投资-收益型物种的一端,而生活型中乔木和灌木、生活史中多年生植物、光合型中C3植物位于缓慢投资-收益型物种的一端,表明不同功能型植物通过叶片性状间的权衡采取不同的环境适应策略,验证了不同功能型植物叶经济谱的存在.不同功能型植物叶片性状具有明显差异,其中不同生活型间的叶片比叶面积(SLA)、叶氮含量(Nmass)、最大净光合速率(Amass)、光合氮利用效率(PNUE)均表现出草本植物>藤本植物>灌木>乔木;不同生活史间一年生植物的SLA、NmassAmass、PNUE均显著高于多年生植物;不同光合型间植物的Amass、PNUE、PSⅡ实际光化学效率(ΦPSⅡ)均表现出C4>C3.NmassAmass、SLA两两之间呈显著正相关,而PSⅡ有效光化学量子产量(Fv′/Fm)与SLA呈显著负相关;PNUE与SLA呈显著正相关.  相似文献   

16.
《植物生态学报》2014,38(10):1029
Aims Grassland desertification is being accelerated because of adverse climate change effects and unsustainable land uses, resulting in several major environmental problems. However, there are few studies on the economics spectrum of different plant functional types in desert steppe. The objectives of the current study are to examine the relationships among leaf functional traits of native plant species, to compare the functional traits among different plant functional types, and to determine whether an economic spectrum exists for the majority of species in the desert steppe of Damao Banner, Nei Mongol, China.
Methods Photosynthetic and chlorophyll fluorescence parameters, specific leaf area (SLA), and leaf nitrogen contents across 24 species of different functional types were measured in situ in the desert steppe ecosystem. Non-parametric tests were used to analyze leaf trait differences in plant species of different functional types. Linear regression analysis was used to determine the relationships among leaf traits in different plant species. Finally, a comprehensive analysis on these leaf traits in different plant species was conducted using the principal component analysis. All data analyses were performed using SPSS 16.0 (SPSS, Chicago, USA).
Important findings Significant differences among plant functional types were found in most of the leaf traits. SLA and mass-based nitrogen concentration (Nmass) in grasses were 2.39 and 1.20 folds, respectively, of that in shrubs; area-based photosynthetic capacity (Aarea), SLA, and photosynthetic nitrogen use efficiency (PNUE) in annual species were 1.93, 2.13, and 4.24 folds, respectively, of that in perennial species; and Aarea, SLA, and PNUE in C4 species were 2.25, 1.73, and 3.61 folds, respectively, of that in C3 species. Almost all relationships significantly differed (p < 0.01) among the leaf traits, with exception of the relationships between Aarea and area-based nitrogen concentration (Narea) and between quantum yield of PSII electron transport (ΦPSII) and SLA, implying that an economic spectrum may exist in the desert steppe ecosystem. The relationships of Narea, mass-based photosynthetic capacity (Amass), and PNUE with SLA were most significantly strong (R2 = 0.54, 0.62, 0.60, respectively; p < 0.01). Results in this study suggest that the annuals, grasses, and C4 species might be located at the end of the leaf economic spectrum with high area-based photosynthetic rate, high nitrogen concentration on mass basis, short leaf lifespan, and high SLA; whereas the perennials, shrubs, and C3 species could be located at the another end of the economic spectrum with contrasting traits.  相似文献   

17.
Background and Aims Ferns are abundant in sub-tropical forests in southern China, with some species being restricted to shaded understorey of natural forests, while others are widespread in disturbed, open habitats. To explain this distribution pattern, we hypothesize that ferns that occur in disturbed forests (FDF) have a different leaf cost–benefit strategy compared with ferns that occur in natural forests (FNF), with a quicker return on carbon investment in disturbed habitats compared with old-growth forests.Methods We chose 16 fern species from contrasting light habitats (eight FDF and eight FNF) and studied leaf functional traits, including leaf life span (LLS), specific leaf area (SLA), leaf nitrogen and phosphorus concentrations (N and P), maximum net photosynthetic rates (A), leaf construction cost (CC) and payback time (PBT), to conduct a leaf cost–benefit analysis for the two fern groups.Key Results The two groups, FDF and FNF, did not differ significantly in SLA, leaf N and P, and CC, but FDF had significantly higher A, greater photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE), and shorter PBT and LLS compared with FNF. Further, across the 16 fern species, LLS was significantly correlated with A, PNUE, PPUE and PBT, but not with SLA and CC.Conclusions Our results demonstrate that leaf cost–benefit analysis contributes to understanding the distribution pattern of ferns in contrasting light habitats of sub-tropical forests: FDF employing a quick-return strategy can pre-empt resources and rapidly grow in the high-resource environment of open habitats; while a slow-return strategy in FNF allows their persistence in the shaded understorey of old-growth forests.  相似文献   

18.
BACKGROUND AND AIMS: Bamboos have long-lived, evergreen leaves that continue to accumulate silica throughout their life. Silica accumulation has been suggested to suppress their photosynthetic activity. However, nitrogen content per unit leaf area (N(area)), an important determinant of maximum photosynthetic capacity per unit leaf area (P(max)), decreases as leaves age and senescence. In many species, P(max) decreases in parallel with the leaf nitrogen content. It is hypothesized that if silica accumulation affects photosynthesis, then P(max) would decrease faster than N(area), leading to a decrease in photosynthetic rate per unit leaf nitrogen (photosynthetic nitrogen use efficiency, PNUE) with increasing silica content in leaves. METHODS: The hypothesis was tested in leaves of Sasa veitchii, which have a life span of 2 years and accumulate silica up to 41 % of dry mass. Seasonal changes in P(max), stomatal conductance, N(area) and silica content were measured for leaves of different ages. KEY RESULTS: Although P(max) and PNUE were negatively related with silica content across leaves of different ages, the relationship between PNUE and silica differed depending on leaf age. In second-year leaves, PNUE was almost constant although there was a large increase in silica content, suggesting that leaf nitrogen was a primary factor determining the variation in P(max) and that silica accumulation did not affect photosynthesis. PNUE was strongly and negatively correlated with silica content in third-year leaves, suggesting that silica accumulation affected photosynthesis of older leaves. CONCLUSIONS: Silica accumulation in long-lived leaves of bamboo did not affect photosynthesis when the silica concentration of a leaf was less than 25 % of dry mass. Silica may be actively transported to epidermal cells rather than chlorenchyma cells, avoiding inhibition of CO2 diffusion from the intercellular space to chloroplasts. However, in older leaves with a larger silica content, silica was also deposited in chlorenchyma cells, which may relate to the decrease in PNUE.  相似文献   

19.
Aims With a close association with plant water availability, foliar δ 13 C had been investigated extensively in alpine regions; however, foliar δ 15 N has rarely been concurrently used as an indicator of plant nitrogen availability. Due to the positive correlations between leaf nitrogen content and foliar δ 13 C and δ 15 N found in previous studies, we expected that they should show consistent patterns along an altitudinal gradient.Methods To test our hypothesis, we measured foliar δ 13 C and δ 15 N in conjunction with multiple key leaf functional traits of Quercus aquifolioides, a dominant species of alpine forest on the eastern slopes of the Sygera Mountains, southeastern Tibetan Plateau from 2500 to 3800 m.Important findings (i) Contrary to our hypothesis, foliar δ 13 C exhibited a significant positive linear relationship with altitude; in contrast, foliar δ 15 N initially increased and subsequently decreased with altitude, the change in trend occurring around 3300 m. (ii) Our analyses indicated that leaf internal resistance and stomatal conductance, rather than photosynthetic capacity indicated by leaf N concentration, apparently explained the altitudinal variation in foliar δ 13 C, while differences in foliar δ 15 N were likely the result of soil N availability. (iii) Principal component analysis revealed a clear association between δ 13 C and a tradeoff between water loss and carbon gain, indicated by traits related to gas exchange such as leaf thickness, density, stomatal properties. In contrast, the second axis was associated with δ 15 N and nitrogen acquisition strategy in Q. aquifolioides across its altitudinal distribution, represented by traits related to nitrogen concentration and stomata per gram of leaf nitrogen.  相似文献   

20.
理解植物叶片化学计量特征及其驱动因素对认识植物种群分布规律及预测植物对环境变化响应具有重要意义。该研究采集了青藏高原东缘针叶林84个样点共29种主要针叶树种叶片, 探讨该区域常绿针叶树种叶片碳(C)、氮(N)、磷(P)化学计量特征和分布格局及其驱动因素。结果表明: (1)在科和属水平上, 不同针叶树种叶片C、N含量和C:N差异显著; 叶片N:P < 14, 表明该区域针叶树种主要受N限制。(2)叶片N、P含量在环境梯度上表现出一致的分布规律: 均呈现出随纬度和海拔增加而显著降低, 随年平均气温(MAT)和年降水量(MAP)增加而显著增加的趋势; 而叶片C含量与纬度、海拔、MATMAP均未表现出显著相关性。(3)叶片C:N、C:P呈现出与N、P含量变化相反的分布格局: 均随纬度和海拔增加而显著增加, 随MATMAP增加而显著降低; 而叶片N:P与海拔、MATMAP均无显著相关性。(4)进一步分析表明, 叶片C、N、P含量及其化学计量比的主要驱动因素不尽相同。具体而言: 土壤特性是叶片C含量和N:P变异的主要驱动因子, 而叶片N、P含量和C:N、C:P的变异主要由气候因素决定。总之, 该区域针叶树种叶片化学计量沿环境梯度的变异规律有力地支持了温度生物地球化学假说, 在一定程度上丰富了对环境变化下植物叶片化学计量分布格局及其驱动机制的认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号