首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Complement is a part of innate immunity that has a critical role in the protection against microbial infections, bridges the innate with the adaptive immunity and initiates inflammation. Activation of the complement, by specific recognition of molecular patterns presented by an activator, for example, a pathogen cell, in the classical and lectin pathways or spontaneously in the alternative pathway, leads to the opsonization of the activator and the production of pro‐inflammatory molecules such as the C3a anaphylatoxin. The biological function of this anaphylatoxin is regulated by carboxypeptidase B, a plasma protease that cleaves off the C‐terminal arginine yielding C3a desArg, an inactive form. While functional assays demonstrate strikingly different physiological effects between C3a and C3a desArg, no structural information is available on the possible conformational differences between the two proteins. Here, we report a novel and simple expression and purification protocol for recombinant human C3a and C3a desArg anaphylatoxins, as well as their crystal structures at 2.3 and 2.6 Å, respectively. Structural analysis revealed no significant conformational differences between the two anaphylatoxins in contrast to what has been reported for C5a and C5a desArg. We compare the structures of different anaphylatoxins and discuss the relevance of their observed conformations to complement activation and binding of the anaphylatoxins to their cognate receptors.  相似文献   

2.
Activation of the blood complement system generates bioactive fragments called anaphylatoxins. The three anaphylatoxins C3a, C4a, and C5a are released during "classical pathway" activation while only C3a and C5a are released when the "alternative pathway" of complement is activated. Radioimmunoassays were designed to individually detect and quantitate the activation fragments C3a, C4a, and C5a in biological fluids without interference from the precursor molecules C3, C4, and C5. Kinetics of complement activation in fresh human serum exposed to the activators zymosan, heat-aggregated immunoglobulin, or cobra venom factor were monitored using the radioimmunoassay technique. For the first time, activation of components C3, C4, and C5 was followed simultaneously in a single serum sample. Analysis of the patterns and extent of anaphylatoxin formation during activation in serum may be used to screen for deficiencies or defects in the complement cascade. Levels of the anaphylatoxins in freshly drawn serum were much higher than levels detected in EDTA-plasma. Detection limits of anaphylatoxins in plasma are governed by background levels of 152 +/- 69, 155 +/- 33, and 5.4 +/- 6.6 ng/ml for C3a, C4a, and C5a, respectively. Detection of low-level complement activation in patient's blood, urine, or synovial fluid, using anaphylatoxin formation as an indicator, may prove useful in signaling numerous forms of inflammatory reactions. The demonstration of anaphylatoxins in clinical samples is being recognized as a valuable diagnostic tool in monitoring the onset of immune disease.  相似文献   

3.
Both mast cells and complement participate in innate and acquired immunity. The current study examines whether beta-tryptase, the major protease of human mast cells, can directly generate bioactive complement anaphylatoxins. Important variables included pH, monomeric vs tetrameric forms of beta-tryptase, and the beta-tryptase-activating polyanion. The B12 mAb was used to stabilize beta-tryptase in its monomeric form. C3a and C4a were best generated from C3 and C4, respectively, by monomeric beta-tryptase in the presence of low molecular weight dextran sulfate or heparin at acidic pH. High molecular weight polyanions increased degradation of these anaphylatoxins. C5a was optimally generated from C5 at acidic pH by beta-tryptase monomers in the presence of high molecular weight dextran sulfate and heparin polyanions, but also was produced by beta-tryptase tetramers under these conditions. Mass spectrometry verified that the molecular mass of each anaphylatoxin was correct. Both beta-tryptase-generated C5a and C3a (but not C4a) were potent activators of human skin mast cells. These complement anaphylatoxins also could be generated by beta-tryptase in releasates of activated skin mast cells. Of further biologic interest, beta-tryptase also generated C3a from C3 in human plasma at acidic pH. These results suggest beta-tryptase might generate complement anaphylatoxins in vivo at sites of inflammation, such as the airway of active asthma patients where the pH is acidic and where elevated levels of beta-tryptase and complement anaphylatoxins are detected.  相似文献   

4.
The complement system is central to the rapid immune response witnessed in vertebrates and invertebrates, which plays a crucial role in physiology and pathophysiology. Complement activation fuels the proteolytic cascade, which produces several complement fragments that interacts with a distinct set of complement receptors. Among all the complement fragments, C5a is one of the most potent anaphylatoxins, which exerts solid pro-inflammatory responses in a myriad of tissues by binding to the complement receptors such as C5aR1 (CD88, C5aR) and C5aR2 (GPR77, C5L2), which are part of the rhodopsin subfamily of G-protein coupled receptors. In terms of signaling cascade, recruitment of C5aR1 or C5aR2 by C5a triggers the association of either G-proteins or β-arrestins, providing a protective response under normal physiological conditions and a destructive response under pathophysiological conditions. As a result, both deficiency and unregulated activation of the complement lead to clinical conditions that require therapeutic intervention. Indeed, complement therapeutics targeting either the complement fragments or the complement receptors are being actively pursued by both industry and academia. In this context, the model structural complex of C5a–C5aR1 interactions, followed by a biophysical evaluation of the model complex, has been elaborated on earlier. In addition, through the drug repurposing strategy, we have shown that small molecule drugs such as raloxifene and prednisone may act as neutraligands of C5a by effectively binding to C5a and altering its biologically active molecular conformation. Very recently, structural models illustrating the intermolecular interaction of C5a with C5aR2 have also been elaborated by our group. In the current study, we provide the biophysical validation of the C5a-C5aR2 model complex by recruiting major synthetic peptide fragments of C5aR2 against C5a. In addition, the ability of the selected neutraligands to hinder the interaction of C5a with the peptide fragments derived from both C5aR1 and C5aR2 has also been explored. Overall, the computational and experimental data provided in the current study supports the idea that small molecule drugs targeting C5a can potentially neutralize C5a's ability to interact effectively with its cognate complement receptors, which can be beneficial in modulating the destructive signaling response of C5a under pathological conditions.  相似文献   

5.
The contribution of complement activation to allergic asthma remains controversial. In order to elucidate the role played by the complement split products, anaphylatoxins C3a and C5a, we evaluated their effects on production of cysteinyl-leukotrienes (cysLTs) by human lung fragments following an anaphylactic reaction. The lung tissues obtained from two patients with lung cancer showed C5aR-, C5L2R-, and C3aR-mRNA expression. When the chopped lung fragments passively sensitized with human IgE were incubated with anti-human IgE antibody, a significant amount of cysLTs was generated in comparison with the control (without anti-IgE antibody). The co-addition of human C5a at doses of 0.1 to 10 ng/ml to the anti-IgE antibody potentiated cysLT production. The response was bell-shaped in distribution, significant, and peaked at a C5a concentration of 1 ng/ml. The co-addition of human C3a up to 1,000 ng/ml seemed to increase cysLT production, but not to any significant extent. A novel C5a receptor complementary peptide, acetylated peptide A, dose-dependently inhibited cysLT production by the human lung fragments following the anaphylactic reaction in the presence of 1 ng/ml C5a. However, this peptide did not inhibit cysLT production in the presence of 100 ng/ml C3a. It is suggested that the anaphylatoxin C5a potentiates cysLT production in human lung tissues and contributes to allergic inflammation in disorders such as asthma, thus acetylated peptide A may be useful for suppressing allergic inflammation in the lungs.  相似文献   

6.
Annually, over 18 million disease cases and half a million deaths worldwide are estimated to be caused by Group A Streptococcus. ScpA (or C5a peptidase) is a well characterised member of the cell enveleope protease family, which possess a S8 subtilisin-like catalytic domain and a shared multi-domain architecture. ScpA cleaves complement factors C5a and C3a, impairing the function of these critical anaphylatoxins and disrupts complement-mediated innate immunity. Although the high resolution structure of ScpA is known, the details of how it recognises its substrate are only just emerging. Previous studies have identified a distant exosite on the 2nd fibronectin domain that plays an important role in recruitment via an interaction with the substrate core. Here, using a combination of solution NMR spectroscopy, mutagenesis with functional assays and computational approaches we identify a second exosite within the protease-associated (PA) domain. We propose a model in which the PA domain assists optimal delivery of the substrate's C terminus to the active site for cleavage.  相似文献   

7.
Severe tissue injury results in early activation of serine protease systems including the coagulation and complement cascade. In this context, little is known about factor VII-activating protease (FSAP), which is activated by substances released from damaged cells such as histones and nucleosomes. Therefore, we have measured FSAP activation in trauma patients and have identified novel FSAP substrates in human plasma. Mass spectrometry-based methods were used to identify FSAP binding proteins in plasma. Anaphylatoxin generation was measured by ELISA, Western blotting, protein sequencing, and chemotaxis assays. Plasma samples from trauma patients were analyzed for FSAP Ag and activity, nucleosomes, C5a, and C3a. Among others, we found complement components C3 and C5 in FSAP coimmunoprecipitates. C3 and C5 were cleaved by FSAP in a dose- and time-dependent manner generating functional C3a and C5a anaphylatoxins. Activation of endogenous FSAP in plasma led to increased C5a generation, but this was not the case in plasma of a homozygous carrier of Marburg I single nucleotide polymorphism with lower FSAP activity. In multiple trauma patients there was a large increase in circulating FSAP activity and nucleosomes immediately after the injury. A high correlation between FSAP activity and C5a was found. These data suggest that activation of FSAP by tissue injury triggers anaphylatoxin generation and thereby modulates the posttraumatic inflammatory response in vivo. A strong link between C5a, nucleosomes, and FSAP activity indicates that this new principle might be important in the regulation of inflammation.  相似文献   

8.
9.
Sepsis in human beings is a major problem involving many individuals and with a high death rate. Except for a single drug (recombinant activated protein C) that has been approved for treatment of septic patients, supportive measures represent the main clinical approach. There are many models of experimental sepsis, mostly in rodents. A commonly used model is cecal ligation and puncture (CLP). In this model, robust activation of complement occurs together with up-regulation of C5a receptors (C5aR, C5L2) in a variety of different organs (lungs, kidneys, liver, heart). In septic human beings there is abundant evidence for complement activation. Interception of C5a or its receptors in the CLP model greatly improves survival in septic rodents. There is compelling evidence that CLP causes an intense pro-inflammatory state and that C5a interaction with its receptors can be linked to apoptosis of the lymphoid system and cells of the adrenal medulla, loss of innate immune functions of blood neutrophils, consumptive coagulopathy and cardiac dysfunction. These findings may have implications for therapeutic interventions in human beings with sepsis.  相似文献   

10.
There is a tight interaction of the bone and the immune system. However, little is known about the relevance of the complement system, an important part of innate immunity and a crucial trigger for inflammation. The aim of this study was, therefore, to investigate the presence and function of complement in bone cells including osteoblasts, mesenchymal stem cells (MSC), and osteoclasts. qRT-PCR and immunostaining revealed that the central complement receptors C3aR and C5aR, complement C3 and C5, and membrane-bound regulatory proteins CD46, CD55, and CD59 were expressed in human MSC, osteoblasts, and osteoclasts. Furthermore, osteoblasts and particularly osteoclasts were able to activate complement by cleaving C5 to its active form C5a as measured by ELISA. Both C3a and C5a alone were unable to trigger the release of inflammatory cytokines interleukin (IL)-6 and IL-8 from osteoblasts. However, co-stimulation with the pro-inflammatory cytokine IL-1β significantly induced IL-6 and IL-8 expression as well as the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG) indicating that complement may modulate the inflammatory response of osteoblastic cells in a pro-inflammatory environment as well as osteoblast-osteoclast interaction. While C3a and C5a did not affect osteogenic differentiation, osteoclastogenesis was significantly induced even in the absence of RANKL and macrophage-colony stimulating factor (M-CSF) suggesting that complement could directly regulate osteoclast formation. It can therefore be proposed that complement may enhance the inflammatory response of osteoblasts and increase osteoclast formation, particularly in a pro-inflammatory environment, for example, during bone healing or in inflammatory bone disorders.  相似文献   

11.
Summary Recent methodologies used in preparing anaphylatoxins from complement-activated serum are described. Activation of the alternative pathway generates C3a and C5a; however, activation of the classical pathway is required to generate the anaphylatoxin from C4. This article describes an activation scheme that simultaneously generates all three of the anaphylatoxins (e.g., C3a, C4a and C5a) in human serum and outlines a procedure for isolating each as homogeneous products. Purification of intact anaphylatoxins directly from complement-activated serum takes place only if an exopeptidase in serum, known as carboxypeptidase N (SCPN), is properly inhibited. A new series of mercapto derivatives of arginine analogs are introduced as potent and effective inhibitors of SCPN. These inhibitors permit normal complement activation but prevent degradation of the released activation fragments C3a, C4a or C5a.The SCPN inhibitor previously used was 6-aminohexanoic acid (EACA), but it required a 1 M concentration for effective inhibition, the substituted mercapto-guanido compounds prove to be effective in the mM range.  相似文献   

12.
Adipsin and an endogenous pathway of complement from adipose cells.   总被引:8,自引:0,他引:8  
The alternative complement pathway is best known for its role in humoral suppression of infectious agents. We have previously shown that adipose cells synthesize adipsin, the mouse homolog of human complement factor D, and that the synthesis of this protein is reduced in several rodent models of obesity. We show here that adipose cells and adipose tissue also synthesize two other essential components of the alternative pathway of complement, factors C3 and B, and activate the proximal portion of this pathway. This activation occurs in the absence of infectious agents and without triggering the terminal, lytic part of this pathway. We demonstrate the production in vitro of several polypeptides characteristic of complement activation that are known to have potent biological activities, including the anaphylatoxin C3a. Cultured adipocytes require stimulation with cytokines to activate complement, while explanted adipose tissue has no such requirement. The adipose tissue from obese mice is deficient in this localized activation of the alternative pathway. These results indicate that complement activation occurs in a localized site, adipose tissue, in normal mice and is impaired in a state of metabolic dysfunction. This suggests a novel function for the proximal portion of this complement pathway related to adipose cell biology or energy balance.  相似文献   

13.
Mononuclear phagocytes, which include circulating blood monocytes and differentiated tissue macrophages, are believed to play a central role in the sexual transmission of HIV infection. The ability of HIV to productively infect these cells may be influenced by action of exogenous or host-derived substances at the site of viral entry. Given the potent capacities of inflammatory mediators to stimulate anaphylatoxic and immunomodulatory functions in mucosa, the effects of complement-derived anaphylatoxins on the susceptibility of monocytes and monocyte-derived macrophages (MDM) to HIV-1 infection were examined. In our in vitro system, the susceptibility to infection was up to 40 times increased in MDM that had been exposed to C5a or C5a(desArg), but not to C3a or C3a(desArg), for 2 days before adding of virus. By contrast, the treatment with complement anaphylatoxins did not affect HIV replication in fresh monocytes. Stimulatory effect of C5a and its desArg derivative on HIV infection correlated with the increase of TNF-alpha and IL-6 secretion from MDM. All these functional effects of C5a and C5a(desArg) were reversible by treatment of cells with the mAb that functionally blocks C5aR. Taken together, these results indicate that C5a and C5a(desArg) may increase the susceptibility of MDM to HIV infection through stimulation of TNF-alpha and IL-6 secretion from these cells.  相似文献   

14.
The complement anaphylatoxins C5a and C5Ades Arg contract guinea pig peripheral airway preparations and trachea by a mechanism largely independent of histamine release. In trachea the contractions are inhibited by FPL 55712, a relatively specific inhibitor of slow-reacting substance of anaphylaxis (SRS-A). SRS-A is now known to be a mixture of leukotrienes C4, D4, and E4 (LTC4, LTD4, LTE4). These data suggest that C5-derived anaphylatoxins stimulate production and release of leukotrienes in pulmonary tissues. To define these observations more precisely, fragments of guinea pig lung were incubated with porcine C5ades Arg, and the supernatant fluids were analyzed for leukotrienes by using both pharmacologic and chemical methods. In addition to histamine, a smooth muscle contracting activity characteristic of SRS-A was released from C5a-treated lung preparations. The contractile substance was identified as a leukotriene based on: 1) the characteristic contraction of guinea pig ileum, 2) inhibition of the contractile activity by FPL 55712, 3) enhanced release of activity in the presence of indomethacin or L-cysteine, 4) chromatographic behavior of ethanol-extracted active material on Amberlite XAD-7 resin, and 5) cochromatography of the active material on reverse-phase, high performance liquid chromatography with standard LTD4. We therefore concluded the humoral factor C5ades Arg induces a leukotriene release reaction in guinea pig lung tissue. This particular response of pulmonary tissue to anaphylatoxin has not been appreciated previously as an immediate effect of complement activation on the pathophysiology of the lung.  相似文献   

15.
Infusion of human third-party mesenchymal stromal cells (MSCs) appears to be a promising therapy for acute graft-versus-host disease (aGvHD). To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46) and DAF (CD55), but were protected from complement lysis via expression of protectin (CD59). Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18)-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.  相似文献   

16.
We investigated the in vitro effect of different forms of acidosis (pH 7.0) on the formation of anaphylatoxins C3a and C5a. Metabolic acidosis due to addition of hydrochloric acid (10 micromol/ml blood) or lactic acid (5.5 micromol/ml) to heparin blood (N=12) caused significant activation of C3a and C5a compared to control (both p=0.002). Respiratory acidosis activated C3a (p=0.007) and C5a (p=0.003) compared to normocapnic controls. Making blood samples with lactic acidosis hypocapnic resulted in a median pH of 7.37. In this respiratory compensated metabolic acidosis, C3a and C5a were not increased. These experiments show that acidosis itself and not lactate trigger for activation of complement components C3 and C5.  相似文献   

17.
The anaphylatoxin, complement 5a (C5a), plays a key role in mediating various inflammatory reactions following complement activation. Several investigators have reported that C5a receptor (C5aR) is expressed in non-myeloid cells under certain conditions or in different cell lines. In our study, the abundance of C5aR-positive myeloid cells in rats depended on the organs examined. C5aR was usually expressed at the site of exposure to pathogens, such as in salivary gland or lung, and was up-regulated in liver in the inflammatory state induced by lipopolysaccharide (LPS) administration. Furthermore, the increased expression of C5aR antigen was not accompanied by an increase in C5aR mRNA in Kupffer cells following LPS challenge.  相似文献   

18.
C3a, C4a, and C5a anaphylatoxins generated during complement activation play a key role in inflammation. C5a is the most potent of the three anaphylatoxins in eliciting biological responses. The effects of C5a are mediated by its binding to C5a receptor (C5aR, CD88). To date, C5aR has only been identified and cloned in mammalian species, and its evolutionary history remains ill-defined. To gain insights into the evolution, conserved structural domains, and functions of C5aR, we have cloned and characterized a C5aR in rainbow trout, a teleost fish. The isolated cDNA encoded a 350-aa protein that showed the highest sequence similarity to C5aR from other species. Genomic analysis revealed the presence of one continuous exon encoding the entire open reading frame. Northern blot analysis showed significant expression of the trout C5a receptor (TC5aR) message in PBLs and kidney. Flow cytometric analysis showed that two Abs generated against two different areas of the extracellular N-terminal region of TC5aR positively stained the same leukocyte populations from PBLs. B lymphocytes and granulocytes comprised the majority of cells recognized by the anti-TC5aR. More importantly, these Abs inhibited chemotaxis of PBLs toward a chemoattractant fraction purified from complement-activated trout serum. Our data suggest that the split between C5aR and C3aR from a common ancestral molecule occurred before the emergence of teleost fish. Moreover, we demonstrate that the overall structure of C5aR as well as its role in chemotaxis have remained conserved for >300 million years.  相似文献   

19.
The 74 amino acid glycoprotein, complement component 5a (C5a), is a potent pro-inflammatory mediator cleaved enzymatically from its precursor, C5, upon activation of the complement cascade. C5a is quickly metabolised by carboxypeptidases, forming the less potent C5adesArg. Acting via a classical G protein-coupled receptor, CD88, C5a and C5adesArg exert a number of effects essential to the innate immune response, while their actions at the more recently discovered non-G protein-coupled receptor, C5L2 (or GPR77), remain unclear. The widespread expression of C5a receptors throughout the body allows C5a to elicit a broad range of effects. Thus, C5a has been found to be a significant pathogenic driver in a number of immuno-inflammatory diseases, making C5a inhibition an attractive therapeutic strategy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号