首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
甲型流感病毒作为引起人类和动物急性呼吸道传染病的一个主要病原体,在世界范围内广泛流行。研究表明,甲型流感病毒感染宿主后会诱导宿主的天然免疫应答。甲型流感病毒感染可引起Toll样受体(Toll like receptors,TLRs)和RIG-Ⅰ样受体(RIG-Ⅰ like receptors,RLRs)等宿主模式识别受体介导的抗病毒信号通路的活化,并在多种机制调控下诱导干扰素和其他细胞因子的表达,如Ⅰ型干扰素、Ⅲ型干扰素等,从而启动干扰素刺激基因(Interferon stimulated genes,ISGs)的转录及其抗病毒蛋白的表达,进而实现抗病毒作用。本文就甲型流感病毒感染与干扰素介导的天然免疫应答相关的信号通路和调控机制进行综述。  相似文献   

2.
Long noncoding RNAs (lncRNAs) are single‐stranded RNA molecules longer than 200 nt that regulate many cellular processes. MicroRNA 155 host gene (MIR155HG) encodes the microRNA (miR)‐155 that regulates various signalling pathways of innate and adaptive immune responses against viral infections. MIR155HG also encodes a lncRNA that we call lncRNA‐155. Here, we observed that expression of lncRNA‐155 was markedly upregulated during influenza A virus (IAV) infection both in vitro (several cell lines) and in vivo (mouse model). Interestingly, robust expression of lncRNA‐155 was also induced by infections with several other viruses. Disruption of lncRNA‐155 expression in A549 cells diminished the antiviral innate immunity against IAV. Furthermore, knockout of lncRNA‐155 in mice significantly increased IAV replication and virulence in the animals. In contrast, overexpression of lncRNA‐155 in human cells suppressed IAV replication, suggesting that lncRNA‐155 is involved in host antiviral innate immunity induced by IAV infection. Moreover, we found that lncRNA‐155 had a profound effect on expression of protein tyrosine phosphatase 1B (PTP1B) during the infection with IAV. Inhibition of PTP1B by lncRNA‐155 resulted in higher production of interferon‐beta (IFN‐β) and several critical interferon‐stimulated genes (ISGs). Together, these observations reveal that MIR155HG derived lncRNA‐155 can be induced by IAV, which modulates host innate immunity during the virus infection via regulation of PTP1B‐mediated interferon response.  相似文献   

3.
Influenza A virus (IAV) infection regulates the expression of numerous host genes. However, the precise mechanism underlying implication of these genes in IAV pathogenesis remains largely unknown. Here, we employed isobaric tags for relative and absolute quantification (iTRAQ) to identify host proteins regulated by IAV infection. iTRAQ analysis of mouse lungs infected or uninfected with IAV showed a total of 167 differentially upregulated proteins in response to the viral infection. Interestingly, we observed that p27Kip1, a potent cyclin‐dependent kinase inhibitor, was markedly induced by IAV both at mRNA and protein levels through in vitro and in vivo studies. Furthermore, it was shown that innate immune signalling positively regulated p27Kip1 expression in response to IAV infection. Ectopic expression of p27Kip1 in A549 cells dramatically inhibited IAV replication, whereas, p27Kip1 knockdown significantly enhanced the virus replication. in vivo experiments demonstrated that p27Kip1 knockout (KO) mice were more susceptible to IAV than wild‐type (WT) mice: exhibiting higher viral load in lung tissue, faster body‐weight loss, reduced survival rate and more severe organ damage. Moreover, we found that p27Kip1 overexpression facilitated the degradation of viral NS1 protein, caused a dramatic STAT1 activation and promoted the expression of IFN‐β and several critical antiviral interferon‐stimulated genes (ISGs). Increased p27Kip1 expression also restricted infections of several other viruses. Conversely, IAV‐infected p27Kip1 KO mice exhibited a sharp increase in NS1 protein accumulation, reduced level of STAT1 activation and decreased expression of IFN‐β and the ISGs in the lung compared to WT animals. These findings reveal a key role of p27Kip1 in enhancing antiviral innate immunity.  相似文献   

4.
  相似文献   

5.
病毒入侵宿主细胞时,宿主细胞启动抑制病毒复制的免疫机制.同样,病毒也会利用多种手段去逃避先天免疫感应机制的监测以及宿主细胞对外来者的降解,同时还会操纵宿主细胞为自身的增殖提供便利.DEAD-box解旋酶家族是一类存在于宿主细胞中的功能蛋白,它们在转录、剪接、mRNA的合成和翻译等多种细胞过程中起着关键作用.该家族成员拥...  相似文献   

6.
7.
猪δ冠状病毒(porcine deltacoronavirus,PDCoV)是目前新发现的唯一一种感染哺乳动物的δ冠状病毒。PDCoV主要感染猪的小肠,特别是空肠和回肠,造成小肠绒毛上皮细胞萎缩,引起严重的萎缩性肠炎,临床症状主要表现为新生仔猪水样腹泻、呕吐和脱水死亡,给养猪业造成很大的经济损失。2014年以来全球暴发的仔猪腹泻中,PDCoV单一感染检出率占有一定的比例,还与其他猪冠状病毒存在较高比例的共感染现象。随着PDCoV毒株的基因组测序完成和病毒的分离成功,以及病毒与宿主互作研究的推进,对该病毒有了更多的认知。本文根据现有的文献报道,结合本课题组的研究进展,对猪δ冠状病毒的流行、基因组结构的遗传多样性、病毒感染受体和对宿主先天免疫应答调控机制的研究进展进行了综述,以帮助相关人员对PDCoV有全面和深入的了解。  相似文献   

8.
流感病毒引起人类和动物的呼吸道感染已是全世界严重的经济和公共卫生问题。在感染早期,流感病毒会导致机体的先天免疫信号被激活,起到防御、清除病毒以及辅助适应性免疫应答的作用。但在与宿主共进化的过程中,流感病毒形成了多种逃逸策略,主要是通过病毒自身蛋白质阻断宿主天然免疫通路,抑制干扰素和炎性因子的生成。基于现有的研究成果,本文针对流感病毒先天免疫应答和先天免疫逃逸的机制做一扼要综述,这有助于加强流感病毒抗原进化的监测、探索疫苗和抗病毒药物的合理靶标,为更好地预防和控制该病提供有效的策略。  相似文献   

9.
IFIT(Interferon induced proteins with tetratricopeptide repeats)家族基因是一组较早发现的干扰素刺激基因,它在抗病毒和免疫调节中发挥了重要作用。为研究IFIT家族基因抑制A型流感病毒复制的机理,利用高通量RNA深度测序(RNA-Seq)技术发现A型流感病毒A/WSN/33(WSN)毒株感染293T细胞后,IFIT家族基因均出现明显上调。同时发现在IFIT2、IFIT3过表达后,流感病毒的复制和转录均有明显下调,并对v RNP聚合酶活性具有剂量依赖型的抑制作用。进一步研究证明在感染IFIT2、IFIT3编码蛋白与流感病毒非结构蛋白(NS1)存在细胞内共定位,证明二者存在相互作用的可能。综上所述,IFIT家族基因可以抑制A型流感病毒的复制和转录,有助于进一步阐明宿主因子对流感病毒感染的调节机制。  相似文献   

10.
Early events in crustacean innate immunity   总被引:13,自引:0,他引:13  
  相似文献   

11.
Mitochondria are cellular organelles involved in host-cell metabolic processes and the control of programmed cell death. A direct link between mitochondria and innate immune signalling was first highlighted with the identification of MAVS-a crucial adaptor for RIGI-like receptor signalling-as a mitochondria-anchored protein. Recently, other innate immune molecules, such as NLRX1, TRAF6, NLRP3 and IRGM have been functionally associated with mitochondria. Furthermore, mitochondrial alarmins-such as mitochondrial DNA and formyl peptides-can be released by damaged mitochondria and trigger inflammation. Therefore, mitochondria emerge as a fundamental hub for innate immune signalling.  相似文献   

12.
S-palmitoylation is a reversible posttranslational lipid modification of proteins. It controls protein activity, stability, trafficking and protein–protein interactions. Recent global profiling of immune cells and targeted analysis have identified many S-palmitoylated immunity-associated proteins. Here, we review S-palmitoylated immune receptors and effectors, and their dynamic regulation at cellular membranes to generate specific and balanced immune responses. We also highlight how this understanding can drive therapeutic advances to pharmacologically modulate immune responses.  相似文献   

13.
肠道病毒属于小核糖核酸病毒科,包括脊髓灰质炎病毒等多种重要人类病原体,已成为全球公共卫生安全的重大威胁之一。固有免疫是机体早期抵御病毒感染的重要防线。不同肠道病毒在进化中已经具备了多种途径躲避免疫识别或诱导固有免疫系统失活。本文重点对肠道病毒调控宿主固有免疫的相关分子机制进行综述,系统整理了肠道病毒逃避干扰素依赖与干扰素非依赖的抗病毒固有免疫防御的分子特征与作用规律,为肠道病毒致病机制的探究和抗病毒药物的研发提供参考。  相似文献   

14.
15.
《Cell reports》2023,42(7):112806
  1. Download : Download high-res image (269KB)
  2. Download : Download full-size image
  相似文献   

16.
Pandemic influenza has posed an increasing threat to public health worldwide in the last decade. In the 20th century, three human pandemic influenza outbreaks occurred in 1918, 1957 and 1968, causing significant mortality. A number of hypotheses have been proposed for the emergence and development of pandemic viruses, including direct introduction into humans from an avian origin and reassortment between avian and previously circulating human viruses, either directly in humans or via an intermediate mammalian host. However, the evolutionary history of the pandemic viruses has been controversial, largely due to the lack of background genetic information and rigorous phylogenetic analyses. The pandemic that emerged in early April 2009 in North America provides a unique opportunity to investigate its emergence and development both in human and animal aspects. Recent genetic analyses of data accumulated through long-term influenza surveillance provided insights into the emergence of this novel pandemic virus. In this review, we summarise the recent literature that describes the evolutionary pathway of the pandemic viruses. We also discuss the implications of these findings on the early detection and control of future pandemics.  相似文献   

17.
流感病毒感染介导的免疫病理损伤研究进展   总被引:14,自引:1,他引:14  
流感病毒感染(如暴发性流行或高致病性禽流感H5N1感染)可以造成广泛的病理损伤及严重的并发症,其肺部病理损伤以肺水肿及广泛的炎性渗出为特点,并伴有大量的中性粒细胞、巨噬细胞、淋巴细胞浸润及促炎因子和趋化因子的产生.组织学及病理学研究表明,过度的宿主应答反应是介导病理损伤的主要原因之一,而这些在流感病毒感染过程中介导组织损伤的免疫分子与细胞,在病毒的有效清除过程中同样至关重要.主要对甲型流感病毒感染过程中免疫系统的多种效应成分如何引发及加重病理性损伤等有害方面加以综述.为深入了解流感病毒感染防御机制及寻找并设计出既无害又能有效地治疗流感病毒感染的策略提供理论指导.  相似文献   

18.
Review of innate and specific immunity in plants and animals   总被引:5,自引:0,他引:5  
Iriti M  Faoro F 《Mycopathologia》2007,164(2):57-64
Innate immunity represents a trait common to plants and animals, based on the recognition of pathogen associated molecular patterns (PAMPs) by the host pattern recognition receptors (PRRs). It is generally assumed that a pathogen strain, or race, may have elaborated mechanisms to suppress, or evade, the PAMP-triggered immunity. Once this plan was successful, the colonization would have been counteracted by an adaptive strategy that a plant cultivar must have evolved as a second line of defence. In this co-evolutionary context, adaptive immunity and host resistance (cultivar-pathogen race/strain-specific) has been differently selected, in animals and plants respectively, to face specialized pathogens. Notwithstanding, plant host resistance, based on matching between resistance (R) and avirulence (avr) genes, represents a form of innate immunity, being R proteins similar to PRRs, although able to recognize specific virulence factors (avr proteins) rather than PAMPs. Besides, despite the lack of adaptive immunity preserved plants from autoimmune disorders, inappropriate plant immune responses may occur, producing some side-effects, in terms of fitness costs of induced resistance and autotoxicity. A set of similar defence responses shared from plants and animals, such as defensins, reactive oxygen species (ROS), oxylipins and programmed cell death (PCD) are briefly described.  相似文献   

19.
进化基因组学在昆虫天然免疫研究中的应用前景   总被引:2,自引:0,他引:2  
整合基因组学和进化论而发展起来的进化基因组学正在逐渐改变传统昆虫学的研究模式。对昆虫天然免疫的研究已不再仅仅依靠实验学方法。3种全基因组序列被破译的模式昆虫(黑腹果蝇、冈比亚按蚊和意大利蜜蜂)将为这些研究引入新的方向。该文将以模式昆虫为代表,简要介绍如何利用进化上的趋同和趋异概念建立一特定昆虫物种的抗微生物肽基因蓝图;以及如何利用基因组数据和进化分析方法鉴定控制昆虫Toll信号通路关键组分Spatzle配体的进化优势位点。  相似文献   

20.
Mitochondria, dynamic organelles that undergo continuous cycles of fusion and fission, are the powerhouses of eukaryotic cells. Recent research indicates that mitochondria also act as platforms for antiviral immunity in vertebrates. Mitochondrial-mediated antiviral immunity depends on activation of the retinoic acid-inducible gene I (RIG-I)-like receptors signal transduction pathway and the participation of the mitochondrial outer membrane adaptor protein “mitochondrial antiviral signaling (MAVS)”. Here we discuss recent findings that suggest how mitochondria contribute to antiviral innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号