首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Human hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) promise a valuable source of cells with human genetic background, physiologically relevant liver functions, and unlimited supply. With over 10 years’ efforts in this field, great achievements have been made. HLCs have been successfully derived and applied in disease modeling, toxicity testing and drug discovery. Large cohorts of induced pluripotent stem cells-derived HLCs have been recently applied in studying population genetics and functional outputs of common genetic variants in vitro. This has offered a new paradigm for genome-wide association studies and possibly in vitro pharmacogenomics in the nearly future. However, HLCs have not yet been successfully applied in bioartificial liver devices and have only displayed limited success in cell transplantation. HLCs still have an immature hepatocyte phenotype and exist as a population with great heterogeneity, and HLCs derived from different hPSC lines display variable differentiation efficiency. Therefore, continuous improvement to the quality of HLCs, deeper investigation of relevant biological processes, and proper adaptation of recent advances in cell culture platforms, genome editing technology, and bioengineering systems are required before HLCs can fulfill the needs in basic and translational research. In this review, we summarize the discoveries, achievements, and challenges in the derivation and applications of HLCs.  相似文献   

2.
3.
Mesenchymal stem cells(MSCs)have the potential for use in cell-based regenerative therapies.Currently,hundreds of clinical trials are using MSCs for the treatment of various diseases.However,MSCs are low in number in adult tissues;they show heterogeneity depending upon the cell source and exhibit limited proliferative potential and early senescence in in vitro cultures.These factors negatively impact the regenerative potential of MSCs and therefore restrict their use for clinical applications.As a result,novel methods to generate induced MSCs(iMSCs)from induced pluripotent stem cells have been explored.The development and optimization of protocols for generation of iMSCs from induced pluripotent stem cells is necessary to evaluate their regenerative potential in vivo and in vitro.In addition,it is important to compare iMSCs with primary MSCs(isolated from adult tissues)in terms of their safety and efficacy.Careful investigation of the properties of iMSCs in vitro and their long term behavior in animals is important for their translation from bench to bedside.  相似文献   

4.
5.
Embryonic stem cells (ES cells), bone marrow-derived mesenchymal stem cells, umbilical cord blood-derived mesenchymal stem cells, and hepatic stem cells in liver have been known as a useful source that can induce to differentiate into hepatocytes. In this study, we examined whether human adipose tissue-derived stromal cells (hADSC) can differentiate into hepatic lineage in vitro. hADSC, that were induced to differentiate into hepatocyte-like cells by the treatment of HGF and OSM, had morphology similar to hepatocytes. Addition of DMSO enhanced differentiation into hepatocytes. RT-PCR and immunocytochemical analysis showed that hADSC express albumin and alpha-fetoprotein during differentiation. Differentiated hADSC showed LDL uptake and production of urea. Additionally, transplanted hADSC to CCl4-injured SCID mouse model were able to be differentiated into hepatocytes and they expressed albumin in vivo. Mesenchymal stem cells isolated from human adipose tissue are immunocompatible and are easily isolated. Therefore, hADSC may become an alternative source to hepatocyte regeneration or liver cell transplantation.  相似文献   

6.
7.
Human embryonic stem cells (hESCs) provide a new source for hepatocyte production in translational medicine and cell replacement therapy. The reported hESC-derived hepatocyte-like cells (HLCs) were commonly generated on Matrigel, a mouse cell line-derived extracellular matrix (ECM). Here, we performed the hepatic lineage differentiation of hESCs following a stepwise application of growth factors on a newly developed serum- and xeno-free, simple and cost-benefit ECM, designated “RoGel,” which generated from a modified conditioned medium of human fibroblasts. In comparison with Matrigel, the differentiated HLCs on both ECMs expressed similar levels of hepatocyte-specific genes, secreted α-fetoprotein, and metabolized ammonia, showed glycogen storage activity as well as low-density lipoprotein and indocyanine green uptake. The transplantation of hESC–HLCs into the carbon tetrachloride-injured liver demonstrated incorporation of the cells into the host mouse liver and the expression of albumin. The results suggest that the xeno-free and cost-benefit matrix may be applicable in bioartificial livers and also may facilitating a clinical application of human pluripotent stem cell-derived hepatocytes in the future.  相似文献   

8.
Liver diseases caused by viral infection, alcohol abuse and metabolic disorders can progress to end‐stage liver failure, liver cirrhosis and liver cancer, which are a growing cause of death worldwide. Although liver transplantation and hepatocyte transplantation are useful strategies to promote liver regeneration, they are limited by scarce sources of organs and hepatocytes. Mesenchymal stem cells (MSCs) restore liver injury after hepatogenic differentiation and exert immunomodulatory, anti‐inflammatory, antifibrotic, antioxidative stress and antiapoptotic effects on liver cells in vivo. After isolation and culture in vitro, MSCs are faced with nutrient and oxygen deprivation, and external growth factors maintain MSC capacities for further applications. In addition, MSCs are placed in a harsh microenvironment, and anoikis and inflammation after transplantation in vivo significantly decrease their regenerative capacity. Pre‐treatment with chemical agents, hypoxia, an inflammatory microenvironment and gene modification can protect MSCs against injury, and pre‐treated MSCs show improved hepatogenic differentiation, homing capacity, survival and paracrine effects in vitro and in vivo in regard to attenuating liver injury. In this review, we mainly focus on pre‐treatments and the underlying mechanisms for improving the therapeutic effects of MSCs in various liver diseases. Thus, we provide evidence for the development of MSC‐based cell therapy to prevent acute or chronic liver injury. Mesenchymal stem cells have potential as a therapeutic to prolong the survival of patients with end‐stage liver diseases in the near future.  相似文献   

9.
Mesenchymal stem cells (MSCs) are considered as an attractive tool for tissue regeneration and possess a strong immunomodulatory ability. Dental tissue-derived MSCs can be isolated from different sources, such as the dental pulp, periodontal ligament, deciduous teeth, apical papilla, dental follicles and gingiva. According to numerous in vitro studies, the effect of dental MSCs on immune cells might depend on several factors, such as the experimental setting, MSC tissue source and type of immune cell preparation. Most studies have shown that the immunomodulatory activity of dental MSCs is strongly upregulated by activated immune cells. MSCs exert mostly immunosuppressive effects, leading to the dampening of immune cell activation. Thus, the reciprocal interaction between dental MSCs and immune cells represents an elegant mechanism that potentially contributes to tissue homeostasis and inflammatory disease progression. Although the immunomodulatory potential of dental MSCs has been extensively investigated in vitro, its role in vivo remains obscure. A few studies have reported that the MSCs isolated from inflamed dental tissues have a compromised immunomodulatory ability. Moreover, the expression of some immunomodulatory proteins is enhanced in periodontal disease and even shows some correlation with disease severity. MSC-based immunomodulation may play an essential role in the regeneration of different dental tissues. Therefore, immunomodulation-based strategies may be a very promising tool in regenerative dentistry.  相似文献   

10.
The liver has a marked capacity for regeneration. In most cases the liver regeneration is determined by hepatocytes. The regenerative capacity of hepatocytes is significantly reduced in acute or chronic damage. For example, in patients with alcoholic cirrhosis repair mechanisms are not activated and only organ transplantation or advanced methods of regenerative medicine can help such patients. Clinical trials including patients with various forms of liver disease have shown promising results of transplantation of autologous bone marrow stem cells. However, improvement of the effectiveness of such treatment requires optimization of sources of progenitor cells. In this study we have isolated stromal cells from the liver biopsies of three patients with alcoholic cirrhosis, performed their morphological and phenotypic analysis, and evaluated the hepatic potential of these cells in vitro. Stromal cells isolated from the fetal liver were used for comparative evaluation. During hepatic differentiation both types of cells expressed hepatic markers and secreted albumin. These results can serve as a basis for the development of a new method for the treatment of end-stage liver disease. The stromal cells isolated from the liver biopsies proliferate for a long time in a culture and this provides opportunity to produce them in large amounts for subsequent differentiation into hepatocyte-like cells and autologous transplantation.  相似文献   

11.
Platelet activating factor (PAF) is considered a key mediator in eliciting the immunologic and metabolic consequences of endotoxic shock and sepsis. Release of oxygen-derived radicals is one of the important and relevant actions of PAF. This study examines the direct and priming effects of PAF on superoxide anion release by perfused liver, isolated Kupffer cells and blood neutrophils. One hour after PAF infusion at a dose of 2.2 μ/kg body weight a significant amount of superoxide release (0.71 ± 0.01 nmol/min/g liver) was measured in the perfused liver compared with the control livers (0.2 ± 0.01). In the in vitro presence of either phorbol ester or opsonized zymosan, superoxide release following PAF treatment in vivo was significantly increased to 1.36 ± 0.2 and 4.29 ± 0.36, respectively. The administration of PAF receptor antagonist (SDZ 63-441) almost completely inhibited the release of this radical. Kupffer cells (KC1, KC2, KC3) and blood neutrophils isolated from PAF-treated rats were also primed for increased production when these cells were challenged in vitro by the activator of protein kinase C, opsonin-coated zymosan as well as the chemotactic factors, complement 5a and F-met-leu-phe. PAF added in vitro to the perfused livers, isolated Kupffer cells or neutrophils from normal animals stimulated the release of superoxide with or without the above agonists. The direct stimulatory effect of PAF on superoxide release was inhibited by the PAF receptor antagonist in vitro. The role of PAF in the LPS-induced superoxide release by the perfused liver was also examined by the administration of PAF antagonist in endotoxic rats. The antagonist inhibited the LPS-mediated superoxide release at 1 hr, but not at 3 hr post-treatment. These results indicate that PAF stimulates and primes the hepatic elements to release superoxide. PAF may be an important factor during the early phase of endotoxemia, while other bioactive substances may take over at a later phase. Therefore, PAF is a key mediator that can directly enhance the release of toxic oxygen-derived radicals which may contribute to organ failure during endotoxemia or sepsis.  相似文献   

12.
Hepatocyte-like cells (HLCs) differentiated from human-induced pluripotent stem cells offer an alternative platform to primary human hepatocytes (PHHs) for studying the lipid metabolism of the liver. However, despite their great potential, the lipid profile of HLCs has not yet been characterized. Here, we comprehensively studied the lipid profile and fatty acid (FA) metabolism of HLCs and compared them with the current standard hepatocyte models: HepG2 cells and PHHs. We differentiated HLCs by five commonly used methods from three cell lines and thoroughly characterized them by gene and protein expression. HLCs generated by each method were assessed for their functionality and the ability to synthesize, elongate, and desaturate FAs. In addition, lipid and FA profiles of HLCs were investigated by both mass spectrometry and gas chromatography and then compared with the profiles of PHHs and HepG2 cells. HLCs resembled PHHs by expressing hepatic markers: secreting albumin, lipoprotein particles, and urea, and demonstrating similarities in their lipid and FA profile. Unlike HepG2 cells, HLCs contained low levels of lysophospholipids similar to the content of PHHs. Furthermore, HLCs were able to efficiently use the exogenous FAs available in their medium and simultaneously modify simple lipids into more complex ones to fulfill their needs. In addition, we propose that increasing the polyunsaturated FA supply of the culture medium may positively affect the lipid profile and functionality of HLCs. In conclusion, our data showed that HLCs provide a functional and relevant model to investigate human lipid homeostasis at both molecular and cellular levels.  相似文献   

13.
Generating functional hepatocyte‐like cells (HLCs) from mesenchymal stem cells (MSCs) is of great urgency for bio‐artificial liver support system (BALSS). Previously, we obtained HLCs from human umbilical cord‐derived MSCs by overexpressing seven microRNAs (HLC‐7) and characterized their liver functions in vitro and in vivo. Here, we aimed to screen out the optimal miRNA candidates for hepatic differentiation. We sequentially removed individual miRNAs from the pool and examined the effect of transfection with remainder using RT‐PCR, periodic acid—Schiff (PAS) staining and low‐density lipoprotein (LDL) uptake assays and by assessing their function in liver injury models. Surprisingly, miR‐30a and miR‐1290 were dispensable for hepatic differentiation. The remaining five miRNAs (miR‐122, miR‐148a, miR‐424, miR‐542‐5p and miR‐1246) are essential for this process, because omitting any one from the five‐miRNA combination prevented hepatic trans‐differentiation. We found that HLCs trans‐differentiated from five microRNAs (HLC‐5) expressed high level of hepatic markers and functioned similar to hepatocytes. Intravenous transplantation of HLC‐5 into nude mice with CCl4‐induced fulminant liver failure and acute liver injury not only improved serum parameters and their liver histology, but also improved survival rate of mice in severe hepatic failure. These data indicated that HLC‐5 functioned similar to HLC‐7 in vitro and in vivo, which have been shown to resemble hepatocytes. Instead of using seven‐miRNA combination, a simplified five‐miRNA combination can be used to obtain functional HLCs in only 7 days. Our study demonstrated an optimized and efficient method for generating functional MSC‐derived HLCs that may serve as an attractive cell alternative for BALSS.  相似文献   

14.
Hepatic cirrhosis is the end-stage of chronic liver diseases. The majority of patients with hepatic cirrhosis die from life-threatening complications occurring at their earlier ages. Liver transplantation has been the most effective treatment for these patients. Since liver transplantation is critically limited by the shortage of available donor livers, searching for an effective alternative therapy has attracted great interest in preclinical studies. The transplantation of autologous bone marrow-derived mesenchymal stem cells holds great potential for treating hepatic cirrhosis. Mesenchymal stem cells can differentiate to hepatocytes, stimulate the regeneration of endogenous parenchymal cells, and enhance fibrous matrix degradation. Experimental and clinical studies have shown promising beneficial effects. This review is intended to translate the bench study results to the patients' bedside. The potential interventions of mesenchymal stem cells on cirrhosis are illustrated in terms of the cellular and molecular mechanisms of hepatic fibrogenesis.  相似文献   

15.
胚胎干细胞分化为肝细胞的研究进展   总被引:6,自引:0,他引:6  
目前 ,细胞移植作为终末期肝病的辅助治疗方法 ,移植的细胞必须满足在受体肝脏中存活、增殖并可分化为成熟肝细胞两个重要条件 ,但目前应用的肝细胞来源有限 ,其功能随着培养时间的延长而逐渐下降等问题限制了这一治疗策略的广泛开展。作为具有发育全能性和无限增殖能力的细胞 ,胚胎干细胞向肝细胞的分化研究近年来引起了广泛的关注 ,并取得了较大的进展 ,寻找合适、高效的分化诱导方法是目前研究的热点之一。胚胎干细胞向肝细胞的分化研究既可以为临床细胞替代治疗提供合适的细胞来源 ,也可以在药物评估和肝脏发育分化基础研究方面起到重要的作用。通过概括肝脏和拟胚体分化发育的分子机制 ,对体外胚胎干细胞向肝细胞分化的几种诱导体系作了介绍 ,并对分化肝细胞的应用前景和存在的问题进行了讨论。  相似文献   

16.
Liver diseases are associated with a marked reduction in the viable mass of hepatocytes. The most severe cases of liver disease (liver failure) are treated by orthotopic liver transplantation. One alternative to whole organ transplantation for patients with hepatic failure (and hereditary liver disease) is hepatocyte transplantation. However, there is a serious limitation to the treatment of liver diseases either by whole organ or hepatocyte transplantation, and that is the shortage of organ donors. Therefore, to overcome the problem of organ shortage, additional sources of hepatocytes must be found. Alternative sources of cells for transplantation have been proposed including embryonic stem cells, immortalised liver cells and differentiated cells. One other source of cells for transplantation found in the adult liver is the progeny of stem cells. These cells are termed hepatic progenitor cells (HPCs). The therapeutic potential of HPCs lies in their ability to proliferate and differentiate into hepatocytes and cholangiocytes. However, using HPCs as a cell therapy cannot be exploited fully until the mechanisms governing hepatocyte differentiation are elucidated. Here, we discuss the fundamental cellular and molecular elements required for HPC differentiation to hepatocytes.  相似文献   

17.
肝硬化是一种临床常见的肝病良性终末期表现。目前临床上尚缺乏有效的治疗措施。肝脏移植是最理想的治疗方法,但受供体肝脏来源限制,且费用昂贵。近年来开展的自体骨髓干细胞(BMSCs)移植治疗,为肝硬化的治疗带来了新的希望。BMSCs主要包括造型血干细胞和间充质干细胞,其具有可塑性,体外通过生长因子,体内利用特定微环境均可诱导BMSCs分化为肝前体细胞和成熟肝细胞,并明显改善肝功能。从动物实验到临床研究亦表明,BMSCs具有来源丰富、费用低廉、损伤小、自体移植不栓塞、无排斥反应等优点,为治疗肝病带来了新思路,有望成为生物人工肝的细胞来源。本文就BMSCs移植治疗肝硬化的研究现状,尤其是移植途径以及在肝脏内定居、迁移和分化机制的示踪观察方法和存在的问题作一综述,以期为从事肝病研究的同仁提供参考依据。通过对BMSCs移植从基础研究及临床应用的最新进展的描述,展示BMSCs在肝硬化治疗方面良好的治疗前景。  相似文献   

18.
19.
The liver is one of the few organs that possess a high capacity to regenerate after liver failure or liver damage. The parenchymal cells of the liver, hepatocytes, contribute to the majority of the regeneration process. Thus, hepatocyte transplantation presents an alternative method to treating liver damage. However, shortage of hepatocytes and difficulties in maintaining primary hepatocytes still remain key obstacles that researchers must overcome before hepatocyte transplantation can be used in clinical practice. The unique properties of pluripotent stem cells (PSCs) and induced pluripotent stem cells (iPSCs) have provided an alternative approach to generating enough functional hepatocytes for cellular therapy. In this review, we will present a brief overview on the current state of hepatocyte differentiation from PSCs and iPSCs. Studies of liver regenerative processes using different cell sources (adult liver stem cells, hepatoblasts, hepatic progenitor cells, etc.) will be described in detail as well as how this knowledge can be applied towards optimizing culture conditions for the maintenance and differentiation of these cells towards hepatocytes. As the outlook of stem cell-derived therapy begins to look more plausible, researchers will need to address the challenges we must overcome in order to translate stem cell research to clinical applications.  相似文献   

20.
Terminal differentiation requires molecules also involved in aging such as the cell cycle inhibitor p16(INK4a).Like other organs, the adult liver represents a quiescent organ with terminal differentiated cells, hepatocytes and cholangiocytes. These cells retain the ability to proliferate in response to liver injury or reduction of liver mass. However, under conditions which prevent mitotic activation of hepatocytes, regeneration can occur instead from facultative hepatic stem cells.For therapeutic application a non-toxic activation of this stem cell compartment is required. We have established transgenic mice with conditional overexpression of the cell cycle inhibitor p16(INK4a) in hepatocytes and have provoked and examined oval cell activation in adult liver in response to a range of proliferative stimuli.We could show that the liver specific expression of p16(INK4a) leads to a faster differentiation of hepatocytes and an activation of oval cells already in postnatal mice without negative consequences on liver function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号