首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Giardiasis is the most common human parasite infection in the United States, causing a lengthy course of diarrhea. Transmission of Giardia species is by the fecal-oral route, and numerous waterborne outbreaks have been documented. The Environmental Protection Agency has regulated Giardia species in drinking water through the Surface Water Treatment Rule. Current methods for detection of Giardia species in water rely primarily on microscopic observation of water concentrates with immunofluorescence techniques. We evaluated the efficacy of using a gene-specific probe for the detection of Giardia species in water. A cDNA probe, 265 bp long, from the small subunit of rRNA of Giardia lamblia was used for detection of cysts. The replicative form of the M13 vector with an insert was isolated from lysed host Escherichia coli XL1-Blue and used for production of the cDNA probe by nick translation with 32P-labeled nucleotides. Six different protocols were tested for extracting nucleic acids from the cysts. With the most efficient procedure, disrupting Giardia cysts with glass beads in the presence of proteinase K, as few as 1 to 5 cysts per ml can be detected in water sample concentrates with dot blot hybridization assays.  相似文献   

2.
In this study, we describe the development of fluorescent oligonucleotide probes to variable regions in the small subunit of 16S rRNA in three distinct Giardia species. Sense and antisense probes (17-22 mer) to variable regions 1, 3, and 8 were labeled with digoxygenin or selected fluorochomes (FluorX, Cy3, or Cy5). Optimal results were obtained with fluorochome-labeled oligonucleotides for detection of rRNA in Giardia cysts. Specificity of fluorescent in situ hybridization (FISH) was shown using RNase digestion and high stringency to diminish the hybridization signal, and oligonucleotide probes for rRNA in Giardia lamblia, Giardia muris, and Giardia ardeae were shown to specifically stain rRNA only within cysts or trophozoites of those species. The fluorescent oligonucleotide specific for rRNA in human isolates of Giardia was positive for ten different strains. A method for simultaneous FISH detection of cysts using fluorescent antibody (genotype marker) and two oligonucleotide probes (species marker) permitted visualization of G. lamblia and G. muris cysts in the same preparation. Testing of an environmental water sample revealed the presence of FISH-positive G. lamblia cysts with a specific rDNA probe for rRNA, while negative cysts were presumed to be of animal or bird origin.  相似文献   

3.
Eight pairs of published PCR primers were evaluated for the specific detection of Cryptosporidium parvum and Giardia lamblia in water. Detection sensitivities ranged from 1 to 10 oocysts or cysts for purified preparations and 5 to 50 oocysts or cysts for seeded environmental water samples. Maximum sensitivity was achieved with two successive rounds of amplification and hybridization, with oligonucleotide probes detected by chemiluminescence. Primer annealing temperatures and MgCl2 concentrations were optimized, and the specificities of the primer pairs were determined with closely related species. Some of the primers were species specific, while others were only genus specific. Multiplex PCR for the simultaneous detection of Cryptosporidium and Giardia was demonstrated with primers amplifying 256- and 163-bp products from the 18S rRNA gene of Cryptosporidium and the heat shock protein gene of Giardia, respectively. The results demonstrate the potential utility of PCR for the detection of pathogenic protozoa in water but emphasize the necessity of continued development.  相似文献   

4.
Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for filtered drinking water samples collected from 66 surface water treatment plants in 14 states and 1 Canadian province. Giardia cysts were detected in 17% of the 83 filtered water effluents. Cryptosporidium oocysts, were observed in 27% of the drinking water samples. Overall, cysts or oocysts were found in 39% of the treated effluent samples. Despite the frequent detection of parasites in drinking water, microscopic observations of the cysts and oocysts suggested that most of the organisms were nonviable. Compliance with the filtration criteria outlined by the Surface Water Treatment Rule of the U.S. Environmental Protection Agency did not ensure that treated water was free of cysts and oocysts. The average plant effluent turbidity for sites which were parasite positive was 0.19 nephelometric turbidity units. Of sites that were positive for Giardia or Cryptosporidium spp., 78% would have been able to meet the turbidity regulations of the Surface Water Temperature Rule. Evaluation of the data by using a risk assessment model developed for Giardia spp. showed that 24% of the utilities examined would not meet a 1/10,000 annual risk of Giardia infection. For cold water conditions (0.5 degree C), 46% of the plants would not achieve the 1/10,000 risk level.  相似文献   

5.
Giardia and Cryptosporidium spp. in filtered drinking water supplies.   总被引:10,自引:7,他引:3       下载免费PDF全文
Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for filtered drinking water samples collected from 66 surface water treatment plants in 14 states and 1 Canadian province. Giardia cysts were detected in 17% of the 83 filtered water effluents. Cryptosporidium oocysts, were observed in 27% of the drinking water samples. Overall, cysts or oocysts were found in 39% of the treated effluent samples. Despite the frequent detection of parasites in drinking water, microscopic observations of the cysts and oocysts suggested that most of the organisms were nonviable. Compliance with the filtration criteria outlined by the Surface Water Treatment Rule of the U.S. Environmental Protection Agency did not ensure that treated water was free of cysts and oocysts. The average plant effluent turbidity for sites which were parasite positive was 0.19 nephelometric turbidity units. Of sites that were positive for Giardia or Cryptosporidium spp., 78% would have been able to meet the turbidity regulations of the Surface Water Temperature Rule. Evaluation of the data by using a risk assessment model developed for Giardia spp. showed that 24% of the utilities examined would not meet a 1/10,000 annual risk of Giardia infection. For cold water conditions (0.5 degree C), 46% of the plants would not achieve the 1/10,000 risk level.  相似文献   

6.
A method was developed in which indirect immunofluorescence and phase-contrast microscopy are used for rapid detection and identification of Giardia cysts in raw and finished water supplies. When anti-Giardia cyst antiserum and fluorescein conjugate were applied to known Giardia cysts on membrane filters, the cysts fluoresced bright green when they were illuminated by UV light. This procedure permitted individual cysts to be quickly located even in samples heavily contaminated with other microorganisms and debris. The identity of presumptive Giardia cysts located in this way could then be confirmed by observing characteristic internal morphological features with phase-contrast microscopy. With this method, Giardia cysts were detected and their identities were confirmed in samples taken from raw and finished surface water supplies during several recent outbreaks.  相似文献   

7.
A method was developed in which indirect immunofluorescence and phase-contrast microscopy are used for rapid detection and identification of Giardia cysts in raw and finished water supplies. When anti-Giardia cyst antiserum and fluorescein conjugate were applied to known Giardia cysts on membrane filters, the cysts fluoresced bright green when they were illuminated by UV light. This procedure permitted individual cysts to be quickly located even in samples heavily contaminated with other microorganisms and debris. The identity of presumptive Giardia cysts located in this way could then be confirmed by observing characteristic internal morphological features with phase-contrast microscopy. With this method, Giardia cysts were detected and their identities were confirmed in samples taken from raw and finished surface water supplies during several recent outbreaks.  相似文献   

8.
The steps of two immunofluorescent-antibody-based detection methods were evaluated for their efficiencies in detecting Giardia cysts and Cryptosporidium oocysts. The two methods evaluated were the American Society for Testing and Materials proposed test method for Giardia cysts and Cryptosporidium oocysts in low-turbidity water and a procedure employing sampling by membrane filtration, Percoll-Percoll step gradient, and immunofluorescent staining. The membrane filter sampling method was characterized by higher recovery rates in all three types of waters tested: raw surface water, partially treated water from a flocculation basin, and filtered water. Cyst and oocyst recovery efficiencies decreased with increasing water turbidity regardless of the method used. Recoveries of seeded Giardia cysts exceeded those of Cryptosporidium oocysts in all types of water sampled. The sampling step in both methods resulted in the highest loss of seeded cysts and oocysts. Furthermore, much higher recovery efficiencies were obtained when the flotation step was avoided. The membrane filter method, using smaller tubes for flotation, was less time-consuming and cheaper. A serious disadvantage of this method was the lack of confirmation of presumptive cysts and oocysts, leaving the potential for false-positive Giardia and Cryptosporidium counts when cross-reacting algae are present in water samples.  相似文献   

9.
A method was developed for the detection of Giardia cysts by using the polymerase chain reaction (PCR) and the giardin gene as the target. DNA amplification by PCR, using giardin DNA as the target, resulted in detection of both live and dead cysts. When giardin mRNA was used as the target, the ability to amplify cDNA by PCR depended on the mode of killing. Cysts killed by freezing were not detected by PCR when giardin mRNA was the target. Cysts killed by heating or exposure to monochloramine, however, gave positive detection signals for both DNA and giardin mRNA targets. The amount of giardin mRNA and total RNA was significantly increased in live cysts following the induction of excystation. Cysts killed by freezing, heating, or exposure to monochloramine did not show a change in RNA content. The detection of the giardin gene by PCR permits a sensitive and specific diagnosis for Giardia spp. Discrimination between live and dead cysts can be made by measuring the amounts of RNA or PCR-amplified product from the giardin mRNA target before and after the induction of excystation.  相似文献   

10.
A method was developed for the detection of Giardia cysts by using the polymerase chain reaction (PCR) and the giardin gene as the target. DNA amplification by PCR, using giardin DNA as the target, resulted in detection of both live and dead cysts. When giardin mRNA was used as the target, the ability to amplify cDNA by PCR depended on the mode of killing. Cysts killed by freezing were not detected by PCR when giardin mRNA was the target. Cysts killed by heating or exposure to monochloramine, however, gave positive detection signals for both DNA and giardin mRNA targets. The amount of giardin mRNA and total RNA was significantly increased in live cysts following the induction of excystation. Cysts killed by freezing, heating, or exposure to monochloramine did not show a change in RNA content. The detection of the giardin gene by PCR permits a sensitive and specific diagnosis for Giardia spp. Discrimination between live and dead cysts can be made by measuring the amounts of RNA or PCR-amplified product from the giardin mRNA target before and after the induction of excystation.  相似文献   

11.
We have shown that cysts of the genus Spironucleus share many common morphological features with Giardia cysts including: 2-4 nuclei, flagellar axonemes, a distinct cyst wall, and they even display the same immunostaining as Giardia cysts when labeled with antibodies specific for Giardia cyst wall. A direct comparison of Spironucleus muris and Giardia microti cysts have revealed that cysts of S. muris are significantly smaller than cysts of G. miroti. At the ultrastructural level, the cyst walls are similar in fibrillar appearance, but the width of the S. muris cyst wall is significantly less than that of G. microti. The cysts of S. muris also differ from G. microti in that they contain a striated rootlet fiber, flagellar sheath, and numerous glycogen rosettes. Characteristic features of Giardia include the adhesive disc and median body. Although the cysts of Spironucleus and Giardia are similar in appearance, these unique morphological features can be used to distinguish between the 2 protozoa and should be employed in the detection of Giardia cysts in water samples.  相似文献   

12.
Giardiasis and cryptosporidiosis are diseases caused by the protozoan parasites Giardia lamblia and Cryptosporidium parvum. Waterborne transmission of these organisms has become more prevalent in recent years, and regulatory agencies are urging that source and finished water be screened for these organisms. A major problem associated with testing for these organisms is the lack of reliable methodologies and baseline information on the prevalence of these parasites in various water sources. Our study addressed both of these issues. We evaluated the presence and reduction of Giardia cysts and Cryptosporidium oocysts in sewage effluent by a combination of indirect fluorescent antibody (IFA) staining and PCR. Our results indicated a 3-log reduction of Giardia cysts and a 2-log reduction of Cryptosporidium oocysts through the sewage treatment process as determined by IFA. We developed a nested PCR to detect Cryptosporidium oocysts and used a double PCR to detect Giardia cysts. A 100% correlation was noted between IFA and PCR detection of Giardia cysts while correlation for Cryptosporidium oocysts was slightly less. On the basis of these results, PCR may be a useful tool in the environmental analysis of water samples for Giardia and Cryptosporidium organisms.  相似文献   

13.
AIMS: The main goal of this study was to validate a new laser scanning cytometry method (ChemScanRDI) that couples immunofluorescence detection with differential interference contrast (DIC) confirmation, against manual microscopic enumeration of Giardia and Cryptosporidium (oo)cysts. This study also assessed the basic performance of the new Association Fran?aise de Normalisation (AFNOR) NF T 90-455 method for Giardia and Cryptosporidium (oo)cyst enumeration with respect to (oo)cyst yield, linearity, repeatability, influence of turbidity and detection limit in raw and potable waters. METHODS AND RESULTS: The new standard method relies on cartridge (Envirocheck) filtration, immunomagnetic separation purification, immunofluorescence staining and detection followed by DIC confirmation. The recovery was 30-50% for both parasites at seeding levels from 30 to 230 (oo)cysts. The method is linear from 0 to around 400 seeded (oo)cysts and the yield does not significantly vary for turbidity levels from 10 to 40 Formazin Nephelometric Units (FNU). The results were obtained using manual microscopic enumeration of the (oo)cysts. The ChemScanRDI yielded counts that were at least equivalent to those obtained using manual microscopy for both parasites in raw and potable water concentrates, for seeding levels of 10-300 or 10-100, respectively. The purification and labelling method proposed by the supplier of theChemScanRDI (Chemunex) reached very similar recoveries to the AFNOR protocol (70-86% in both cases). CONCLUSIONS: Laser scanning cytometry can be used as a more standardized alternative to manual enumeration as part of the new AFNOR standard method. SIGNIFICANCE AND IMPACT OF THE STUDY: By using laser scanning cytometry instead of manual microscopy, laboratories could circumvent the limitations of manual microscopy, namely: low sample throughput, operator subjectivity and operator fatigue. The study further supports the drive to incorporate laser scanning cytometry in the standard methods for Giardia and Cryptosporidium enumeration.  相似文献   

14.
Species of Cryptosporidium and Giardia can infect humans and wildlife and have the potential to be transmitted between these 2 groups; yet, very little is known about these protozoans in marine wildlife. Feces of river otters (Lontra canadensis), a common marine wildlife species in the Puget Sound Georgia Basin, were examined for species of Cryptosporidium and Giardia to determine their role in the epidemiology of these pathogens. Using ZnSO4 flotation and immunomagnetic separation, followed by direct immunofluorescent antibody detection (IMS/DFA), we identified Cryptosporidium sp. oocysts in 9 fecal samples from 6 locations and Giardia sp. cysts in 11 fecal samples from 7 locations. The putative risk factors of proximate human population and degree of anthropogenic shoreline modification were not associated with the detection of Cryptosporidium or Giardia spp. in river otter feces. Amplification of DNA from the IMS/DFA slide scrapings was successful for 1 sample containing > 500 Cryptosporidium sp. oocysts. Sequences from the Cryptosporidium 18S rRNA and the COWP loci were most similar to the ferret Cryptosporidium sp. genotype. River otters could serve as reservoirs for Cryptosporidium and Giardia species in marine ecosystems. More work is needed to better understand the zoonotic potential of the genotypes they carry as well as their implications for river otter health.  相似文献   

15.
The prevalence of Giardia sp. in a beaver (Castor canadensis) colony in Colorado was determined by the collection and analysis of fecal samples over a period of 14 mo. Environmental contamination was monitored through the use and analysis of water filter samples. Beaver shed cysts of Giardia sp. in their feces throughout the year with temporal variations in the prevalence, and became infected as kits and remained infected as juveniles and adults. Beaver served as amplification hosts for Giardia sp. and contaminated surface waters downstream from their dams in late spring and early fall. In slow moving waters the cysts of Giardia sp. settled rapidly. Muskrats (Ondatra zibethicus) were the only other species of wildlife shedding cysts of Giardia sp. on the study area.  相似文献   

16.
The accurate determination of the presence of Giardia cysts and Cryptosporidium oocysts in surface waters requires a reliable method for the detection and enumeration of these pathogenic organisms. Published methods have usually reported recovery efficiencies of less than 50% for both cysts and oocysts. Typically, the losses are greater for Cryptosporidium oocysts than they are for Giardia cysts. The purpose of this study was to examine procedures used for sample collection, elution, concentration, and clarification to determine when losses of cysts and oocysts occurred during processing. The results showed that major losses of cysts and oocysts occurred during centrifugation and clarification. Depending on the centrifugation force, oocyst losses of as high as 30% occurred for each centrifugation step. A 1.15-specific-gravity Percoll-sucrose gradient was needed to optimize recovery of oocysts from natural water samples. Minor improvements in the procedure could be accomplished by selecting a filter other than the recommended 1-micron-pore-size (nominal-porosity) polypropylene filter.  相似文献   

17.
Aims:  Waterborne outbreaks of diarrhoeal illness reported worldwide are mostly associated with Cryptosporidium spp. and Giardia spp. Their presence in aquatic systems makes it essential to develop preventive strategies for water and food safety. This study was undertaken to monitor the presence of Cryptosporidium and Giardia in a total of 175 water samples, including raw and treated water from both surface and ground sources in Portugal.
Methods and Results:  The samples were processed according to USEPA Method 1623 for immunomagnetic separation (IMS) of Cryptosporidium oocysts and Giardia cysts, followed by detection of oocysts/cysts by immunofluorecence (IFA) microscopy, PCR-based techniques were done on all water samples collected. Out of 175 samples, 81 (46·3%) were positive for Cryptosporidium and 67 (38·3%) for Giardia by IFA. Cryptosporidium spp. and G. duodenalis genotypes were identified by PCR in 37 (21·7%) and 9 (5·1%) water samples, respectively. C. parvum was the most common species (78·9%), followed by C. hominis (13·2%), C. andersoni (5·3%), and C. muris (2·6%). Subtype IdA15 was identified in all C. hominis -positive water samples. S ubtyping revealed the presence of C. parvum subtypes IIaA15G2R1, IIaA16G2R1 and IIdA17G1. Giardia duodenalis subtype A1 was identified.
Conclusions:  The results of the present study suggest that Cryptosporidium spp. and Giardia spp. were widely distributed in source water and treated water in Portugal. Moreover, the results obtained indicate a high occurrence of human-pathogenic Cryptosporidium genotypes and subtypes in raw and treated water samples.
Significance and Impact of the Study:  Thus, water can be a potential vehicle in the transmission of cryptosporidiosis, and giardiasis of humans and animals in Portugal.  相似文献   

18.
The protozoan parasite Giardia lamblia is the most common cause of waterborne disease outbreaks associated with drinking water in the United States. The conventional method used for the enumeration of Giardia cysts in water is based on immunofluorescence with monoclonal antibodies. It is tedious and time-consuming and has the major drawback to be non-specific for the only species infecting humans, G. lamblia. We have developed a real-time polymerase chain reaction (PCR) method using fluorescent TaqMan technology, which improved the specificity of G. lamblia cyst quantification compared to the immunofluorescence assay (IFA). However, this PCR was not totally specific for G. lamblia species and amplified Giardia ardeae target as well. This method showed a sensitivity of 0.45 cysts per reaction and an efficiency of 95% in purified suspensions. We have then applied this quantification method to raw wastewater, a medium containing numerous debris, particles and PCR inhibitors. The adaptation to these environmental samples was realized by a screening of three cyst purification methods and six DNA extraction protocols. Real-time quantification was accomplished by the simultaneous amplification of unknown samples and a tenfold serial dilution of purified G. lamblia cysts. For all samples, the concentrations observed with TaqMan PCR method were compared to the IFA values. Giardia spp. cysts were detected in all non-spiked raw wastewater samples with IFA procedure and the concentrations of Giardia spp. cysts used for the comparison between the two methods ranged between 3.3x10(2)/l and 4.3x10(3)/l. The highest TaqMan PCR/IFA ratios were observed when Percoll/sucrose flotation was combined with DNA extraction protocol optimized for cyst wall lysis, impurities adsorption on a resin, and double step protein digestion and column purification. The concentrations observed with this TaqMan PCR method ranged from 2.5x10(2) to 2.4x10(3) G. lamblia cysts/l and only one sample resulted in a no amplification curve. Thus, we developed a TaqMan PCR method increasing the rapidity and specificity of G. lamblia cyst quantification. The combination of Percoll/sucrose flotation and DNA extraction optimized protocol before TaqMan assay has provided a good indication of the G. lamblia contamination level in raw sewage samples.  相似文献   

19.
The effects of freezing and thawing on the detection of selected Giardia spp. cysts were investigated using immunofluorescence, bright field microscopy, and low voltage scanning electron microscopy (SEM). Giardia muris cysts were obtained from either animal carcasses, fecal pellets, or isolated cyst preparations, whereas Giardia lamblia cysts were isolated from fecal samples. These samples were stained using an immunofluorescence technique after 1-3 freezing (-16 C) and thawing (20 C) cycles. Cysts were detected successfully by immunofluorescence in all samples. However, in those samples subjected to freeze-thawing, the cyst walls often became distorted and then were not detectable by bright field microscopy. Low voltage SEM demonstrated that the filaments in the distorted cyst wall underwent rearrangements of interfilament spacing. Quantitation of cyst recovery after freezing and thawing demonstrated that a substantial loss occurred after 1 cycle of alternating temperature when low concentrations of cysts were used, but not with high concentrations of cysts. Cyst recovery, after 3 freezing and thawing cycles, was dramatically lowered irrespective of the initial cyst concentration. These results demonstrated that immunofluorescence was an effective technique for the detection of Giardia spp. cysts in frozen samples and would suggest that freezing and thawing of fecal samples could prevent the detection of cysts when only bright field microscopy was employed.  相似文献   

20.
Genomic DNA was extracted either directly from Giardia muris cysts seeded into environmental surface waters or from cysts isolated by immunomagnetic beads (IMB). A 0.171-kbp segment of the giardin gene was PCR-amplified following “direct extraction” of Giardia DNA from seeded Cahaba river water concentrate with moderate turbidity (780 JTU's), but DNA purified from seeded Colorado river water concentrates with high turbidity (2 × 105 JTUs) failed to amplify. However, if the cysts were first separated by the IMB approach from seeded Cahaba or Colorado river waters, and the DNA released by a freeze-boil Chelex?100 treatment, detection of G. muris by PCR amplification could be achieved at a sensitivity of 3 × 100 or 3 × 101 cysts/ml, respectively. If, however, the G. muris cysts used to seed even moderately turbid river waters (780 JTUs) were formalin treated (which is conventionally used for microscopic examination), neither direct extraction nor IMB purification methods yielded amplifiable DNA. Use of immunomagnetic beads to separate Giardia cysts from complex matrices of environmental surface waters followed by DNA release and PCR amplification of the target giardin gene improved the reliability of detection of this pathogen with the required sensitivity. Received: 23 April 1997 / Accepted: 4 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号