首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the main goals in ecology is determining the mechanisms that control the abundance and distribution of organisms. Using data from 69 tropical forests worldwide, I demonstrate that liana (woody vine) abundance is correlated negatively with mean annual precipitation and positively with seasonality, a pattern precisely the opposite of most other plant types. I propose a general mechanistic hypothesis integrating both ecological and ecophysiological approaches to explain this pattern. Specifically, the deep root and efficient vascular systems of lianas enable them to suffer less water stress during seasonal droughts while many competitors are dormant, giving lianas a competitive advantage during the dry season. Testing this hypothesis in central Panama, I found that lianas grew approximately seven times more in height than did trees during the dry season but only twice as much during the wet season. Over time, this dry season advantage may allow lianas to increase in abundance in seasonal forests. In aseasonal wet forests, however, lianas gain no such advantage because competing plants are rarely limited by water. I extend this theory to account for the local, within-forest increase in liana abundance in response to disturbance as well as the conspicuous decrease in liana abundance at high latitudes.  相似文献   

2.
《植物生态学报》2020,44(3):192
木质藤本是热带森林的重要组成部分, 显著影响森林的结构和功能。已有研究发现木质藤本与乔木的水力结构存在显著差异: 木质藤本的缠绕或攀缘茎细小, 但其木质部具有粗大的长导管, 输水效率高, 抗栓塞能力低。为降低基因型差异对比较结果的影响, 该研究选取热带崖豆藤属(Millettia)和买麻藤属(Gnetum)的乔木和木质藤本, 比较同属内不同生长型植物的水力和光合性状的差异, 分析水分传导效率与抗栓塞能力之间以及水力与光合性状之间的相关关系。结果发现: (1)崖豆藤属植物水力性状的种间差异大, 与生活型和需光性有关。耐阴的木质藤本反而具有较低的水分传导效率和较高的抗栓塞能力。(2)买麻藤属植物是裸子植物较为进化的类群(具有导管和阔叶), 其乔木的水分传导效率很低, 但是其木质藤本的水分传导效率高于其他阳生性的被子植物。(3)不论乔木还是木质藤本, 水分传导的有效性与安全性在枝条和叶片水平上均没有显著的权衡关系。(4)与同属乔木相比, 木质藤本的叶片较枝条的抗栓塞能力更强, 在旱季具有更高的最大净光合速率和气孔导度, 支持了木质藤本的“旱季生长优势假说”。该研究揭示了热带木质藤本水力性状的多样性和重要性, 为阐明环境变化对这一重要植物类群的影响, 需要对它们的水力特征进行更广泛的研究。  相似文献   

3.
The exotic temperate liana (woody vine) Celastrus orbiculatus has become a weed in Michigan, occurring in many of the same habitats as the native liana Vitis riparia. However, C. orbiculatus frequently develops into extensive monospecific infestations, while V. riparia does not. Freezing-induced embolism may be responsible for limiting liana distribution. Root pressure has been observed in numerous tropical lianas and temperate species of Vitis and has been implicated as vital to the recovery of xylem function in wide vessels following winter freezes. For both of these co-occurring lianas we investigated root pressure and water conductance as possible explanatory factors for their differential spread. According to our hypothesis, C. orbiculatus should have produced greater or more frequent root pressures than V. riparia. However, the reverse proved true, indicating that root pressure is not a prerequisite for weedy proliferation of C. orbiculatus. Additionally, the seasonal patterns of specific conductivity of stem xylem indicate that each species responds differently to environmental constraints. Vitis riparia establishes conductivity early in the growing season, before the leaves emerge, using root pressure to reverse embolism, but loses conductivity with the first freeze in early autumn. Celastrus orbiculatus is slow to establish conductivity, depending on new wood production, but leafs out sooner than V. riparia and maintains green leaves after the first freeze. Vulnerability curves of xylem to cavitation caused by water stress for the two species indicate that they respond similarly to dehydration. These results indicate that root pressures are not responsible for the invasive success of C. orbiculatus and suggest that other factors must be key to its prolific invasion.  相似文献   

4.
Recent studies indicate that lianas are increasing in size and abundance relative to trees in neotropical forests. As a result, forest dynamics and carbon balance may be altered through liana‐induced suppression of tree growth and increases in tree mortality. Increasing atmospheric CO2 is hypothesized to be responsible for the increase in neotropical lianas, yet no study has directly compared the relative response of tropical lianas and trees to elevated CO2. We explicitly tested whether tropical lianas had a larger response to elevated CO2 than co‐occurring tropical trees and whether seasonal drought alters the response of either growth form. In two experiments conducted in central Panama, one spanning both wet and dry seasons and one restricted to the dry season, we grew liana (n = 12) and tree (n = 10) species in open‐top growth chambers maintained at ambient or twice‐ambient CO2 levels. Seedlings of eight individuals (four lianas, four trees) were grown in the ground in each chamber for at least 3 months during each season. We found that both liana and tree seedlings had a significant and positive response to elevated CO2 (in biomass, leaf area, leaf mass per area, and photosynthesis), but that the relative response to elevated CO2 for all variables was not significantly greater for lianas than trees regardless of the season. The lack of differences in the relative response between growth forms does not support the hypothesis that elevated CO2 is responsible for increasing liana size and abundance across the neotropics.  相似文献   

5.
热带雨林木质藤本植物叶片性状及其关联   总被引:2,自引:0,他引:2  
热带雨林中木质藤本植物较为丰富。随着全球气候变化加剧,木质藤本植物的丰富度具有不断增加的趋势,有可能对热带森林的结构、功能和动态产生重要影响。然而,目前对木质藤本响应环境变化的机制所知甚少。本研究以13个科20种热带雨林常见木质藤本植物为材料,测定了冠层叶片的17个形态特征及结构性状,并分析了性状间的相互关系。结果表明,叶片相对含水量的种间变异最小(变异系数为5%),而上表皮厚度的种间变异最大(变异系数为80%),其它性状的种间变异系数为24%~61%。木质藤本植物的叶脉密度、叶片密度均与气孔密度呈显著正相关,叶片干物质含量与比叶面积呈显著负相关。与相同生境的树木相比,木质藤本的叶面积更小、气孔密度和叶片密度更低、比叶面积更高,但两种植物类群的叶片横切面组织结构厚度无显著差异。研究结果对理解木质藤本植物的生态适应性具有重要意义。  相似文献   

6.
Lianas (woody vines) are particularly abundant in tropical forests, and their abundance is increasing in the neotropics. Lianas can compete intensely with trees for above- and belowground resources, including water. As tropical forests experience longer and more intense dry seasons, competition for water is likely to intensify. However, we lack an understanding of how liana abundance affects soil moisture and hence competition with trees for water in tropical forests. To address this critical knowledge gap, we conducted a large-scale liana removal experiment in a seasonal tropical moist forest in central Panama. We monitored shallow and deep soil moisture over the course of three years to assess the effects of lianas in eight 0.64 ha removal plots and eight control plots. Liana removal caused short-term effects in surface soils. Surface soils (10 cm depth) in removal plots dried more slowly during dry periods and accumulated water more slowly after rainfall events. These effects disappeared within four months of the removal treatment. In deeper soils (40 cm depth), liana removal resulted in a multi-year trend towards 5–25% higher soil moisture during the dry seasons with the largest significant effects occurring in the dry season of the third year following treatment. Liana removal did not affect surface soil temperature. Multiple and mutually occurring mechanisms may be responsible for the effects of liana removal on soil moisture, including competition with trees, and altered microclimate, and soil structure. These results indicate that lianas influence hydrologic processes, which may affect tree community dynamics and forest carbon cycling.  相似文献   

7.
Lianas are abundant in seasonal tropical forests, where they avoid seasonal water stress presumably by accessing deep‐soil water reserves. Although lianas are favoured in seasonal environments, their occurrence and abundance are low in semiarid environments. We hypothesized that lianas do not tolerate the great water shortage in the soil and air characteristic of semiarid environments, which would increase the risk of embolism. We compared the rooting depth of coarse roots, leaf dynamics, leaf water potential (ψleaf), embolism resistance (P50) and lethal levels of embolism (P88) between congeneric lianas that occur with different abundances in two semiarid sites differing in soil characteristics and vapour pressure deficit in the air (VPDair). Regardless of soil texture and depth, water availability was restricted to the rainy season. All liana species were drought deciduous and had superficial coarse roots (not deeper than 35 cm). P50 varied from ?1.8 to ?2.49 MPa, and all species operated under narrow safety margins against catastrophic (P50) and irreversible hydraulic failure (P88), even during the rainy season. In short, lianas that occur in semiarid environments have lower resistance to cavitation and limit carbon fixation to the rainy season because of leaf fall in the early dry season. We suggest that leaf shedding and shallow roots impairing carbon gain and growth in the dry season may explain why liana abundance is lower in semiarid than in other seasonally dry environments.  相似文献   

8.
Lianas are an important component of tropical forests; they alter tree mortality and recruitment and impact biogeochemical cycling. Recent evidence suggests that the abundance of lianas in tropical forests is increasing. To understand and predict the effect of lianas on ecosystem processes in tropical forests, it is important to understand the mechanisms through which they compete with trees. In this study, we investigated the functional traits of lianas and trees in a lowland tropical forest in northeast Queensland, Australia. The site is located at 16.1° south latitude and experiences significant seasonality in rainfall, with pronounced wet and dry seasons. It is also subject to relatively frequent disturbance by cyclones. We asked the question of whether the canopy liana community at this site would display functional traits consistent with a competitive advantage over trees in response to disturbance, or in response to dry season water stress. We found that traits that we considered indicative of a dry season advantage (xylem water δ18O as an indicator of rooting depth; leaf and stem tissue δ13C and instantaneous gas exchange as measures of water‐use efficiency) did not differ between canopy lianas and canopy trees. On the other hand, lianas differed from trees in traits that should confer an advantage in response to disturbance (low wood density; low leaf dry matter content; high leaf N concentration; high mass‐based photosynthetic rates). We conclude that the liana community at the study site expressed functional traits geared towards rapid resource acquisition and growth in response to disturbance, rather than outcompeting trees during periods of water stress. These results contribute to a body of literature which will be useful for parameterising a liana functional type in ecosystem models.  相似文献   

9.
Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in aseasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO2 assimilation per unit mass (A mass), nitrogen concentration (N mass), and δ13C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO2 assimilation per unit area (A area), phosphorus concentration per unit mass (P mass), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A area decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana δ13C increased four times more than tree δ13C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A mass than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.  相似文献   

10.
Lianas reduce tree growth, reproduction, and survival in tropical forests. Liana competition can be particularly intense in isolated forest fragments, where liana densities are high, and thus, host tree infestation is common. Furthermore, lianas appear to grow particularly well during seasonal drought, when they may compete particularly intensely with trees. Few studies, however, have experimentally quantified the seasonal effects of liana competition on multiple tree species in tropical forests. We used a liana removal experiment in a forest fragment in southeastern Brazil to test whether the effects of lianas on tree growth vary with season and tree species identity. We conducted monthly diameter measurements using dendrometer bands on 88 individuals of five tree species for 24 months. We found that lianas had a stronger negative effect on some tree species during the wet season compared to the dry season. Furthermore, lianas significantly reduced the diameter growth of two tree species but had no effect on the other three tree species. The strong negative effect of lianas on some trees, particularly during the wet season, indicates that the effect of lianas on trees varies both seasonally and with tree species identity. Abstract in Portuguese is available with online material.  相似文献   

11.
刘晋仙  陶建平  何泽  王玉平  郭庆学 《生态学报》2012,32(12):3834-3840
通过对海南霸王岭热带山地原始林与伐后林中树木及其攀附木质藤本的调查,研究原始林与伐后林中木质藤本对支持木的选择性。结果表明:1)6科优势树木中附藤率最高的是野牡丹科(Melastomataceae),附藤率最低的科,原始林中是山矾科(Symplocaceae),伐后林中是茜草科(Rubiaceae)。2)原始林中,谷木(Memecylon ligustrifolium)与线枝蒲桃(Syzygiumaraiocladum)的附藤比率和每木藤本数均高于样地平均水平;三角瓣花(Prismatomeris tetrandra)和龟背灰木(Symplocosandenophylla)的附藤比率均低于样地平均水平,而每木藤本数与样地平均水平之间没有显著差异。伐后林中,谷木的附藤比率和每木藤本数高于样地平均水平;九节(Psychotria rubra)的附藤比率和每木藤本数低于样地平均水平。3)杜仲藤(Parabariummicranthum)的主要支持木是谷木,夜花藤(Hypserpa nitida)的主要支持木是线枝蒲桃。研究表明,木质藤本对支持木在科和种水平上都具有选择性,因此木质藤本会对树木造成不对称影响,进而影响森林的结构和动态。  相似文献   

12.
It has been reported that parasitic vascular plants (hemiparasites and holoparasites) may affect host fitness, but the effects produced by root endophyte holoparasitic species on its host have not been documented. Here the effect of the holoparasitic endophyte Bdallophyton americanum (R. Br.) Harms on the root conductivity of Bursera simaruba (L.) Sarg. was studied. Parasitized and non-parasitized root segments were sampled in the rainy and dry seasons in a dry coastal forest in central Veracruz, Mexico. Root diameter, hydraulic (K h) and specific conductivity (K s = K h/root transverse area), percent loss of conductivity and reproductive specific conductivity (K h /inflorescence or infructescense dry weight) data were obtained. The diameter and number of conductive and non-conductive vessels were recorded in parasitized and non-parasitized root segments in the dry season. Root diameters were not different between root types and seasons, but root specific conductivity was different both between seasons and root types. Specific conductivity on parasitized roots was 61% (wet season) and 85% (dry season) lower than that recorded for non-parasitized roots in the wet season. Root hydraulic conductivity was positively related with the biomass of reproductive structures of B. americanum in the wet season. The parasite appears to alter the xylem morphogenesis of the host, reducing vessel number by 40%, but not plugging or otherwise harming the conductive vessels, and resulted in no change in vessel diameter. Contrary to what has been reported to occur in some plant stems infected with hemiparasitic mistletoes, B. americanum decreases but does not eliminate conductivity to the distal plant parts.  相似文献   

13.
This study evaluated whether herbivorous insects can be expected to have particular adaptations to withstand the harsh dry season in tropical dry forests (TDFs). We specifically investigated a possible escape in space, with herbivorous insects moving to the few evergreen trees that occur in this ecosystem; and escape in time, with herbivores presenting an increased nocturnal rather than diurnal activity during the dry season. We determined the variation in the free-feeding herbivorous insects (sap-sucking and leaf chewing) between seasons (beginning and middle of both rainy and dry seasons), plant phenological groups (deciduous and evergreen trees) and diel period (diurnal and nocturnal) in a Brazilian TDF. We sampled a total of 5827 insect herbivores in 72 flight-interception traps. Contrary to our expectations, we found a greater herbivore diversity during the dry season, with low species overlap among seasons. In the dry season, evergreen trees supported greater richness and abundance of herbivores as compared to deciduous trees. Insects were also more active at night during the dry season, but no diel differences in insect abundance were detected during the rainy season. These results indicate that the strategies used by insect herbivores to withstand the severe climatic conditions of TDFs during the dry season include both small-scale escape in space and time, with evergreen trees playing a key role in maintaining resident insect herbivore populations in TDFs. Relatively more nocturnal activity during the dry season may be related to the avoidance of harsh climatic conditions during the day. We suggest that the few evergreen tree species occurring in the TDF landscape should be especially targeted for protection in this threatened ecosystem, given their importance for insect conservation.  相似文献   

14.
Aim Insect assemblages associated with lianas in tropical forests are poorly studied compared with those associated with trees. The importance of lianas for the maintenance of local species richness of insect herbivores in tropical forests is therefore poorly understood. With this in mind, a comparative study of the relative importance of trees and lianas as hosts for phytophagous beetles was carried out. Location The study area was located in the canopy of a dry tropical forest in Parque Natural Metropolitano, Panama province, Republic of Panama. Methods A crane system was utilized to access the canopy. The number of species and host specialization of adult phytophagous beetles associated with twenty‐six liana species of ten different families, and twenty‐four tree species of twelve different families were compared. Results A total of 2561 host associations of 697 species of beetles were determined (1339 for trees and 1222 for lianas). On average 55.8 ± 6.8 beetle species were found to be associated with each tree species while the comparable number for lianas was 47.0 ± 6.1. The pooled numbers of phytophagous beetle species associated with trees and lianas, respectively, were not significantly different. However, there were significantly more species feeding on green plant parts on lianas than on trees, and there were significantly more wood eaters on trees than on lianas. Phytophagous beetles associated with lianas were significantly more specialized than the tree associates due to a higher degree of specialization among the species feeding on green plant parts of lianas. Wood eaters and flower visitors showed no differences in host specialization on different growth forms. Main conclusion The present study shows that lianas are at least as important as trees for the maintenance of local species diversity of phytophagous beetles at this site. The mechanisms that drive the patterns can only be hypothesized. Plant architecture, size, and length of growing season are probably involved. Further studies, should include measurements of plant traits to elucidate experimentally what mechanisms that drive the patterns. Additional insight would come from similar studies in other forest types, and also studies of other major taxonomic groups of arthropod herbivores.  相似文献   

15.
We test the hypotheses proposed by Gentry and Schnitzer that liana density and basal area in tropical forests vary negatively with mean annual precipitation (MAP) and positively with seasonality. Previous studies correlating liana abundance with these climatic variables have produced conflicting results, warranting a new analysis of drivers of liana abundance based on a different dataset. We compiled a pan-tropical dataset containing 28,953 lianas (≥2.5 cm diam.) from studies conducted at 13 Neotropical and 11 Paleotropical dry to wet lowland tropical forests. The ranges in MAP and dry season length (DSL) (number of months with mean rainfall <100 mm) represented by these datasets were 860–7250 mm/yr and 0–7 mo, respectively. Pan-tropically, liana density and basal area decreased significantly with increasing annual rainfall and increased with increasing DSL, supporting the hypotheses of Gentry and Schnitzer. Our results suggest that much of the variation in liana density and basal area in the tropics can be accounted for by the relatively simple metrics of MAP and DSL.  相似文献   

16.
In the tropical rainforest of Los Tuxtlas, Mexico, lianas (woody‐climbing plants) had a clumped distribution on trees, and 63.3 percent of trees ≥10 cm in diameter carried at least one liana. Trees with larger diameters supported more lianas and a higher total basal area of lianas than trees with smaller diameters. There was no relationship between liana diameter and the number of trees a liana climbed, but tendril climbers climbed on more trees than stem‐twiners.  相似文献   

17.
Aim   We seek to determine the factors which control the success of lianas across macroecological gradients. Lianas have a strong impact on the growth, mortality and biomass of tropical trees, and are reported to be increasing in dominance, so understanding their behaviour is important from the perspectives of both ecological and global change.
Location   Lowland and montane Neotropical forests.
Methods   Using 65 standardized samples of lianas (≥ 2.5 cm diameter) from across the Neotropics, we attempted to account for characteristics of both the environment and the forest in explaining macroecological variation in liana success in Neotropical forests, using regression analyses and structural equation modelling.
Results   We found that both liana density and basal area were unrelated to mean annual precipitation, dry season length or soil variables, except for a weak effect of mean annual precipitation on liana basal area. Structural characteristics of the forest explained more of the variation in liana density and basal area than the physical environment. More disturbed forests generally tended to have a higher liana density. Liana basal area, however, was highest in undisturbed forests.
Main conclusions   The availability of host trees and their characteristics may be more important than the direct effects of the physical environment in controlling the success of lianas in Neotropical forests. Changes to the tropical climate in the coming century may not strongly affect lianas directly, but could have very substantial indirect effects via changes in tree community structure and dynamics.  相似文献   

18.
Lianas, or woody climbing plants, are a major constituent of seasonally dry tropical forests, and are thought to impact negatively their host trees. In this study we evaluated whether liana presence was associated with reduced leaf water potentials and growth in adult Senna multijuga trees during the dry season in a lowland Bolivian forest. We used leaf water potentials in trees as a first approach to assess trees’ water status, under the assumption that leaf water potentials become more negative when water losses (via transpiration) exceed gains (by uptake). We measured relative growth in girth at 1.5 m height (gbh) to quantify tree growth. At the beginning of the 1996 dry season (early June), we selected 20 S. multijuga trees 10–20 cm dbh, and measured their gbh. We also recorded pre-dawn and mid-day leaf water potentials in these trees. In ten experimental trees all lianas were then cut, while the remaining trees were used as controls. Pre-dawn and mid-day water potentials were re-measured 1 day after liana-cutting, and then every week in all trees for 1 month and then at 3 and 5 months, until the beginning of the next rainy season (November); gbh was measured again in July 1997 to estimate relative growth rate. Liana removal was associated with less negative pre-dawn (–0.3 vs –0.4 MPa) and mid-day (–0.5 vs –0.7 MPa) water potentials in trees during the dry season. This difference appeared as early as 1 day after cutting, and disappeared once the rainy season began. Liana-cut trees grew more (0.4 mm/mm year) than liana-uncut trees (0.2 mm/mm year). These findings suggest that lianas may interfere with water availability to these trees during the dry season, and may also hinder tree growth. Received: 16 November 1999 / Accepted: 23 March 2000  相似文献   

19.
木质藤本植物是热带、亚热带山地森林重要的组分之一, 在森林动态、生态系统过程和森林生物多样性形成与维持等方面具有重要作用。本文调查了哀牢山中山湿性常绿阔叶林木质藤本植物的多样性及其在垂直和水平空间上的分布规律。在20个20 m × 50 m的样地中共调查到DBH≥0.2 cm的木质藤本植物1,145株, 隶属于19科25属29种, 其中物种最丰富的科为菝葜科(4种)和蔷薇科(3种), 但多度最高的科为葡萄科(363株, 占总株数的31.7%)。研究发现林下木质藤本(通常DBH < 1 cm)拥有较高的物种丰富度和多度, 对木质藤本植物多样性具有较大的贡献。有55.7%的个体分布在林下层, 林冠层占28.8%, 亚冠层只有15.5%。木质藤本的垂直空间分布在不同径级、不同攀援类型之间具有明显的差异。 从水平空间分布来看, 地形是影响木质藤本的一个重要因素: 沟谷木质藤本的物种丰富度、多度和基面积分别是坡面的171%, 420%和606%; 有12个物种只分布在沟谷生境。这表明哀牢山中山湿性常绿阔叶林木质藤本植物对生境具有偏好性。  相似文献   

20.
Aim Lianas differ physiologically from trees, and therefore their species‐richness patterns and potential climate‐change responses might also differ. However, multivariate assessments of spatial patterns in liana species richness and their controls are lacking. Our aim in this paper is to identify the environmental factors that best explain the variation in liana species richness within tropical forests. Location Lowland and montane Neotropical forests. Methods We quantified the contributions of environmental variables and liana and tree‐and‐shrub abundance to the species richness of lianas, trees and shrubs ≥ 2.5 cm in diameter using a subset of 65 standardized (0.1 ha) plots from 57 Neotropical sites from a global dataset collected by the late Alwyn Gentry. We used both regression and structural equation modelling to account for the effects of environmental variables (climate, soil and disturbance) and liana density on liana species richness, and we compared the species‐richness patterns of lianas with those of trees and shrubs. Results We found that, after accounting for liana density, dry‐season length was the dominant predictor of liana species richness. In addition, liana species richness was also related to stand‐level wood density (a proxy for disturbance) in lowland forests, a pattern that has not hitherto been shown across such a large study region. Liana species richness had a weak association with soil properties, but the effect of soil may be obscured by the strong correlation between soil properties and climate. The diversity patterns of lianas and of trees and shrubs were congruent: wetter forests had a greater species richness of all woody plants. Main conclusions The primary association of both liana and tree‐and‐shrub species richness with water availability suggests that, if parts of the Neotropics become drier as a result of climate change, substantial declines in the species richness of woody plants at the stand level may be anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号