首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large floral displays favour pollinator attraction and the import and export of pollen. However, large floral displays also have negative effects, such as increased geitonogamy, pollen discounting and nectar/pollen robber attraction. The size of the floral display can be measured at different scales (e.g. the flower, inflorescence or entire plant) and variations in one of these scales may affect the behaviour of flower visitors in different ways. Moreover, the fragmentation of natural forests may affect flower visitation rates and flower visitor behaviour. In the present study, video recordings of the inflorescences of a tree species (Tabebuia aurea) from the tropical savannah of central Brazil were used to examine the effect of floral display size at the inflorescence and tree scales on the visitation rate of pollinators and nectar robbers to the inflorescence, the number of flowers approached per visit, the number of visits per flower of potential pollinators and nectar robbers, and the interaction of these variables with the degree of landscape disturbance. Nectar production was quantified with respect to flower age. Although large bees are responsible for most of the pollination, a great diversity of flower insects visit the inflorescences of T. aurea. Other bee and hummingbird species are highly active nectar robbers. Increases in inflorescence size increase the visitation rate of pollinators to inflorescences, whereas increases in the number of inflorescences on the tree decrease visitation rates to inflorescences and flowers. This effect has been strongly correlated with urban environments in which trees with the largest floral displays are observed. Pollinating bees (and nectar robbers) visit few flowers per inflorescence and concentrate visits to a fraction of available flowers, generating an overdispersed distribution of the number of visits per inflorescence and per flower. This behaviour reflects preferential visits to young flowers (including flower buds) with a greater nectar supply.  相似文献   

2.
Most hermaphroditic, many-flowered plants should suffer reduced fitness from within-plant selfing (geitonogamy). Large inflorescences are most attractive to pollinators, but also promote many flower visits during a single plant visit, which may increase selfing and decrease pollen export. A plant might avoid the negative consequences of attractiveness through modification of the floral display to promote fewer flower visits, while retaining attractiveness. This report shows that increasing only the variance in nectar volume per flower results in fewer flower visits per inflorescence by wild hummingbirds ( Selasphorus rufus ) and captive bumble bees ( Bombus flavifrons ) foraging on artificial inflorescences. Inflorescences were either constant (all flowers contained the same nectar volume) or variable (half the flowers were empty, the other half contained twice as much nectar as in the constant flowers). Both types of inflorescence were simultaneously available to foragers. Risk-averse foraging behaviour was expressed as a patch departure preference: birds and bees visited fewer flowers on variable inflorescences, and this preference was expressed when resource variability could be determined only by concurrent sampling. When variance treatments were clearly labelled with colour and offered to hummingbirds, the departure effect was maintained; however, when preference was measured by inflorescence choice, birds did not consistently prefer to visit constant inflorescences. The reduced visitation lengths on variable inflorescences by both birds and bees documented in this study imply that variance in nectar production rates within inflorescences may represent an adaptive trait to avoid the costs of geitonogamy.  相似文献   

3.
Kudo G  Ishii HS  Hirabayashi Y  Ida TY 《Oecologia》2007,154(1):119-128
Floral color change has been recognized as a pollination strategy, but its relative effectiveness has been evaluated insufficiently with respect to other floral traits. In this study, effects of floral color change on the visitation pattern of bumblebees were empirically assessed using artificial flowers. Four inflorescence types were postulated as strategies of flowering behavior: type 1 has no retention of old flowers, resulting in a small display size; type 2 retains old flowers without nectar production; type 3 retains old flowers with nectar; and type 4 retains color-changed old flowers without nectar. Effects of these treatments varied depending on both the total display size (single versus multiple inflorescences) and the pattern of flower-opening. In the single inflorescence experiment, a large floral display due to the retention of old flowers (types 2–4) enhanced pollinator attraction, and the number of flower visits per stay decreased with color change (type 4), suggesting a decrease in geitonogamous pollination. Type-4 plants also reduced the foraging time of bees in comparison with type-2 plants. In the multiple inflorescence experiment, the retention of old flowers did not contribute to pollinator attraction. When flowering occurred sequentially within inflorescences, type-4 plants successfully decreased the number of visits and the foraging time in comparison with type-2 plants. In contrast, floral color change did not influence the number of visits, and it extended the foraging time when flowering occurred simultaneously within inflorescences but the opening of inflorescences progressed sequentially within a plant. Therefore, the effectiveness of floral color change is highly susceptible to the display size and flowering pattern within plants, and this may limit the versatility of the color change strategy in nature.  相似文献   

4.
We studied a population of the distylousPalicourea padifolia (Rubiaceae) in a cloud forest remnant near Xalapa City, Veracruz, México to explore possible asymmetries between floral morphs in the attractiveness to pollinators, seed dispersers, nectar robbers, floral parasites, and herbivores. We first assessed heterostyly and reciprocal herkogamy by measuring floral attributes such as corolla length (buds and open flowers), style and anther heights, stigma and stamen lengths and the distance between the anther tip to the stigma lobe. We then estimated floral and fruit attributes such as flower size, anther height, number and size of pollen grains, fruit size, seed size, nectar production, and flower and fruit standing crops to assess differences between floral morphs in attracting and effectively using mutualistic pollinators and seed dispersers. Also, floral parasitism and nectar robbing were assessed in this study as a measure of flower attractiveness to antagonists. The system seems to conform well to classical heterostyly (e.g. reciprocal stamen/style lengths, pollen and anther dimorphism, intramorph incompatibility) yet, there were several tantalizing differences observed between pin and thrum morphs. Thrum flowers have longer corollas and larger but fewer pollen grains than pin flowers. Both morphs produced the same total number of inflorescences, developed the same number of buds, and opened the same number of flowers per inflorescence during the flowering season. Nectar production and sugar concentration were similar between floral morphs but the reward was not offered symmetrically to floral visitors throughout the day. Nectar concentration was higher in pin flowers in the afternoon. The numbers of developing, fully developed, and ripe fruits were the same between floral morphs, however, fruits and seeds were larger than those of thrums. The incidence of fly larvae was higher among thrum flowers and damage by nectar robbing was the same between floral morphs. Fruit abortion patterns of flowers manually pollinated suggest intra-morph sterility (self and intramorph incompatibility). There were no differences between morphs in fruit and seed set per flower following legitimate pollination although thrums were more leaky than the pins (intramorph compatibility).  相似文献   

5.
David S. Dobkin 《Oecologia》1984,64(2):245-254
Summary Flowering patterns of four Heliconia (Heliconiaceae) species in Trinidad, West Indies were examined for their predictability and availability to the nectarivores that rely on Heliconia floral nectar. Principal flower visitors are trapling hermit hummingbirds; inflorescences are inhabited by nectarivorous hummingbird flower mites that move between inflorescences by riding in the hummingbirds' nares. Heliconia inflorescences flower for 40–200 days, providing long-term sources of copious nectar (30–60 l per flower), but each Heliconia flower lasts only a single day. As an inflorescence ages the interval increases between open flowers within a bract; wet-season inflorescences produce open flowers more slowly than dry-season conspecifics.Estimated daily energy expenditures for hermit hummingbirds demonstrate that slow production of short-lived open flowers plus low inflorescence density preclude territorial defense of Heliconia by the hermits. Heliconia flowering patterns are viewed as a means of (i) regulating reproductive investment by the plants through staggered flower production over long periods of time, and (ii) maintaining outcrossing by necessitating a traplining visitation pattern by its hummingbird pollinators. I suggest that Heliconia exhibit a two-tiered pollination system by using hermit hummingbirds primarily for outcrossing and using hummingbird flower mites primarily for self-pollination.  相似文献   

6.
The movement patterns of carpenter bees (Xylocopa micans) and bumblebees (Bombus pennsylvanicus) foraging for nectar on vertical inflorescences ofPontederia cordata were studied near Miami, Florida. The floral biology ofP. cordata is unique in several ways: (a) many short-lived flowers per inflorescence, (b) constant nectar production throughout the life span of each flower, and (c) abscence of vertical patterning of nectar and age of flowers. Inflorescences ranged between 3.5 and 15.8 cm long and had between 9 and 55 open flowers. Both carpenter bees and bumblebees arrived mostly on the bottom third of the inflorescence and left after visiting flowers on the top third of the inflorescence. The departure position from the inflorescence was higher up than observed in studies of other insect pollinators foraging on other speces of plants. This pattern of departure probably occurs in the absence of a vertical gradient of nectar or floral morphology.  相似文献   

7.
Aims Foliar herbivory and water stress may affect floral traits attractive to pollinators. Plant genotypes may differ in their responses to the interplay between these factors, and evolution of phenotypic plasticity could be expected, particularly in heterogeneous environments. We aimed at evaluating the effects of simulated herbivory and experimental drought on floral traits attractive to pollinators in genetic families of the annual tarweed Madia sativa, which inhabits heterogeneous environments in terms of water availability, herbivore abundance and pollinator abundance.Methods In a greenhouse experiment with 15 inbred lines from a M. sativa population located in central Chile (Mediterranean-type climate), we measured the effects of apical bud damage and reduced water availability on: number of ray florets per flower head, length of ray florets, flower head diameter, number of open flower heads per plant, flowering plant height and flowering time.Important findings Apical damage and water shortage reduced phenotypic expression of floral traits attractive to pollinators via additive and non-additive effects. Plants in low water showed decreased height and had fewer and shorter ray florets, and fewer and smaller flower heads. Damaged plants showed delayed flowering, were less tall, and showed shorter ray florets and smaller flower heads. The number of ray florets was reduced by damage only in the low water treatment. Plant height, flowering time and number of flower heads showed among-family variation. These traits also showed genetic variation for plasticity to water availability. Ray floret length, flower head size and time to flowering showed genetic variation for plastic responses to apical damage. Plasticity in flowering time may allow M. sativa to adjust to the increased aridity foreseen for its habitat. Because genetic variation for plastic responses was detected, conditions are given for evolutionary responses to selective forces acting on plastic traits. We suggest that the evolution of adaptive floral plasticity in M. sativa in this ecological scenario (heterogeneous environments) would result from selective forces that include not only pollinators but also resource availability and herbivore damage.  相似文献   

8.
Ecological interactions between flowers and pollinators greatly affect the reproductive success. To facilitate these interactions, many flowers are known to display their attractive qualities, such as scent emission, flower rewards and floral vertical direction, in a rhythmic fashion. However, less is known about how plants regulate the relationship between these flower traits to adapt to pollinator visiting behavior and increase reproduction success. Here we investigated the adaptive significance of the flower bending from erect to downward in Trifolium repens. We observed the flowering dynamic characteristics (changes of vertical direction of florets, flowering number, pollen grain numbers, pollen viability and stigma receptivity over time after blossom) and the factors affecting the rate of flower bending in T. repens. Then we altered the vertical direction of florets in inflorescence of different types (upright and downward), and compared the pollinator behaviors and female reproductive success. Our results showed that florets opened sequentially in inflorescence, and then bend downwards slowly after flowering. The bending speed of florets was mainly influenced by pollination, and bending angle increased with the prolongation of flowering time, while the pollen germination rate, stigma receptivity and nectar secretion has a rhythm of “low-high-low” during the whole period with the time going. The visiting frequency of all the four species of pollinators on upward flowers was significantly higher than that of downward flowers, and they especially prefer to visit flowers with a bending angle of 30°–60°, when the flowers was exactly of the highest flower rewards (nectar secretion and number of pollen grains), stigma receptivity and pollen germination rate. The seed set ratio and fruit set ratio of upward flowers were significantly higher than downward flowers, but significantly lower than unmanipulated flowers. Our results indicated that the T. repens could increase female and male fitness by accurate pollination. The most suitable flower angle saves pollinators’ visiting energy and enables them to obtain the highest nectar rewards. This coordination between plants and pollinators maximizes the interests of them, which is a crucial factor in initiating specialized plant-pollinator relationships.  相似文献   

9.
In animal-pollinated plants with unisexual flowers, sexual dimorphism in floral traits may be the consequence of pollinator-mediated selection. Experimental investigations of the effects of variation in flower size and floral display on pollinator visitation can provide insights into the evolution of floral dimorphism in dioecious plants. Here, we investigated pollinator responses to experimental arrays of dioecious Sagittaria latifolia in which we manipulated floral display and flower size. We also examined whether there were changes in pollinator visitation with increasing dimorphism in flower size. In S. latifolia, males have larger flowers and smaller floral displays than females. Visitation by pollinators, mainly flies and bees, was more frequent for male than for female inflorescences and increased with increasing flower size, regardless of sex. The number of insect visits per flower decreased with increasing floral display in males but remained constant in females. Greater sexual dimorphism in flower size increased visits to male inflorescences but had no influence on the number of visits to female inflorescences. These results suggest that larger flower sizes would be advantageous to both females and males, and no evidence was found that females suffer from increased flower-size dimorphism. Small daily floral displays may benefit males by allowing extended flowering periods and greater opportunities for effective pollen dispersal.  相似文献   

10.
Standing crop of nectar (both volume and sugar concentrations) was measured from flowers in a population of Blandfordia nobilis. Nectar in this honeyeater-pollinated species was extremely viscous during one flowering season and averaged approximately 95% sugar, while it averaged only 25% sugar two seasons later. Nectar volume was significantly and negatively correlated with sugar concentration on nine often sampling dates. There was no significant relationship between either nectar volume or sugar concentration and a number of measures of plant size (inflorescence height, numbers of open flowers, buds, spent flowers and total flowers). Similarly, no consistent relationship was found between measures of flower size and reward level. There were significant positive correlations between the reward (both volume and sugar concentration) offered by blossoms on the same plant. The nectar volume of flowers from nearest neighbouring inflorescences were significantly and positively correlated with one another on three of six occasions while the sugar concentrations of those blossoms were significantly correlated on just two of six sampling dates. There was no significant difference in reward (both volume and sugar concentration) between open flowers and those bagged to exclude pollinators. There was significant heterogeneity in the nectar volumes offered by plants to pollinators during a single flowering season.  相似文献   

11.
Plant–pollinator interactions provide highly important ecological functions, and are influenced by floral nectar characteristics. The night blooming Datura ferox is an excellent model to test general hypotheses on the relationship between nectar traits (e.g., nectar secretion patterns, nectar chemical composition), pollinators and reproductive success for invasive, weedy species in highly modified ecosystems as crop fields. We hypothesized an adjustment between nectar composition and secretion dynamics through flower anthesis and the activity and requirements of nocturnal pollinators. Nectar chemical analyses showed low quantities of amino acids and lipids, phenolics, and alkaloids were not detected. D. ferox showed sucrose-dominant nectar with comparable amount of hexoses. Sugar proportions did not vary between populations or during flowering season. Most nectar is secreted before flower opening. Nectar resorption was detected at the end of anthesis. Experimentally drained flowers of both populations increased nectar production up to 50 % in the total amount of sugar per flower compared to control flowers. Nectar standing crop was relatively constant during the flowering season, but differences were detected between populations. Nectar traits of D. ferox would be favoring cross-pollination and maintaining seed production of this weed, since recently open flowers display a higher amount of nectar and they can renew nectar after a pollinator visit or reabsorb it at the end of anthesis. This nectar source may be important for native pollinators considering that human-induced forest fragmentation is related with the impoverishment of native flora from agro-ecosystems.  相似文献   

12.
Factors that contribute to variation in nectar sugar composition, nectar concentration and volume have been a central concern in studies of pollinator assemblages in angiosperms. In an effort to better understand the mechanisms underlying variation in nectar traits, we designed a series of experiments with flowering Helleborus foetidus individuals under natural and glasshouse conditions, to identify intraplant variation in nectar traits which depend on both intrinsic (sexual phases of individual flowers) and external (pollinator visits and plant growth conditions) factors. The results showed that nectar volume, sugar composition and concentration in Helleborus foetidus varied between floral sexual phases, environmental growing conditions, and levels of flower exposure to pollinator visits. Processes of mate-limitation in male reproductive success or pollen-limitation in female success, as well as flower protogyny and holocrine secretion of nectaries may be involved in nectar variability between floral phases. By comparing different environments we observed that nectar volume and concentration at the nectary and flower level were plastic traits sensitive to external conditions, emphasizing responsiveness to environmental changes and a consequent plasticity in nectar traits such as sugar concentration and volume. Nectar sugar composition did not respond to different growing conditions, suggesting that this is an intrinsic characteristic of this species, but pollinator exposure produced significant changes in the nectar of single nectaries, particularly in the sucrose-fructose balance. Future research on nectar ecology and nectar chemistry will need to consider that nectar traits exhibit different kinds of variation at the intraplant level and under different environmental conditions.  相似文献   

13.
The evolution of floral display is thought to be constrained by trade‐offs between the size and number of flowers and inflorescences. We grew in the glasshouse 60 maternal families from each of two Brazilian populations of the annual herb, Eichhornia paniculata. We measured flower size, daily flower number, and total flower number per inflorescence, and two indices of module size, leaf area and age at flowering. We also assessed the size and number of inflorescences produced over 6 weeks. All floral traits exhibited significant heritable variation, some of which was due to genetic variation in module size. Genetic (maternal family) correlations between daily and total flower number did not differ from 1.0, indicating that display size (daily flower number) cannot evolve independently from total flower number per inflorescence. Genetic correlations between flower size and daily flower number ranged from negative to positive (r=–0.78 to +0.84), depending on population and inflorescence. Positive correlations occurred when variation in investment per inflorescence was high so that some families produced both larger and more flowers. These correlations became zero when we controlled for variation in module size. Families that flowered later produced fewer, larger inflorescences (r=–0.33, –0.85). These data support theoretical predictions regarding the combined effects of variation in resource acquisition and allocation on traits involved in trade‐offs, and they emphasize the hierarchical organization of floral displays. Our results imply that patterns of resource allocation among inflorescences influence evolutionary changes in flower size and number per inflorescence.  相似文献   

14.
Oilseed rape (OSR; Brassica napus L.) is a major crop in temperate regions and provides an important source of nutrition to many of the yield‐enhancing insect flower visitors that consume floral nectar. The manipulation of mechanisms that control various crop plant traits for the benefit of pollinators has been suggested in the bid to increase food security, but little is known about inherent floral trait expression in contemporary OSR varieties or the breeding systems used in OSR breeding programmes. We studied a range of floral traits in glasshouse‐grown, certified conventional varieties of winter OSR to test for variation among and within breeding systems. We measured 24‐h nectar secretion rate, amount, concentration and ratio of nectar sugars per flower, and sizes and number of flowers produced per plant from 24 varieties of OSR representing open‐pollinated (OP), genic male sterility (GMS) hybrid and cytoplasmic male sterility (CMS) hybrid breeding systems. Sugar concentration was consistent among and within the breeding systems; however, GMS hybrids produced more nectar and more sugar per flower than CMS hybrid or OP varieties. With the exception of ratio of fructose/glucose in OP varieties, we found that nectar traits were consistent within all the breeding systems. When scaled, GMS hybrids produced 1.73 times more nectar resource per plant than OP varieties. Nectar production and amount of nectar sugar in OSR plants were independent of number and size of flowers. Our data show that floral traits of glasshouse‐grown OSR differed among breeding systems, suggesting that manipulation and enhancement of nectar rewards for insect flower visitors, including pollinators, could be included in future OSR breeding programmes.  相似文献   

15.
Vertical raceme or spike inflorescences that are bee-pollinated tend to present their flowers horizontally. Horizontal presentation of flowers is hypothesized to enhance pollinator recognition and pollination precision, and it may also ensure greater consistency of pollinator movement on inflorescences. We tested the hypotheses using bee-pollinated Corydalis sheareri which has erect inflorescences consisting of flowers with horizontal orientation. We altered the orientation of individual flowers and prepared three types of inflorescences: (i) unmanipulated inflorescences with horizontal-facing flowers, (ii) inflorescences with flowers turned upward, and (iii) inflorescences with flowers turned downward. We compared number of inflorescences approached and visited, number of successive probes within an inflorescence, the direction percentage of vertical movement on inflorescences, efficiency of pollen removal and seed production per inflorescence. Deviation from horizontal orientation decreased both approaches and visits by leafcutter bees and bumble bees to inflorescences. Changes in floral orientation increased the proportion of downward movements by leafcutter bees and decreased the consistency of pollinator movement on inflorescences. In addition, pollen removal per visit and seed production per inflorescence also declined with changes of floral orientation. In conclusion, floral orientation seems more or less optimal as regards bee behavior and pollen transfer for Corydalis sheareri. A horizontal orientation may be under selection of pollinators and co-adapt with other aspects of the inflorescence and floral traits.  相似文献   

16.
Osyris alba L. is a widespread dioecious hemiparasitic shrub of S Europe, N Africa, and SW Asia. Male inflorescences are multiflowered whereas each female inflorescence is reduced to a single flower with persistent enlarged bracts. Pollination is a prerequisite for fruit and seed development and wind is unlikely to be an effective means of pollen spread. In southern Italy pollen is transported by small unspecialized flies and beetles. Both male and female flowers produce an indistinguishable sweet odour. Male flowers are produced in large numbers and over a larger period than the females and provide pollen, nectar, and staminal hairs as rewards for pollinators. The presence and function of staminal hairs with tip cells inOsyris alba has been reported for the first time. Female flowers are rewardless, producing neither mature pollen, nectar nor staminal hairs, but possess three modified yellow indehiscent anthers containing no viable pollen which may provide a strong visual feeding stimulus for pollinators. It is suggested that pollinators are attracted by deceit to female flowers by mimicry of the males and the floral mimicry is, therefore, intraspecific and intersexual. The floral characteristics and flowering phenology of male and female plants are consistent with this kind of mimicry. The female flower possesses a tricarpellary ovary with three ovules of which only one develops. The single seed, containing a small embryo and a large, rich endosperm, is borne in a red fleshy bird-dispersed fruit. The reduction in seed number per flower to one highly nutrient-invested seed, together with a reduction of the multiflowered inflorescence to a solitary flower and the sequential production of ripe fruits over an extended fruiting season, suggest that the female function is markedly resource-limited. It is suggested that, although all the reproductive characteristics present inOsyris alba, as well as hemiparasitism, had probably evolved before the end of the tropical Tertiary, they are of adaptive advantage in the nutrient and water-limited environment of the Mediterranean maquis.  相似文献   

17.
By definition, the floral morphs of distylous plants differ in floral architecture. Yet, because cross-pollination is necessary for reproductive success in both morphs, they should not differ in attributes that contribute to attracting and rewarding floral visitors. Floral and vegetative attributes that function in distylous polymorphism in hummingbird-pollinated Palicourea padifolia (Rubiaceae) and the responses of pollinators and insect herbivores to the resources offered by both morphs were investigated. The performance of each morph along multiple stages of the reproductive cycle, from inflorescence and nectar production to fruit production, was surveyed, and pollinator behavior and nectar standing crops were then observed. Costs associated with such attractiveness were also evaluated in terms of herbivore attack and of plant reproductive fitness (female function) as a function of leaf herbivory. The number of inflorescences, floral buds, open flowers, and ripe fruits offered by either floral morph were similar, but short-styled plants almost doubled the number of developing fruits of long-styled plants. Long-styled flowers produced higher nectar volumes and accumulated more nectar over time than short-styled flowers. Measures of nectar standing crop and data on pollinator behavior suggest that hummingbirds respond to this morph-specific scheduling of nectar production. Lastly, long-styled plants suffered a higher herbivore attack and lost more leaf area over time than those with short-styled flowers. Herbivory was negatively correlated with fruit number and fruit mass, and long-styled plants set significantly less fruit mass than short-styled plants. The results suggest that pollinators and herbivores may exert selective pressures on floral and vegetative traits that could also influence gender function.  相似文献   

18.
  • Unrelated plants adapted to particular pollinator types tend to exhibit convergent evolution in floral traits. However, inferences about likely pollinators from ‘pollination syndromes’ can be problematic due to trait overlap among some syndromes and unusual floral architecture in some lineages. An example is the rare South African parasitic plant Mystropetalon thomii (Mystropetalaceae), which has highly unusual brush‐like inflorescences that exhibit features of both bird and rodent pollination syndromes.
  • We used camera traps to record flower visitors, quantified floral spectral reflectance and nectar and scent production, experimentally determined self‐compatibility and breeding system, and studied pollen dispersal using fluorescent dyes.
  • The dark‐red inflorescences are usually monoecious, with female flowers maturing before male flowers, but some inflorescences are purely female (gynoecious). Inflorescences were visited intensively by several rodent species that carried large pollen loads, while visits by birds were extremely rare. Rodents prefer male‐ over female‐phase inflorescences, likely because of the male flowers’ higher nectar and scent production. The floral scent contains several compounds known to attract rodents. Despite the obvious pollen transfer by rodents, we found that flowers on both monoecious and gynoecious inflorescences readily set seed in the absence of rodents and even when all flower visitors are excluded.
  • Our findings suggest that seed production occurs at least partially through apomixis and that M. thomii is not ecologically dependent on its rodent pollinators. Our study adds another species and family to the growing list of rodent‐pollinated plants, thus contributing to our understanding of the floral traits associated with pollination by non‐flying mammals.
  相似文献   

19.
Aims Sex allocation in plants is often plastic, enabling individuals to adjust to variable environments. However, the predicted male-biased sex allocation in response to low resource conditions has rarely been experimentally tested in hermaphroditic plants. In particular, it is unknown whether distal flowers in linear inflorescences show a larger shift to male allocation relative to basal flowers when resources are reduced. In this study, we measure position-dependent plasticity of floral sex allocation within racemes of Aconitum gymnandrum in response to reduced resource availability.Methods Using a defoliation treatment in the field applied to potted plants from a nested half-sibling design, we examined the effects of the treatment, flower position, family and their interactions.Important findings Allocation to male function increased with more distal flower position, while female allocation either did not change with position or declined at the most distal flowers. Defoliation significantly reduced the mass of both the androecium and gynoecium, but not anther number or carpel number. Gynoecial mass declined more strongly with defoliation than did androecial mass, resulting in a significant increase in the androecium/gynoecium ratio as predicted by sex allocation theory. Plastic responses of androecium mass and gynoecium mass were affected by flower position, with less mass lost in basal flowers, but similar plastic magnitude in both sexual traits across flower position lead to consistent variation in the androecium/gynoecium ratio along the inflorescence. A significant treatment*paternal family interaction for the androecium/gynoecium ratio is evidence for additive genetic variation for plastic floral sex allocation, which means that further evolution of allocation can occur.  相似文献   

20.

Background  

Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号