首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CPP-like genes are members of a small family which features the existence of two similar Cys-rich domains termed CXC domains in their protein products and are distributed widely in plants and animals but do not exist in yeast. The members of this family in plants play an important role in development of reproductive tissue and control of cell division. To gain insights into how CPP-like genes evolved in plants, we conducted a comparative phylogenetic and molecular evolutionary analysis of the CPP-like gene family in Arabidopsis and rice. The results of phylogeny revealed that both gene loss and species-specific expansion contributed to the evolution of this family in Arabidopsis and rice. Both intron gain and intron loss were observed through intron/exon structure analysis for duplicated genes. Our results also suggested that positive selection was a major force during the evolution of CPP-like genes in plants, and most amino acid residues under positive selection were disproportionately located in the region outside the CXC domains. Further analysis revealed that two CXC domains and sequences connecting them might have coevolved during the long evolutionary period.  相似文献   

2.
3.
4.
5.
植物NADPH氧化酶又被称为Rboh(respiratory burst oxidase homologue),是动物巨噬细胞NADPH氧化酶主要功能亚基gp91phox的同源物。在受到外来信号的刺激时,该酶能通过自身的激活或失活迅速引起活性氧(reactive oxygen species,ROS)的升高或降低,进而在植物生长发育及应答生物或非生物胁迫中发挥重要作用。该文总结了近兼来植物中NADPH氧化酶的结构和功能,以及信号调节机制等方面的研究进展。  相似文献   

6.
Reactive oxygen species (ROS) produced by NADPH oxidases play critical roles in signalling and development. Given the high toxicity of ROS, their production is tightly regulated. In Arabidopsis, respiratory burst oxidase homologue F (AtrbohF) encodes NADPH oxidase. Here we characterised the activation of AtRbohF using a heterologous expression system. AtRbohF exhibited ROS-producing activity that was synergistically activated by protein phosphorylation and Ca2+. The two EF-hand motifs of AtRbohF in the N-terminal cytosolic region were crucial for its Ca2+-dependent activation. AtrbohD and AtrbohF are involved in stress responses. Although the activation mechanisms for AtRbohD and AtRbohF were similar, AtRbohD had significantly greater ROS-producing activity than AtRbohF, which may reflect their functional diversity, at least in part. We further characterised the interrelationship between Ca2+ and phosphorylation regarding activation and found that protein phosphorylation-induced activation was independent of Ca2+. In contrast, K-252a, a protein kinase inhibitor, inhibited the Ca2+-dependent ROS-producing activity of AtRbohD and AtRbohF in a dose-dependent manner, suggesting that protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Rboh. Positive feedback regulation of Ca2+ and ROS through AtRbohC has been proposed to play a critical role in root hair tip growth. Our findings suggest that Rboh phosphorylation is the initial trigger for the plant Ca2+-ROS signalling network.  相似文献   

7.
8.
The AGCVIIIa kinases of Arabidopsis are members of the eukaryotic PKA, PKG, and PKC group of regulatory kinases. One AGCVIIIa kinase, PINOID (PID), plays a fundamental role in the asymmetrical localization of membrane proteins during polar auxin transport. The remaining 16 AGCVIIIa genes have not been associated with single mutant phenotypes, suggesting that the corresponding kinases function redundantly. Consistent with this idea, we find that the genes encoding the Arabidopsis AGCVIIIa kinases have spatially distinct, but overlapping, expression domains. Here we show that the majority of Arabidopsis AGCVIIIa kinases are substrates for the 3-phosphoinositide-dependent kinase 1 (PDK1) and that trans-phosphorylation by PDK1 correlates with activation of substrate AGCVIIIa kinases. Mutational analysis of two conserved regulatory domains was used to demonstrate that sequences located outside of the C-terminal PDK1 interaction (PIF) domain and the activation loop are required for functional interactions between PDK1 and its substrates. A subset of GFP-tagged AGCVIIIa kinases expressed in Saccharomyces cerevisiae and tobacco BY-2 cells were preferentially localized to the cytoplasm (AGC1-7), nucleus (WAG1 and KIPK), and the cell periphery (PID). We present evidence that PID insertion domain sequences are sufficient to direct the observed peripheral localization. We find that PID specifically but non-selectively binds to phosphoinositides and phosphatidic acid, suggesting that PID might directly interact with the plasma membrane through protein-lipid interactions. The initial characterization of the AGCVIIIa kinases presented here provides a framework for elucidating the physiological roles of these kinases in planta.  相似文献   

9.
Biochemical and cytogenetic experiments have led to the hypothesis that eukaryotic chromatin is organized into a series of distinct domains that are functionally independent. Two expectations of this hypothesis are: (i) adjacent genes are more frequently co-expressed than is expected by chance; and (ii) co-expressed neighbouring genes are often functionally related. Here we report that over 10% of Arabidopsis thaliana genes are within large, co-expressed chromosomal regions. Two per cent (497/22,520) of genes are highly co-expressed (r > 0.7), about five times the number expected by chance. These genes fall into 226 groups distributed across the genome, and each group typically contains two to three genes. Among the highly co-expressed groups, 40% (91/226) have genes with high amino acid sequence similarity. Nonetheless, duplicate genes alone do not explain the observed levels of co-expression. Co-expressed, non-homologous genes are transcribed in parallel, share functions, and lie close together more frequently than expected. Our results show that the A. thaliana genome contains domains of gene expression. Small domains have highly co-expressed genes that often share functional and sequence similarity and are probably co-regulated by nearby regulatory sequences. Genes within large, significantly correlated groups are typically co-regulated at a low level, suggesting the presence of large chromosomal domains.  相似文献   

10.
11.
Reactive oxygen species (ROS) produced by NADPH oxidase play critical roles in various cellular activities, including plant innate immunity response. In contrast with the large multiprotein NADPH oxidase complex of phagocytes, in plants, only the homologs of the catalytic subunit gp91phox and the cytosolic regulator small GTPase Rac are found. Plant homologs of the gp91phox subunit are known as Rboh (for respiratory burst oxidase homolog). Although numerous Rboh have been isolated in plants, the regulation of enzymatic activity remains unknown. All rboh genes identified to date possess a conserved N-terminal extension that contains two Ca2+ binding EF-hand motifs. Previously, we ascertained that a small GTPase Rac (Os Rac1) enhanced pathogen-associated molecular pattern-induced ROS production and resistance to pathogens in rice (Oryza sativa). In this study, using yeast two-hybrid assay, we found that interaction between Rac GTPases and the N-terminal extension is ubiquitous and that a substantial part of the N-terminal region of Rboh, including the two EF-hand motifs, is required for the interaction. The direct Rac-Rboh interaction was supported by further studies using in vitro pull-down assay, a nuclear magnetic resonance titration experiment, and in vivo fluorescence resonance energy transfer (FRET) microscopy. The FRET analysis also suggests that cytosolic Ca2+ concentration may regulate Rac-Rboh interaction in a dynamic manner. Furthermore, transient coexpression of Os Rac1 and rbohB enhanced ROS production in Nicotiana benthamiana, suggesting that direct Rac-Rboh interaction may activate NADPH oxidase activity in plants. Taken together, the results suggest that cytosolic Ca2+ concentration may modulate NADPH oxidase activity by regulating the interaction between Rac GTPase and Rboh.  相似文献   

12.
淡水鱼类可溶性谷胱甘肽S-转移酶(sGST)在微囊藻毒素去毒代谢过程中具有独特 的关键作用,因而也称为微囊藻毒素去毒酶. 从淡水食毒藻鱼类鲢鱼(Hypophthalmichthys molitrix)肝脏通过简并引物克隆微囊藻毒素去毒酶基因cDNA核心序列,应用5′RACE和3′RACE技术分别扩增该序列的5′末端和3′末端序列,最后通过序列拼接获得鲢鱼肝脏微囊藻毒素去毒酶基因cDNA全序列. 序列分析结果表明,鲢鱼肝脏微囊藻毒素去毒酶基因cDNA全长920 bp,其中5′-UTR长74 bp,3′-UTR长174 bp,编码区长672 bp,编码223个氨基酸. 应用基因组步行法,在鲢鱼克隆得到淡水鱼类微囊藻毒素去毒酶基因5′侧翼区878 bp序列. 与哺乳动物及海水鱼sGST基因不同,鲢鱼微囊藻毒素去毒酶基因的5′侧翼区,发现存在多个脂多糖反应元件(LPSRE),表明来源于毒藻的脂多糖可能对鲢鱼微囊藻毒素去毒酶基因表达有潜在调控作用.  相似文献   

13.
14.
15.
D J Montell  C S Goodman 《Cell》1988,53(3):463-473
Laminin, a substrate adhesion molecule in vertebrates, is a large glycoprotein complex in basement membranes that promotes cell adhesion, cell migration, and neurite outgrowth. Here we report on the cloning of the genes encoding the three subunits of Drosophila laminin. Sequence analysis of cDNA clones encoding the Drosophila B1 chain reveals a multidomain structure similar to that of its mouse homolog. The Drosophila sequence has only 25% amino acid identity with the mouse sequence in domains I, II, and IV. However, in one of the putative collagen-binding regions (domain VI) and the two cysteine-rich domains of EGF-like repeats (domains III and V), the amino acid identity between these two evolutionarily distant species jumps to 55%. Moreover, the number, length, and unique amino acid sequences of each of the 13 EGF-like repeats are highly conserved between Drosophila and mouse, suggesting that each may serve a unique function in protein-protein interactions.  相似文献   

16.
K Aoyagi  A Beyou  K Moon  L Fang    T Ulrich 《Plant physiology》1993,102(2):623-628
The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC 1.1.1.34) is a key enzyme in the isoprenoid biosynthetic pathway. We have isolated partial cDNAs from wheat (Triticum aestivum) using the polymerase chain reaction. Comparison of deduced amino acid sequences of these cDNAs shows that they represent a small family of genes that share a high degree of sequence homology among themselves as well as among genes from other organisms including tomato, Arabidopsis, hamster, human, Drosophila, and yeast. Southern blot analysis reveals the presence of at least four genes. Our results concerning the tissue-specific expression as well as developmental regulation of these HMGR cDNAs highlight the important role of this enzyme in the growth and development of wheat.  相似文献   

17.
At least six rust resistance specificities (P and P1 to P5) map to the complex P locus in flax. The P2 resistance gene was identified by transposon tagging and transgenic expression. P2 is a member of a small multigene family and encodes a protein with nucleotide binding site (NBS) and leucine-rich repeat (LRR) domains and an N-terminal Toll/interleukin-1 receptor (TIR) homology domain, as well as a C-terminal non-LRR (CNL) domain of approximately 150 amino acids. A related CNL domain was detected in almost half of the predicted Arabidopsis TIR-NBS-LRR sequences, including the RPS4 and RPP1 resistance proteins, and in the tobacco N protein, but not in the flax L and M proteins. Presence or absence of this domain defines two subclasses of TIR-NBS-LRR resistance genes. Truncations of the P2 CNL domain cause loss of function, and evidence for diversifying selection was detected in this domain, suggesting a possible role in specificity determination. A spontaneous rust-susceptible mutant of P2 contained a G-->E amino acid substitution in the GLPL motif, which is conserved in the NBS domains of plant resistance proteins and the animal cell death control proteins APAF-1 and CED4, providing direct evidence for the importance of this motif in resistance gene function. A P2 homologous gene isolated from a flax line expressing the P resistance specificity encodes a protein with only 10 amino acid differences from the P2 protein. Chimeric gene constructs indicate that just six of these amino acid changes, all located within the predicted beta-strand/beta-turn motif of four LRR units, are sufficient to alter P2 to the P specificity.  相似文献   

18.
采用RT-PCR技术克隆获得了黄河裸裂尻鱼(Schizopygopsis pylzovi)CO Ⅰ、Ⅱ、Ⅲ基因的编码序列,并对此进行了初步分析.结果表明,黄河裸裂尻鱼CO I基因全长为1 551 bp,开放阅读框(ORF)由基因全长组成,编码516个氨基酸;COⅡ基因全长为691 bp,开放阅读框为690 bp,编码2...  相似文献   

19.
20.
In this paper, the cloning and nucleotide sequence of the cDNA of the rat gene coding for hypoxanthine-guanine phosphoribosyltransferase (hprt) is reported. Knowledge of the cDNA sequence is needed, among other reasons, for the molecular analysis of hprt mutations occurring in rat cells, such as skin fibroblasts isolated according to the granuloma pouch assay. The rat hprt cDNA was synthesized and used as a template for in vitro amplification by PCR. For this purpose, oligonucleotide primers were used, the nucleotide sequences of which were based on mouse and hamster hprt cDNA sequences. Sequence analysis of 1146 bp of the amplified rat hprt cDNA showed a single open reading frame of 654 bp, encoding a protein of 218 amino acids. In the predicted rat hprt amino acid sequence, the proposed functional domains for 5'-phosphoribosyl-1-pyrophosphate (PRPP) and nucleotide binding in phosphoribosylating enzymes as well as a region near the carboxyl terminal part were highly conserved when compared with amino acid sequences of other mammalian hprt proteins. Analysis of hprt amino acid sequences of 727 independent hprt mutants from human, mouse, hamster and rat cells bearing single amino acid substitutions revealed that a large variety of amino acid changes were located in these highly conserved regions, suggesting that all 3 domains are important for proper catalytic activity. The suitability of the hprt gene as target for mutational analysis is demonstrated by the fact that amino acid changes in at least 151 of the 218 amino acid residues of the hprt protein result in a 6-thioguanine-resistant phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号