首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antagonistic effects of progesterone and of the anti-estrogens, tamoxifen and nafoxidine, to estrogen responses were studied in the target tissues of fetal and newborn guinea pigs. In the fetal uterus, progesterone inhibits the stimulatory effect provoked by estradiol on uterine growth, on progesterone receptor and on the acetylation of nuclear histones. Progesterone also blocks the synthesis of new progesterone receptor protein in organ culture. Tamoxifen or nafoxidine (1 or 10mg/kg/day injected to the mother for 3 days) provoke a uterotrophic effect similar to that of estradiol (1 mg/kg/day injected to the mother for 3 days) but these anti-estrogens have a limited effect on the progesterone receptor. Tamoxifen given together with estradiol antagonizes the effect of the estrogen on the acetylation of histones but the anti-estrogens do not block the effect of estradiol on uterine growth. Histological studies show that both estradiol and tamoxifen provoke a dramatic hypertrophie and hyperplastic effect particularly in the uterine epithelium.In the newborn uterus (6-day old), tamoxifen (s.c. injection of 0.6μg/g body weight) and estradiol (injection of 30 ng/g body weight) provoke a similar uterotrophic effect and both have a limited effect on the progesterone receptor.In the fetal thymus estradiol provokes a selective decrease in the larger and actively proliferating lymphoid cells of the cortical zone. Tamoxifen has a similar effect but to a much lesser extent than estradiol. On the other hand, tamoxifen antagonizes the effect of estradiol on this fetal tissue.It is concluded that during fetal life progesterone antagonizes the effect of estradiol but tamoxifen can act as an agonist or an antagonist of estrogen action which is a function of the type of response or organ considered.  相似文献   

2.
The biological and morphological responses of tamoxifen were studied in two models: the uterus and vagina of fetal and newborn guinea-pigs: R-27 cells--a mammary cancer cell line (tamoxifen resistant) derived from the MCF-7 cancer cell line. Tamoxifen (TAM) alone or in combination with estradiol (E2) was administered to pregnant (50-52 days of gestation) or to newborn (2-day-old) guinea-pigs for a long period (12 days). TAM alone produced a great trophic effect on the uterus and vagina which was markedly enhanced when TAM was administered together with E2. Histological studies showed that TAM provokes morphological changes in both the endometria and the myometria and this effect was also greater when TAM was administered together with E2. In the fetal uterus and vagina, the ultrastructural studies showed that TAM induces morphological alterations in different cytoplasmic organelles. This effect was much more intense in newborns where TAM provoked a significant vacuolization of the epithelial cells. Concerning progesterone receptor (PR) in the fetal or newborn tissues (uterus or vagina) TAM provoked a less intense effect than those provoked by E2, but TAM did not block the effect provoked by E2. It was observed that [3H]TAM binds specifically to the estrogen receptor (ER) of fetal guinea pig uterus and this complex is partially recognized by a monoclonal antibody which recognizes the activated form of this receptor, supporting the suggestion that the biological action of TAM is mediated by the ER. The biological and ultrastructural effects provoked by TAM (1 X 10(-6) M), estriol (E3)(5 X 10(-8) M) and the combination of TAM + E3 were studied in the R-27 mammary cancer cell line in culture. E3 stimulated the PR content by 7-10 times. However, TAM did not provoke a significant decrease in the concentration of PR, and in the mixture of TAM + E3 the concentration of PR was of the same order as that in E3 treatment. Ultrastructural observations indicate an intense concentration of ribosomes in the pericytoplasmic area after exposure to E3 and with exposure to TAM an increase in vacuoles and a significant enlargement of the size of the mitochondria were observed. It is concluded that TAM in the target tissues of fetal and newborn guinea pigs acts as a real estrogen and in the R-27 mammary cancer cell line TAM does not block the effect provoked by E3, however it does provoke intense ultrastructural modifications.  相似文献   

3.
Antiestrogen action in mammary cancer and in fetal cells   总被引:1,自引:1,他引:0  
The present data confirm the very complicity of the response of antiestrogen when this compound is studied in different experimental conditions. The new and potent antiestrogen ICI 164,384, which is considered as a full antagonist in most models studied, concerning the progesterone receptor in the isolated cells of the uterus and vagina of guinea-pig acts as a real agonist. However, this compound antagonizes cell proliferation, progesterone receptor, and decreases the concentration of estradiol in different hormone-dependent mammary cancer cell lines. Another interesting aspect is the response of the antiestrogen 4-hydroxytamoxifen which in isolated cells of very close tissues such as the uterus and vagina is an antagonist for the former and agonist for the latter concerning the progesterone receptor. In conclusion, the present data added new information in the complicity of the mechanism of action of antiestrogens, but using new models interesting possibilities are opened to understand their responses and their mechanism.  相似文献   

4.
Liu JW  Jeannin E  Picard D 《Biological chemistry》1999,380(11):1341-1345
The budding yeast Saccharomyces cerevisiae has been used extensively as a biological 'test tube' to study the regulation of the human estrogen receptor (ER) alpha. However, anti-estrogens, which are of great importance as therapeutic agents and research tools, fail to antagonize the activation by estrogen in yeast. Here, we have surveyed the antagonistic potential of five different anti-estrogens of diverse chemical nature. While they all act as agonists for wild-type ERalpha, we have established a novel yeast assay system for anti-estrogens, in which at least the commonly used anti-estrogen hydroxytamoxifen is a potent antagonist.  相似文献   

5.
It has been known for many years that sex hormones modulate vasodilator responses of arteries supplying the uterus with blood. Recently, it has been shown that sex hormones such as estrogen modulate vasomotor responses of other arteries, including coronary arteries. It is thought that modulation of vasodilator and constrictor responses of coronary arteries may be one mechanism by which estrogen affects the risk of coronary heart disease. Although several studies have examined the effects (and potential mechanisms) of estrogen on vasodilator responses of nonatherosclerotic arteries, few have focused on estrogen's effects on atherosclerotic coronary arteries. In studies of ovariectomized atherosclerotic female cynomolgus monkeys, both long-term (2 years) and short-term (20 min) estradiol treatment augments dilator responses to acetylcholine, but not nitroglycerin. Presumably, this indicates an effect of estradiol on endothelium-mediated dilator responses of coronary arteries. Addition of the progestin medroxyprogesterone acetate diminishes the beneficial effect of conjugated equine estrogens on these dilator responses. This is significant because a progestin is usually added to estrogen replacement to reduce the risk of endometrial and breast cancer associated with unopposed estrogen therapy. However, it would seem that not all progestins act similarly on vascular reactivity. Studies in monkeys indicate that addition of progesterone or the progestin medroxyprogesterone acetate does not diminish the beneficial effects of estrogen on coronary dilator responses. Thus it would appear that different estrogen/progestin combinations may affect vascular reactivity in different manners, There is also an effort being made to examine the potential of different kinds of estrogens on cardiovascular risk. Studies in monkeys indicate that one of the estrogens found in conjugated equine estrogens (17 alpha-dihydroequilenin) has estrogen effects on vascular reactivity without having detrimental effects on uterine pathology. The isoflavones “plant estrogens” found in soy protein also have estrogenic effects on vascular reactivity and inhibition.  相似文献   

6.
The effects of estradiol, progesterone, and tamoxifen on the activity of estradiol 2- and 16 alpha-hydroxylases were studied in human breast cancer cell cultures using a radiometric assay. After 5 days' exposure to these compounds, incubations in the presence of either [2-3H]estradiol or [16 alpha-3H]estradiol as substrate were carried out. In MCF-7 cells, estradiol (10(-8) M), progesterone (10(-6) M) and tamoxifen (10(-6) M) significantly increased 16 alpha-hydroxylase activity (estradiol; 21% progesterone 10% to 32%; tamoxifen 21% to 31%; P less than 0.01). Synergistic effects were observed when the cells were successively exposed to tamoxifen and progesterone. Simultaneous treatment with tamoxifen plus estradiol or estradiol plus progesterone showed no change from estradiol alone. On the other hand, although estradiol had no direct effects on 2-hydroxylase activity, tamoxifen decreased this enzymatic activity significantly at 10(-6) M (23% to 37%). Progesterone acted synergistically to further decrease this reaction. Treatment with only progesterone caused an increase in 2-hydroxylation. In contrast, a subline of MCF-7 cells with low estrogen receptor levels showed only minimal enzyme-hormone responses. Likewise, treatment of the estrogen receptor-negative MDA-MB-231 human breast cancer cell line with these compounds showed no effects on either 2- or 16 alpha-hydroxylase activity. In the progesterone receptor-rich T47D cell line, estradiol decreased both activities while progesterone increased both.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The retention time of the estrogen receptor in the nucleus of target cells after antiestrogen treatment has been shown to be longer than after estradiol. This paper describes the accumulation of nuclear estrogen receptors and the obtention of estrogenic responses (i.e. synthesis of cytosolic progesterone receptors and DNA) in the rat uterus after tamoxifen treatment in the presence or absence of estradiol. One-week ovariectomized adult rats were implanted with a silicone elastomer capsule containing corn oil or 25 micrograms estradiol/capsule (0 h). 48 h after implantation rats were injected with corn oil or 2 mg tamoxifen/kg and decapitated at 72, 96 or 120 h after implantation. In parallel experiments the implants were removed just before the injections of tamoxifen or oil. Tamoxifen injected into rats implanted with oil increased both the occupied nuclear receptors and the progesterone receptors at 96 h. In rats implanted with estradiol, tamoxifen did not increase the occupied nuclear receptors and decreased the levels of progesterone receptor and DNA at 96 h. In rats whose estradiol implants were removed at 48 h tamoxifen did not change the level of occupied nuclear receptors at 72 h but it increased them abruptly at 96 and 120 h. In these rats progesterone receptors decreased at 72 h but they increased at 96 and 120 h, and DNA decreased at 120 h to a lower level than before implantation. The results suggest that when estradiol is acting, tamoxifen is not able to increase the level of occupied estrogen receptor and it acts as an antiestrogen by decreasing the high level of progesterone receptors previously induced by estradiol. When estradiol is not acting tamoxifen behaves as a partial estrogen agonist by inducing progesterone receptors. However, the antiestrogenic action of tamoxifen on the rat uterus DNA does not seem to be affected by estradiol.  相似文献   

8.
Daily injections of estradiol or the antiestrogen tamoxifen initially stimulate uterine weight increase and progesterone receptor synthesis, though continued tamoxifen fails to maintain the increased weight. The stimulatory actions of both estradiol and tamoxifen are inhibited or reversed by a single injection of progesterone. It has been hypothesized that progesterone antagonizes estrogen action by reducing estrogen receptor levels, but in the present experiments neither cytoplasmic nor nuclear estrogen receptor was affected. We conclude that progesterone acts at a point beyond estrogen receptor availability or translocation to antagonize estrogen action.  相似文献   

9.
To study the relation between steroid receptor concentrations and biological response, we measured cytosol and nuclear progesterone receptors from rabbit uterus under different experimental conditions, and compared receptor values with induction of uteroglobin, a progesterone-regulated protein. A 5-day progesterone treatment (1 mg/kg per day) reduced the nuclear receptor content by 40%, slightly elevated cytosol receptor levels and increased uteroglobin content 3000-fold. Estradiol and tamoxifen altered progesterone-induced changes in the receptor and uteroglobin values: cytosol and nuclear receptors rose significantly, but uteroglobin induction declined markedly, when progesterone treatment was supplemented with estradiol or tamoxifen. A 50% inhibition of progesterone action on uteroglobin synthesis was achieved with 1 μg/kg of estradiol per day. Thus under certain conditions, there is a clear disparity between steroid receptor levels and biological response.  相似文献   

10.
Tamoxifen has more or less strong estrogen influence according to the targets : a light one on the uterus (1 mg being much less strong than 0.25 microgram of estradiol), a dynamic one on the vagina (50 microgram of tamoxifen make the vagina open in as short a time as 0.25 microgram of estradiol do but the keratinisation is still not completed even with 1 mg of tamoxifen). We can still see this influence four days after the end of the treatment. This influence is weak on the uterus until the 11 th day and it is much stronger on the vagina until about the 8 th day. Tamoxifen has an antiestrogenic action when opposed to 20 microgram of estradiol : this action is limited as soon as you give a dosis of 50 microgram on the uterus and it is nearly total with a dose of 1 mg ; we can notice it on the vaginal only from 200 microgram on.  相似文献   

11.
12.
Cells from the uterus of the guinea pig fetus have been grown as a monolayer culture in serum-containing medium. Cells from the first subculture showed high concentrations of progesterone receptor (PR; 9.3-13.8 pmol/mg DNA) even after 9 days in medium containing charcoal-treated serum and estradiol did not induce any further increase. The antiestrogens, tamoxifen and monohydroxytamoxifen, both had an inhibitory effect which could be overcome by estradiol. The progestins, progesterone and R5020, as well as the antiprogestin, RU38486, also decreased the PR concentration. Estrogen receptor (ER) levels did not vary with the compounds tested but were found to be low compared to concentrations found in the fetal guinea pig uterus at 55-65 days of gestation. None of the compounds tested had any effect on the growth of the fetal uterine cells so that the modulation of PR concentrations was dissociated from the regulation of cell growth. It is concluded that estrogens are necessary but not sufficient factors in the control of PR levels in fetal uterine cells. The establishment of a culture system for separate types of fetal uterine cells will permit us to study in vitro the factors involved in the growth effects of estrogens and the control of PR synthesis.  相似文献   

13.
Abstract

The binding of 3H-estriol was examined in the fetal uterus of guinea pig. The physico-chemical characteristics of the binding of 3H-estriol to macromolecules are similar to the typical receptor protein for estrogens. Different estrogens (estriol, estradiol, estrone and diethylstilbestrol) compete with this binding but progesterone and testosterone have no effect. The binding affinity has a Kd of 5.5 ± 1.6 ± 10?10M. By ultra-centrifugation in sucrose gradient, two specific components with sedimentation coefficients of 8 and 45 are found. Competition studies suggest that the same specific binding sites may be present for estriol (E3) and for estradiol. The s.c. administration of E3 to the pregnant guinea pig (1 mg/day per kg body weight for 3 days) provokes two biological responses in the fetal uterus: a uterotrophic effect and a significant increase in the progesterone receptor. The increase in the fetal uterine weight is 50–70% in relation to the non-treated animals and the progesterone receptor concentration is 10–14 times higher than in the control animals. These effects are similar (or slightly higher) than in animals primed with equimolecular quantities of estradiol. In contrast, single daily injections of E3 to newborn guinea pig, results only in weak uterotrophic activity.

It is concluded that estriol is capable of causing a biological response in the uterus during intra-uterine life.  相似文献   

14.
In the immature rat uterus, high concentrations of androgens competed specifically with estradiol on the estrogen receptor (RE). This competition was stereospecific for C19 steroids bearing a 17β and/or 3 hydroxyl group. Very low affinity ligands, such as testosterone, could not compete with estradiol at equilibrium but decreased the association rate of estradiol on its receptor. High doses (> 0.4mg) of 5 α aihydrotestosterone provoked in vivo as in vitro the nuclear translocation of RE. The nuclear receptor thus formed displayed the same 5.2 S sedimentation constant as that induced by estradiol. We conclude that the weak affinity binding of androgens to the estrogen receptor is sufficient to induce its nuclear translocation in vivo provided androgen concentration is high enough in uterus to occupy the estradiol binding site. Conversely, progesterone which does not bind RE could not provoke its nuclear translocation.  相似文献   

15.
The lumbar spinal cord of rats contains the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB). In males, the growth of SNB dendrites is steroid-dependent: dendrites fail to grow after castration, but grow in castrates treated with androgens or estrogens. Blocking estradiol synthesis or estrogen receptors in gonadally intact males attenuates SNB dendritic growth, suggesting that estrogens are required and must be able to act at their receptors to support normal masculine dendritic growth. However, SNB motoneurons do not accumulate estrogens, suggesting that estrogens act indirectly to support SNB dendritic growth. In this experiment, we examined whether local estrogen action in the neuromuscular periphery was involved in the postnatal development of SNB motoneurons. Motoneuron morphology was assessed in gonadally intact and castrated males. Gonadally intact males were left untreated or given either blank or tamoxifen implants sutured to the target musculature, or tamoxifen interscapular implants. Castrated males were left untreated or were given estradiol by muscle or interscapular implants or systemic injection during the period of SNB dendritic growth. At postnatal day 28, when SNB dendritic length is normally maximal, SNB motoneurons were retrogradely labeled with cholera toxin-HRP and reconstructed in three dimensions. While interscapular tamoxifen implants were ineffective, blocking estrogen receptors at the target musculature resulted in attenuation of SNB dendritic growth. In contrast, while interscapular implants of estradiol were ineffective, local treatment with estradiol at the target musculature in castrated males resulted in masculinization of dendritic growth. Thus, estrogens may act by an indirect action in the neuromuscular periphery to support SNB dendritic growth.  相似文献   

16.
C Sumida  C Gelly  J R Pasqualini 《Steroids》1982,39(4):431-444
The translocation of progesterone receptor from the cytosol into the nucleus was studied under "in vivo" and "in vitro" conditions in the uteri of guinea pig fetuses exposed to progesterone or a synthetic progestin, R5020. Progesterone treatment of estrogen-primed fetuses leads to a rapid (before 1h) transfer of cytosol progesterone receptor into the nucleus which is, however, short-lived (less than 3h). A rapid decrease in the retention of the estrogen receptor in the nucleus also occurs. In the "in vitro" incubations of whole fetal uteri, translocation of progesterone receptor is temperature-dependent and specific for progesterone and R5020; estradiol and cortisol have no effect. Putative progesterone receptors can also be induced in explants of fetal guinea pig uteri in organ culture which translocate from the cytosol into the nucleus under the same "in vitro" conditions as in whole uteri. Fetal uterine progesterone receptor, either stimulated "in vivo" by estrogen-priming or induced in organ culture, translocates from the cytosol into the nucleus and this process seems to be accompanied by a decrease in retention of the estrogen receptor in the nucleus which appears to be the mechanism by which progesterone antagonises estrogen action in fetal guinea pig uterus.  相似文献   

17.
Selective estrogen receptor modulators (SERMs) represent a growing class of compounds that act as either estrogen receptor gonists or ntagonists in tissue-selective manner. SERMs with the appropriate selectivity profile offer the opportunity to dissociate the favorable bone and cardio-vascular effects of estrogen from its unfavorable stimulatory effects on the breast and uterus. The triphenylethylene drug tamoxifen proved to be invaluable to treat and protect against breast cancer and bone loss, probably reduces cardiovascular risk, but had side effects on uterus similar to natural estrogens. The tamoxifen derivate toremifene is also used to treat breast cancer, but has less effect on bone. The non-steroidal benzothiophene derivate, raloxifene, is the best SERM available thus far. It has the potential to prevent breast cancer (like tamoxifen), but has better profile in its actions on bone and cardiovascular system (produces a rapid reduction of serum cholesterol, decreases fibrinogen and lipoprotein, improves the vascular epithelial function, attenuates vascular intimal thickening, etc.). It does not increase the incidence of endometrial cancer. Compounds of this class are the first step in developing the perfect hormone replacement and other multitargeted therapy. This review summarizes the recent important knowledge about SERMs.  相似文献   

18.
19.
Third generation aromatase inhibitors have excellent specificity. Some reports indicate that letrozole may have a minor effect on cortisol synthesis but these were not confirmed: valid comparisons with other aromatase inhibitors requires randomised study.

The putative use of a third generation inhibitor as a single agent in premenopausal women has been investigated using YM511. It was hypothesised that in this situation site-specific suppression of estrogens in breast carcinomas, without systemic effects, may lead to a down-regulation of tumour proliferation. Plasma levels of androstenedione and testosterone were significantly increased by 2 weeks treatment with YM511. Mean plasma estrone levels were suppressed, but some plasma estradiol levels were abnormally high and others abnormally low. These differential effects of YM511 on circulating estrogens supported the concept that peripheral synthesis of estrogens might be suppressed while ovarian production remained high. However, YM511 did not demonstrate anti-proliferative effects in hormone sensitive breast carcinomas.

Consideration of the pharmacology of the estrogen receptor during tamoxifen therapy indicates that tamoxifen effectively saturates the receptor (>99.94% occupancy) in postmenopausal women. The addition of an aromatase inhibitor in this situation would be very unlikely to affect the biological activity of the estrogen receptor. This provides a possible explanation why the clinical efficacy of tamoxifen combined with an aromatase inhibitor appears to be equivalent to that of tamoxifen alone.  相似文献   


20.
Long-term estrogen deficiency increases the risk of obesity, diabetes and metabolic syndrome in postmenopausal women. Menopausal hormone therapy containing estrogens might prevent these conditions, but its prolonged use increases the risk of breast cancer, as wells as endometrial cancer if used without progestins. Animal studies indicate that beneficial effects of estrogens in adipose tissue and adverse effects on mammary gland and uterus are mediated by estrogen receptor alpha (ERα). One strategy to improve the safety of estrogens to prevent/treat obesity, diabetes and metabolic syndrome is to develop estrogens that act as agonists in adipose tissue, but not in mammary gland and uterus. We considered plant extracts, which have been the source of many pharmaceuticals, as a source of tissue selective estrogens. Extracts from two plants, Glycyrrhiza uralensis (RG) and Pueraria montana var. lobata (RP) bound to ERα, activated ERα responsive reporters, and reversed weight gain and fat accumulation comparable to estradiol in ovariectomized obese mice maintained on a high fat diet. Unlike estradiol, RG and RP did not induce proliferative effects on mammary gland and uterus. Gene expression profiling demonstrated that RG and RP induced estradiol-like regulation of genes in abdominal fat, but not in mammary gland and uterus. The compounds in extracts from RG and RP might constitute a new class of tissue selective estrogens to reverse weight gain, fat accumulation and metabolic syndrome in postmenopausal women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号