首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Commercial, intensive, earthen shrimp ponds (188) in southern Thailand were stocked with postlarvae (PL) of Penaeus monodon that had tested positive or negative for white-spot syndrome virus (WSSV) infection by polymerase chain reaction (PCR) assay. All the PL were grossly healthy. At 2 wk intervals after stocking, shrimp from each pond were examined for gross WSSV lesions and tested for WSSV by PCR. Shrimp from all the ponds stocked with WSSV-PCR-positive PL (Group 0, n = 43) eventually showed gross signs of white-spot disease (WSD) at an average of 40 d after stocking. Of the remaining ponds stocked with WSSV-PCR-negative PL (n = 145), some remained WSSV-PCR-negative throughout the study (Group 5, n = 52), while others (93) became WSSV-PCR-positive after stocking, during the first month (Group 1, n = 23), second month (Group 2, n = 40), third month (Group 3, n = 24), or fourth month (Group 4, n = 6). Crop failure was defined as a pond drain or forced harvest before 14 wk or 98 d of cultivation. For Group 0 the proportion of ponds failing was 0.953, while it was only 0.019 for Group 5. Thus, the relative risk of failure for Group 0 was approximately 50 times that of Group 5. The relative risk of failure for Group 0 was also 3 times that for ponds stocked with WSSV-PCR-negative PL. Obviously, not all WSSV outbreaks resulted in crop failure. Of the 93 ponds stocked with PCR-negative PL that later yielded WSSV-PCR-positive shrimp, 53% reached successful harvest. The study showed that PCR screening of PL and rejection of WSSV-positive batches before stocking could greatly improve the chances of a successful harvest.  相似文献   

3.
White spot disease (WSD) is a pandemic disease caused by a virus commonly known as white spot syndrome virus (WSSV). Several risk factors for WSD outbreaks have been suggested. However, there have been very few studies to identify risk factors for WSD outbreaks in culture systems. This paper presents and discusses the risk factors for WSSV infection identified during a longitudinal observational study conducted in a Vietnamese rice-shrimp farming system. A total of 158 variables were measured comprising location, features of the pond, management practices, pond bottom quality, shrimp health and other animals in the pond. At the end of the study period WSSV was detected in 15 of the 24 ponds followed through the production cycle (62.5%). One hundred and thirty-nine variables were used in univariate analyses. All the variables with a p-value < or = 0.10 were used in unconditional logistic regression in a forward stepwise model. An effect of location was identified in both univariate and multivariate analyses showing that ponds located in the eastern portion of the study site, closer to the sea, were more likely to test positive for WSSV by 1-step PCR at harvest. Ponds with shrimp of a smaller average size 1 mo after stocking tended to be positive for WSSV at the end of the production cycle. Average weight at 1 mo was also highlighted in multivariate analyses when considered as either a risk factor or an outcome. Other risk factors identified in univariate analyses were earlier date of stocking and use of commercial feed. A number of variables also appeared to be associated with a reduced risk of WSSV at harvest including the presence of dead post larvae in the batch sampled at stocking, presence of Hemigrapsus spp. crabs during the first month of production, feeding vitamin premix or legumes, presence of high numbers of shrimp with bacterial infection and the presence of larger mud crabs or gobies at harvest. No associations were detected with WSSV at harvest and stocking density, presence, or number or weight of wild shrimp in the pond. The multivariate model to identify outcomes associated with WSSV infection highlighted the presence of high mortality as the main variable explaining the data. The results obtained from this study are discussed in the context of WSD control and areas requiring further investigation are suggested.  相似文献   

4.
The prevalence of hepatopancreatic parvovirus (HPV), monodon baculovirus (MBV) and white spot syndrome virus (WSSV) in samples of Penaeus monodon postlarvae (PL10 to PL20, 10 to 20 d old postlarvae) in India was studied by PCR. Samples collected from different hatcheries, and also samples submitted by farmers from different coastal states, were analyzed. HPV was detected in 34%) of the hatchery samples and 31% of the samples submitted by farmers, using a primer set designed for detection of HPV from P. monodon in Thailand. However, none of these samples were positive using primers designed for detection of HPV from P. chinensis in Korea. This indicated that HPV from India was more closely related to HPV from P. monodon in Thailand. MBV was detected in 64% of the samples submitted by the farmers and 71% of the hatchery samples. A total of 84 % of the samples submitted by farmers, and 91% of the hatchery samples, were found positive for WSSV. Prevalence of concurrent infections by HPV, MBV and WSSV was 27% in hatchery samples and 29%, in samples submitted by farmers. Only 8% of the hatchery samples and 16% of the samples submitted by farmers were negative for all 3 viruses. This is the first report on the prevalence of HPV in P. monodon postlarvae from India.  相似文献   

5.
Moribund Penaeus monodon postlarvae (PL8-PL10) in a hatchery in India were found to be simultaneously infected by 3 different viruses. They were highly infected with monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV) by histology and with white spot syndrome virus (WSSV) by non-nested polymerase chain reaction (PCR). Apparently healthy postlarvae tested from the same hatchery were positive for MBV and WSSV by nested PCR only. Tissue sections of such postlarvae did not show any histopathological changes. The simultaneous occurrence of these 3 viruses in hatchery-reared postlarval P. monodon is being reported for the first time.  相似文献   

6.
Salinity stress tests are commonly applied in shrimp hatcheries to estimate the quality of postlarvae (PL) to be used during growout. Higher larval survival during culture and to a salinity stress test in both fish and crustaceans have been reported when specimens were offered a diet containing high levels of highly unsaturated fatty acids (HUFA). However, it is not clear if increased survival is a result of better overall physiological condition resulting from the diet or a specific effect of HUFA on osmoregulatory mechanisms. This study analyzed if HUFA-rich diets could modify the fatty acid composition of membranes in gills, and if this change in composition could affect the activity of the Na+/K+ ATPase pump and carbonic anhydrase in relation to changes in salinity. One-day-old postlarvae (PL1) pooled from different spawns were fed for 20 days with Artemia sp. nauplii enriched with three levels of HUFA: low, medium and high. At PL20, survivals during culture and to salinity stress test (tap water for 30 min) were evaluated. Also at this stage, Na+/K+-ATPase and carbonic anhydrase activity, morphometric variables, and fatty acid composition in the hepatopancreas and gills were measured after they were submitted to a salinity challenge in dilute seawater (10 ppt) for 3 h. No significant differences were observed in survival rates during culture, but survival to a salinity stress test was higher and gill area was larger in PL20 fed the Artemia sp. nauplii enriched with medium HUFA levels, probably as a result of an increased 22:6n-3 content and higher 22:6n-3/20:5n-3 ratio in this diet and in the tissues of the organisms fed this diet. Na+/K+-ATPase specific activity was significantly higher in posterior gills, while the specific activity of the carbonic anhydrase was higher in anterior gills. Enzymatic activities increased significantly in PL20 submitted to a salinity challenge, and HUFA levels in the diet affected both. The proportion of fatty acids in hepatopancreas and gills were significantly affected not only by diet, but also by exposure to dilute media. This effect is discussed in relation to an increase in gill surface and changes in fatty acid composition in the phospholipids present in gill membranes, which can modify the permeability and the activity of the Na+/K+-ATPase pump. The beneficial effect of HUFA supplementation in the diet on survival to salinity stress test is partially related to modification of fatty acid composition of gills and to a larger gill area, which in turn enhances osmoregulatory mechanisms, namely Na+/K+-ATPase and carbonic anhydrase activities.  相似文献   

7.
Sodium alginate extracted from brown seaweed Sargassum wightii (16.35 ± 1.42%, mean [±SD] yield from 5 extractions) was prepared as a powder or beads and used to enrich Artemia nauplii at concentrations of 100, 200, 300 and 400 mg l-1. The alginate-enriched nauplii were fed to Penaeus monodon shrimp postlarvae (PL) stage 15 (PL15, i.e. 15 d old) for 20 d. Mean weight gain and specific growth rate over this period were 0.24 g and 15.8%, respectively, in PL groups not fed alginate, and 0.20-0.28 g and 14.7-16.5%, respectively, in PL groups fed alginate. Amongst PL35 then challenged with white spot syndrome virus (WSSV) by immersion, all PL not fed alginate died within 9 d. However, amongst PL fed the 4 concentrations of alginate powder or beads, mortality rates reduced with increasing alginate concentration, and between 25 and 32% PL remained alive when the bioassay was terminated on Day 21. Amongst alginate-fed PL groups compared with the control group, mortality was reduced by 26.5 to 58.4%. Nested PCR detection of WSSV revealed sodium alginate concentration-dependent reductions in infection loads. The data indicate that sodium alginate extracted from brown seaweed and fed to P. monodon can retard progression of WSSV disease.  相似文献   

8.
In a survey of 27 Penaeus monodon culture ponds stocked with postlarvae (approximately PL10) at medium density (approximately 40 shrimp m(-2)), single-step nested white spot syndrome virus (WSSV) PCR was used to measure the WSSV infection rates in the shrimp populations within 1 mo after stocking. Seven ponds were initially WSSV-free, and the shrimp in 5 of these were harvested successfully. In the ponds (n = 6) where detection rates were higher than 50%, mass mortality occurred during the growth period, and none of these ponds was harvested successfully. In a subsequent study, P. monodon brooders were classified into 3 groups according to their WSSV infection status before and after spawning: brooders that were WSSV-positive before spawning were assigned to group A; spawners that became WSSV-positive only after spawning were assigned to group B; and group C consisted of brooders that were still WSSV-negative after spawning. WSSV screening showed that 75, 44 and 14%, respectively, of group A, B and C brooders produced nauplii that were WSSV-positive. Most (57%; 16/28) of the brooders in group A produced nauplii in which the WSSV prevalence was high (>50%).When a pond was stocked with high-prevalence nauplii from 1 of these group A brooders, an outbreak of white spot syndrome occurred within 3 wk and only approximately 20% of the initial population survived through to harvest (after 174 d). By contrast, 2 other ponds stocked with low-prevalence and WSSV-negative nauplii (derived respectively from 2 brooders in group B), both had much higher survival rates (70 to 80%) and yielded much larger (approximately 3x by weight) total harvests. We conclude that testing the nauplii is an effective and practical screening strategy for commercially cultured P. monodon.  相似文献   

9.
AIMS: The occurrence and distribution of white spot syndrome virus (WSSV) among cultured and captured penaeid shrimps and crustaceans in the east coast of India was determined from November 1999 to April 2002 using PCR as a diagnostic tool. METHODS AND RESULTS: A total of 630 cultured samples consisting of 280 postlarvae collected from nine different hatcheries and 350 juvenile shrimps (40-60-day-old) collected from 18 different culture ponds were screened for WSSV. Of these cultured samples tested 53% were found to be single-step PCR positive. A total of 419 samples of captured crustaceans viz., Penaeus monodon brooders, P. indicus juveniles, Metapenaeus spp., crab Scylla serrata and Squilla mantis were also screened for WSSV by PCR, 23% of them were infected with WSSV. CONCLUSIONS: This study concluded that WSSV could be widespread in cultured and captured shrimps and other crustaceans in India. SIGNIFICANCE AND IMPACT OF THE STUDY: The results indicate that PCR screening of WSSV infection and rejection of infected stocks greatly assists shrimp aquaculture farmers for successful production and harvest.  相似文献   

10.
White-spot syndrome virus (WSSV) is a devastating, infectious virus affecting shrimp. Although sensitive techniques involving PCR have been developed to assist farmers in screening shrimp (brood stock) for WSSV prior to stocking ponds, such practices have not yet been applied in Korea. Despite the rationality of implementing screening, there has been some doubt as to whether the stocking of WSSV-PCR-negative fry epidemiologically decreases white-spot disease outbreaks. Here, we report a retrospective analysis of data from shrimp farms in the western coast of Korea where WSSV-PCR-negative brood stocks were used to stock rearing ponds. A total of 366 shrimp from Heuksan Island were sampled for WSSV with PCR. Of the tested shrimp, 7.2% (28 brood stocks) were identified as WSSV positive; only WSSV-PCR-negative shrimp were used for brood stocks. Total unit production (final shrimp production/ the area of the ponds) was higher, at 1.96, in ponds where WSSV-PCR-negative shrimp were used, as compared with 1.02 in other ponds in Korea in 2004. This retrospective analysis of WSSV in Korea may be useful to the shrimp aquaculture industry, suggesting a testable hypothesis that may contribute to the eventual control of WSSV outbreaks.  相似文献   

11.
12.
This paper describes the utility of dead shrimp samples in epidemiological investigations of the white spot syndrome virus (WSSV) and chronic bacterial infections. A longitudinal observational study was undertaken in shrimp farms in Kundapur, Karnataka, India, from September 1999 to April 2000 to identify risk factors associated with outbreaks of white spot disease (WSD) in cultured Penaeus monodon. As a part of the larger study, farmers were trained to collect and preserve dead and moribund shrimp (when observed) during the production cycle. At the end of the production cycle, 73 samples from 50 ponds had been collected for histopathology and 55 samples from 44 ponds for PCR. Intranuclear viral inclusion bodies diagnostic of WSSV infection were detected in dead samples from 32 ponds (64 %). Samples of dead shrimp from 18 ponds (36%) showed no histopathological evidence of WSSV infection. However, of these, samples from 13 ponds (26%) showed clear evidence of shell, oral, enteric and systemic chronic inflammatory lesions (CIL) in the form of haemocytic nodules, typical of bacterial infection. Samples from 5 ponds (10%) were negative for both WSSV and CIL. Samples from 8 ponds had dual WSSV and CIL, although both WSSV and CIL were only observed in the same shrimp from 1 pond. Useful information was obtained from these shrimp despite the presence of post-mortem changes. Samples from 19 ponds (43%) tested positive for WSSV by 1-step PCR and samples from an additional 10 ponds (22.7%) were positive by 2-step nested PCR. Samples from 15 ponds (34.1%) were negative for WSSV by 2-step nested PCR. There was moderate to substantial agreement between PCR and histopathology in the diagnosis of WSSV infection in dead shrimp. WSSV infection in dead shrimp was significantly associated with crop failures as defined by a shorter length of the production cycle (<90 d) and lower average weight at harvest (<22 g). WSSV infection was also associated with lower survival (<50%), but this was not significant. Ponds with CIL did not experience any crop failures, and the presence of CIL was significantly associated with successful crops. The study demonstrates that samples of dead shrimp can provide useful information for disease surveillance and epidemiological investigations of WSSV and chronic bacterial infections.  相似文献   

13.
Fenneropenaeus indicus could be protected from white spot disease (WSD) caused by white spot syndrome virus (WSSV) using a formalin-inactivated viral preparation (IVP) derived from WSSV-infected shrimp tissue. The lowest test quantity of lyophilized IVP coated onto feed at 0.025 g(-1) (dry weight) and administered at a rate of 0.035 g feed g(-1) body weight d(-1) for 7 consecutive days was sufficient to provide protection from WSD for a short period (10 d after cessation of IVP administration). Shrimp that survived challenges on the 5th and 10th days after cessation of IVP administration survived repeated challenges although they were sometimes positive for the presence of WSSV by a polymerase chain reaction (PCR) assay specific for WSSV. These results suggest that F. indicus can be protected from WSD by simple oral administration of IVP.  相似文献   

14.
Hoq  M. Enamul  Islam  M. Nazrul  Kamal  M.  Wahab  M. Abdul 《Hydrobiologia》2001,457(1-3):97-104
We record the decline of Penaeus monodon postlarvae (PL) in five rivers of the world's largest mangrove ecosystem, the Sundarbans, from 1992 to 1999. Shrimp aquaculture in the coastal belt of Bangladesh is dependent on the collection of P. monodon PL from the coastal rivers, and horizontal expansion of shrimp farming has resulted in a severe decline of this wild resource in the Sundarbans. Abundance of P. monodon PL was significantly (P<0.05) reduced in 1999 compared to the previous two-year studies (1992 and 1995) in the rivers. About 12–551 postlarvae of other shrimps, 5–152 finfish postlarvae and 26–1636 other macro-zooplankters are wasted during the collection of a single P. monodon PL. Water temperature and salinity of the river systems are correlated with P. monodon PL abundance. Besides P. monodon PL, inshore fishery of Hilsa ilisha, catfishes and Scylla serrata are also overexploited. The management practices and conservation of fishery resources of Sundarbans are reviewed in the context of its world heritage status.  相似文献   

15.
Cherax destructor occurs naturally and/or is farmed in all Australian mainland states and territories and is of major cultural, economical and conservation significance. The aim of this study was to determine susceptibility of the commercially important subspecies C. destructor albidus to white spot syndrome virus (WSSV), a hazard to crustaceans and currently considered to be exotic to Australia. In challenge tests by intramuscular injection, C. destructor albidus displayed a similar level of susceptibility to white spot disease (WSD) as Penaeus monodon (i.e. 100% mortality in 3 d). In one oral challenge test where C. destructor albidus was subjected to significant temperature stress, over 50% died of severe WSD within 14 d post challenge. All dead and moribund crayfish displayed histopathological lesions typical for WSD and gave positive results for WSSV in DNA dot blot hybridization tests. Survivors to 30 d (n = 3) showed no lesions and gave negative dot blot test results. In a second oral challenge test without temperature stress, mortality was delayed but reached 75% by 30 d. However, no typical WSD lesions were observed in the dead, dying or surviving crayfish and dot blot test results were negative. The results suggested that C. destructor albidus would be less susceptible than P. monodon to WSSV exposure via natural routes of infection in farms and in the wild. This information may be useful for disease import risk analysis for WSSV.  相似文献   

16.
White Spot Syndrome Virus (WSSV) is now one of the most devastating and virulent viral agents threatening the penaeid shrimp culture industry and has been responsible for serious economic losses for shrimp farms worldwide. One remarkable characteristic of WSSV is its wide reservoir range, which contributes to its wide geographical distribution. Among epizootiological surveys, there is substantial evidence for WSSV-positive copepods found in shrimp farming ponds. Therefore, copepods are suspected to be the vector of WSSV. In the present study, nested-PCR analysis showed positive results in the harpacticoid copepod Nitocra sp. exposed to WSSV by virus-phytoplankton adhesion route. Oral route and intramuscular injection were used to test the pathogenicity of WSSV isolated from the WSSV-positive Nitocra sp. For the oral route of infection, Marsupenaeus japonicus postlarvae were fed with WSSV-positive copepods. The shrimp postlarvae in the infected treatment became WSSV-positive and occurred 52.50+/-5.00% mortality which was significant higher (P <0.05) than that in the control treatment (20.00+/-0.00%) when postlarvae were fed with WSSV free copepods. In the intramuscular injection challenge, M. japonicus juveniles were injected with the copepods inoculum extracted from the WSSV-positive Nitocra sp., and showed 72.50+/-9.57% mortality which was also significant higher (P <0.05) than that in the control treatment (22.50+/-5.00%) when juveniles were received mock injection of a tissue homogenate prepared from WSSV-negative Nitocra sp. Based on these laboratory challenge studies, it was confirmed that the copepods can serve as a vector in WSSV transmission.  相似文献   

17.
We re-tested stored (frozen) DNA samples in 5 independent polymerase chain reaction (PCR) replicates and confirmed that equivocal test results from a previous study on white spot syndrome virus (WSSV) in brooders and their offspring arose because amounts of WSSV DNA in the test samples were near the sensitivity limits of the detection method. Since spawning stress may trigger WSSV replication, we also captured a fresh batch of 45 brooders for WSSV PCR testing before and after spawning. Replicates of their spawned egg batches were also WSSV PCR tested. For these 45 brooders, WSSV prevalence before spawning was 67% (15/45 1-step PCR positive, 15/45 2-step PCR positive and 15/45 2-step PCR negative). Only 27 (60%) spawned successfully. Of the successful spawners, 56% were WSSV PCR positive before spawning and 74% after. Brooders (15) that were heavily infected (i.e. 1-step PCR positive) when captured mostly died within 1 to 4 d, but 3 (20%) did manage to spawn. All their egg batch sub-samples were 1-step PCR positive and many failed to hatch. The remaining 30 shrimp were divided into a lightly infected group (21) and a 2-step PCR negative group (9) based on replicate PCR tests. The spawning rates for these 2 groups were high (81 and 78%, respectively). None of the negative spawners (7) became WSSV positive after spawning and none gave egg samples positive for WSSV. In the lightly infected group (21), 6 brooders were 2-step WSSV PCR negative and 15 were 2-step WSSV PCR positive upon capture. However, all of them were WSSV PCR positive in replicate tests and after spawning or death. Four died without spawning. The remaining 17 spawned but only 2 gave egg samples PCR negative for WSSV. The other 15 gave PCR positive egg samples, but they could be divided into 2 spawner groups: those (7) that became heavily infected (i.e. 1-step PCR positive) after spawning and those (8) that remained lightly infected (i.e. became or remained 2-step PCR positive only). Of the brooders that became heavily infected after spawning, almost all egg sample replicates (91 %) tested 2-step PCR positive. One brooder even gave heavily infected (i.e. 1-step PCR positive) egg samples. For the brooders that remained lightly infected after spawning, only 27% of the egg sample replicates were 2-step PCR positive. Based on these results, we recommend that to avoid false negatives in WSSV PCR brooder tests screening tests should be delayed until after spawning. We also recommend, with our PCR detection system, discarding all egg batches from brooders that are 1-step PCR positive after spawning. On the other hand, it may be possible with appropriate monitoring to use eggs from 2-step PCR positive brooders for production of WSSV-free or lightly infected postlarvae. These may be used to stock shrimp ponds under low-stress rearing conditions.  相似文献   

18.
Shrimp farming in the Americas began to develop in the late 1970s into a significant industry. In its first decade of development, the technology used was simple and postlarvae (PLs) produced from wild adults and wild caught PLs were used for stocking farms. Prior to 1990, there were no World Animal Health Organization (OIE) listed diseases, but that changed rapidly commensurate with the phenomenal growth of the global shrimp farming industry. There was relatively little international trade of live or frozen commodity shrimp between Asia and the Americas in those early years, and with a few exceptions, most of the diseases known before 1980 were due to disease agents that were opportunistic or part of the shrimps' local environment. Tetrahedral baculovirosis, caused by Baculovirus penaei (BP), and necrotizing hepatopancreatitis (NHP) and its bacterial agent Hepatobacterium penaei, were among the "American" diseases that eventually became OIE listed and have not become established outside of the Americas. As the industry grew after 1980, a number of new diseases that soon became OIE listed, emerged in the Americas or were introduced from Asia. Spherical baculovirus, caused by MBV, although discovered in the Americas in imported live Penaeus monodon, was subsequently found to be common in wild and farmed Asian, Australian and African penaeids. Infectious hypodermal and hematopoietic necrosis virus (IHHNV) was introduced from the Philippines in the mid 1970s with live P. monodon and was eventually found throughout the Americas and subsequently in much of the shrimp farming industry in the eastern hemisphere. Taura syndrome emerged in Penaeus vannamei farms in 1991-1992 in Ecuador and was transferred to SE Asia with live shrimp by 1999 where it also caused severe losses. White Spot Disease (WSD) caused by White spot syndrome virus (WSSV) emerged in East Asia in ~1992, and spread throughout most of the Asian shrimp farming industry by 1994. By 1995, WSSV reached the eastern USA via frozen commodity products and it reached the main shrimp farming countries of the Americas located on the Pacific side of the continents by the same mechanism in 1999. As is the case in Asia, WSD is the dominant disease problem of farmed shrimp in the Americas. The most recent disease to emerge in the Americas was infectious myonecrosis caused by IMN virus. As had happened before, within 3years of its discovery, the disease had been transferred to SE Asia with live P. vannamei, and because of its impact on the industry and potential for further spread in was listed by the OIE in 2005. Despite the huge negative impact of disease on the shrimp farming industry in the Americas, the industry has continued to grow and mature into a more sustainable industry. In marked contrast to 15-20years ago when PLs produced from wild adults and wild PLs were used to stock farms in the Americas, the industry now relies on domesticated lines of broodstock that have undergone selection for desirable characteristics including disease resistance.  相似文献   

19.
高盐胁迫对凡纳滨对虾消化及免疫相关酶活力的影响   总被引:3,自引:0,他引:3  
李娜  赵玉超  王仁杰  沈敏  李玉全 《生态学报》2018,38(4):1411-1417
为探讨高盐对凡纳滨对虾(Litopenaeus vannamei)消化及免疫相关酶活力的影响,实验设置了30、40、50、60共4个盐度梯度。对虾体长(7.84±0.68)cm,养殖密度333尾/m~3,每个梯度设3个平行,实验周期30d。取血淋巴、肌肉、肝胰腺等组织,检测其超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、碱性磷酸酶(AKP)和酸性磷酸酶(ACP)及蛋白酶、脂肪酶、淀粉酶活力。结果表明,盐度显著影响凡纳滨对虾肝胰脏中胃蛋白酶、脂肪酶、淀粉酶的活力(P0.05);随着盐度增加,消化相关酶活力均不断下降,处理间差异显著(P0.05);盐度对凡纳滨对虾不同组织的免疫指标产生影响,表现为随着盐度升高,血淋巴中,AKP活力逐渐升高,ACP、CAT和SOD活力均表现为先升高后降低;肌肉中,AKP、ACP和SOD活力呈现先升高后降低的变化趋势;肝胰脏中,AKP活力呈现先降低后升高再降低的变化趋势,ACP活力高盐处理间差异不显著(P0.05),CAT活力先降低后升高,SOD活力盐度40后逐渐降低。实验结果初步说明,高盐显著影响凡纳滨对虾的消化及免疫相关酶活力,且盐度对不同组织中免疫酶活力影响存在一定的组织特异性,50以上的高盐胁迫对对虾消化和免疫相关酶活力的影响尤为显著。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号