首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Effects of thapsigargin,an inhibitor of Ca^2 -ATPase in surface of endoplasmic reticulum,on apoptotic cell death were studied in human hepatoma cells of BEL-7404 cell line by using both flow cytometry and electron microscopy.Propidium iodide staining and flow cytometry revealed that in the serum-free condition,thapsigargin increased the rate of apoptosis of BEL-7404 cells in a dose-dependent manner.Prolongation of the period of serum-free condition enhanced the apoptosis induced by thapsigargin treatment.Morphological observation with electron microscope further demonstrated that chromatin condensation and fragmentation,apoptotic bodies existed in TG-treated cells,supporting that thapsigargin is a potent activator of apoptosis in the cells.  相似文献   

2.
We have developed a cell-free system that can trigger the nuclei purified from mouse liver and suspensioncultured carrot cells to undergo apoptosis as defined by the formation of apoptotic bodies and nucleosomal DNA fragments.The effects of different divalent cations and cycloheximide on DNA cleavage in this system were assessed.The fact that nuclei of plant cells can be induced to undergo apoptosis in a cell-free animal system suggests that animals and plants share a common signal transduction pathway triggering in the initiation stage of apoptosis.  相似文献   

3.
Chen K  Li D  Jiang YH  Yao WJ  Wang XJ  Wei XC  Gao J  Xie LD  Yan ZY  Wen ZY  Chien S 《Cell research》2004,14(2):161-168
The cDNA fragment of human TRAIL (TNF-related apoptosis inducing ligand) was cloned into RevTet-On, a Tetregulated and high-level gene expression system. The gene expression system was constructed in a human leukemic cell line: Jurkat. By using RevTet-On TRAIL gene expression system in Jurkat as a cell model, we studied the influence of TRAIL gene on the changes of cellular apoptosis before and after the TRAIL gene expression, which was induced by adding tetracycline derivative doxycycline (Dox). The results indicated that the cellular apoptosis ratio was largely dependent on the TRAIL gene expression level. Moreover, it was found that the apoptosis-inducing TRAIL could cause significant changes in the biophysical properties of Jurkat cells. The cell surface charge density decreased, the membrane fluidity declined, the elastic coefficients K1 increased, and the proportion of α-helix in membrane protein secondary structure decreased. Thus, the apoptosis-inducing TRAIL gene caused significant changes on the biomechanic properties of Jurkat cells.  相似文献   

4.
Hydroxyurea has been used to synchronize cultured cells to S-phase and used to treat patients with sicklecell anemia.Recently,we found that hydroxyurea can induce the apoptosis of HEL(human erythroleukemia) cells.The induced HEL cells showed ultrastructurally chromatin condensation with regular crescents at the nuclear edges and apoptotic bodies.However,the cells of K562,another human erythroleukemia cell line,did not show such morphological changes.Under fluoroscope,the HEL cells after induction of ten displayed a clear reduction in nuclear diameter and nuclear chromatin cleavage and condensation and the presence of nuclear ring and apoptotic bodies.Analysis with flow cytometry showed that the percentage of apoptotic cells is about 30-40% after HEL cells were induced by hydroxyurea for 3 days.DNA ladder can be observed by electrophoretic analysis.  相似文献   

5.
Macrophage cells play an important role in the initiation and regulation of the immune response.All-trans retinoic acid (ATRA) and its natural and synthetic analogs (retinoids)affect a large number of biological processes.Recently,retinoids have been shown promise in the therapy and prevention of various cancers.However,many interesting questions related to the activities of retinoids remain to be answered:(I) Molecular mechanisms by which retinoids exert their effects;(Ⅱ)why the clinical uses of retinoids give undesirable side effects of varying severity with a higher frequency of blood system symptoms;(Ⅲ)little is known for its impacts on macrophage cells etc.We set up this experiment,therefore,to examine the apoptosis of ATRA on macrophage Ana-1 cell line.Apoptosis of the cells was quantitated,after staining cells with propidium iodide(PI),by both accounting nuclear condensation and flow cytometry.When the cells were treated with ATRA at or higher than 1μM for more than 24h,significant amount of the apoptotic cells was observed.Induction of apoptosis of Ana-1 cells by ATRA was in time-and dose-dependent manners,exhibiting the similar pattern as the apoptosis induced by actinomycin D (ACTD).ATRA treatment of Ana-1 cells also caused the changes of the mRNA levels of apoptosis-associated gene bcl-2,as detected by Northern blot analysis.The temporal changes of bcl-2 expression by ATRA was also parallel to that by ACTD.In conclusion,ATRA can induce apoptosis in macrophage cells,which may be helpful in understanding of immunological functions retinoids.  相似文献   

6.
Chen HZ  Wu Q 《Cell research》2007,17(4):293-294
TR3 (also known as Nur77, or NGFI-B) belongs to the steroid/thyroid/retinoid receptor superfamily, and is classified as an orphan receptor because its specific ligand has not been identified [1 ]. Originally, TR3 was identified as a growth factor-inducible gene [2]. The role of TR3 in apoptosis was first reported in 1994, where TR3 expression was shown to be induced by T-cell receptor signaling and required for T-cell receptor-mediated apoptosis [3,4]. Rapid induction of TR3 is also observed in different types of cancer cells after stimulation by apoptosis-inducing agents [5-7], indicating that induction of TR3 contributes to the apoptotic process.  相似文献   

7.
FUTAO  HELIU 《Cell research》1996,6(2):145-153
Effects of antisense epidermal growth factor receptor (EGFR) sequence on apoptotic cell death were examined in a human hepatoma cell line BEL-7404 cells.In the cells of JX-1,a sub clone of BEL-7404 stably transfected with antisense EGFR vector (Cell Research,3:75,1993),an enhanced rate(9.5%) of spontaneous apoptosis was detected by flow cytometry,whereas the rates of spontaneous apoptosis in JX-0 cells,a sub-clone of BEL-7404 transfected by control vector,and the parent BEL-7404 transfected by control vector,and the parent BEL-7404 transfected by control vector,and the parent BEL-7404 cells were almost equal and about 1.7%.Serum-starvation for 72h increased the rate of apoptosis of JX-lcells up to 33.7%,while JX-0 and BEL-7404 cells,under the same condition,produced less than 5% of apoptotic cells.Observation with electron microscope demonstrated that condensation and fragmentation of chromatin and formation of apoptotic bodies often occurred in JX-1 cells,especially during serumstarvation.These results,combined with the data of DNA fragmentation Elisa test,suggested that antisense EGFR sequence enhances apoptosis in the human hepatoma cells.Comparison of intracellular Ca^2 level and the responsiveness of JX-1 cells to the induced action of EGF and tharpsigargin (TG) treatment with that of control JX-0 cells indicated that antisense egfr might interrupt the EGF/EGFR sigaling pathway resulting in the decreass of intracellular Ca^2 pool content as well as the responsiveness of these cells to the extracellular signals.These findings suggest that antisense EGFR either directly or indirectly regulates Ca^2 storage in endoplasmic reticulum,thereby enhances apoptosis in the human hepatoma cells.  相似文献   

8.
To study the effect of Akt2 gene on the apoptosis of breast cancer cells induced by H2O2. The full length cDNA of Akt2 gene was amplified by RT-PCR, and then cloned into pcDNA3.1 /myc-His(-)A vector (Wild type, WT-Akt2). Dominant negative mutant of AKT2 (DN-Ak2) were made by QuikChange site-directed mutagenesis. The eukaryotic expression vector of WT-Akt2 and DN-Akt2 were constructed, and were then transfected into MCF-7 breast cancer cells, respectively. Clones stably expressing Akt2 or DN-Akt2 were obtained by neomycin screening; Two different siRNA fragments targeted Akt2 gene were designed and synthesized, and were then transfected into the same cells. Cell apoptosis pre or post-H2O2 treatment was determined by TUNEL 和DNA Laddering assays. The sequencing result confirmed WT-Akt2 and DN-Akt2 were successfully constructed, and the results of Western Blot show They had good expression in MCF-7 cells, and Akt2 siRNA could effectively silence Akt2 expression. The resistance for apoptosis-induced by H2O2 in MCF-7 cells with WT-Akt2 over-expression was significantly increased (DN-Akt2 showed opposite function). The apoptotic cell number induced by H2O2 was significantly lower in stable transfectants with the WT-Akt2 vector than in those with empty vector or in untransfected cells (P <0.05), whereas no significant difference was found between the latter two groups (P >0.05). The function of inhibition of apoptosis by Akt2 was blocked by Akt2 siRNA and PI3K/Akt inhibitor, wortmannin. Thus, Akt2’s effect was further confirmed by these endogenous results. Overall, our study suggests that Akt2 can increase the resistance of human breast cancer cells to the apoptosis induced by H2O2, and it may be used as a therapeutic target for breast cancer, providing a foundation for investigation the molecular mechanism of breast cancer cells resistant to the apoptosis induced by reactive oxygen.  相似文献   

9.
Local anesthetics inhibit cell proliferation and induce apoptosis in various cell types. Ropivacaine, a unique, novel tertiary amine-type anesthetic, was shown to inhibit the proliferation of several cell types including keratinocytes. We found that Ropivacaine could inhibit the proliferation and induce apoptosis in an immortalized human keratinocyte line,HaCaT, in a dose- and time-dependent manner and with the deprivation of serum. The dose-dependent induction of apoptosis by ropivacaine was demonstrated by DNA fragmentation analysis and the proteolytic cleavage of a caspase-3 substrate—poly (ADP-ribose) polymerase (PARP). In addition, ropivacaine downregulated the expression of clusterin/ apoliporotein J, a protein with anti-apoptotic properties, in a dose-dependent manner, which well correlated with the induction of apoptosis of HaCaT cells. To investigate the role of clusterin/apoliporotein J in ropivacaine-induced apoptosis,HaCaT cells overexpressing clusterin/apoliporotein J were generated and compared to cells expressing the well established anti-apoptotic Bcl-2 protein. Ectopic overexpression of the secreted form of clusterin/apoliporotein J or Bcl-2decreased the sensitivity of HaCaT cells to toxic effects of ropivacaine as demonstrated by DNA fragmentation, the proteolytic cleavage of PARP and by a reduction in procaspase-3 expression. Furthermore, the downregulation of endogenous clusterin/apolipoprotein J levels by ropivacaine suggested that this might be one mechanism by which ropivacaine induced cell death in HaCaT cells. In conclusion, the ability of ropivacaine to induce antiproliferative responses and to suppress the expression of the anti-apoptotic protein clusterin/apolipoprotein J, combined with previously reported anti-inflammatory activity and analgesic property of the drug, suggests that ropivacaine may have potential utility in the local treatment of tumors.  相似文献   

10.
11.
Clustering of apoptotic cells is a characteristic of many developing or renewing systems, suggesting that apoptotic cells kill bystanders. Bystander killing can be triggered experimentally by inducing apoptosis in single cells and may be based on the exchange of as yet unidentified chemical cell death signals between nearby cells without the need for cell-to-cell communication via gap junctions. Here we demonstrate that apoptotic cell clusters occurred spontaneously, after serum deprivation or p53 transfection in cell monolayers in vitro. Clustering was apparently induced through bystander killing by primary apoptotic cells. Catalase, a peroxide scavenger, suppressed bystander killing, suggesting that hydrogen peroxide generated by apoptotic cells is the death signal. Although p53 expression increased the number of apoptoses, clustering was found to be similar around apoptotic cells whether or not p53 was expressed, indicating that there is no specific p53 contribution to bystander killing. Bystander killing through peroxides emitted by apoptotic cells may propagate tissue injury in different pathological situations and be relevant in chemo-, gamma-ray, and gene therapy of cancer.  相似文献   

12.
To understand the effects of a novel butyrolactone derivative, 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO), on the apoptosis of vascular endothelial cells (VECs), we exposed 3BDO (20-60 microg/ml) to VECs deprived of serum and FGF-2 for 24 and 48 h, respectively. The results showed that 3BDO (20-60 microg/ml) increased VEC viability and inhibited VEC apoptosis induced by deprivation of serum and FGF-2 in a very weak dose-dependent manner. During this process, integrin beta4 expression was depressed, but the level of reactive oxygen species (ROS) was not changed. The data suggested that 3BDO (20-60 microg/ml) could inhibit VEC apoptosis and suppress integrin beta4 expression, but it could not depress the ROS level induced by deprivation of serum and FGF-2.  相似文献   

13.
氧化型低密度脂蛋白诱导血管平滑肌细胞凋亡的机理研究   总被引:2,自引:0,他引:2  
近年来的研究发现,氧化型低密度脂蛋白(oxi-dizedlowdensitylipoprotein,OX-LDL)是导致动脉粥样硬化发生的重要因素[1].OX-LDL具有双重效应,既有强烈的促细胞生长效应,又可诱导细胞发生凋亡.这主要根据过氧化物量的变化而定,少量的OX-LDL可促进增殖,而长时间大量的OX-LDL作用于平滑肌细胞则可导致其凋亡[2].OX-LDL诱导的平滑肌细胞凋亡有助于氧化脂质的生成,导致动脉粥样硬化形成.在动脉粥样硬化晚期,由于斑块中的平滑肌细胞凋亡,细胞外基质分泌减少,使斑块极不稳定而易于破裂,诱发急性临床事件如心肌梗塞、猝死等的发生[3].OX-…  相似文献   

14.
Lipopolysaccharide (LPS)-induced vascular endothelial cell (VEC) dysfunction is an important contributing factor in vascular diseases. Recently, we found that LPS impaired VEC by inducing autophagy. Our previous researches showed that a butyrolactone derivative, 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO) selectively protected VEC function. The objective of the present study is to investigate whether and how 3BDO inhibits LPS-induced VEC autophagic injury. Our results showed that LPS induced autophagy and led to increase of reactive oxygen species (ROS) and decrease of mitochondrial membrane potential (MMP) in Human umbilical vein vascular endothelial cells (HUVECs). Furthermore, LPS significantly increased p8 and p53 protein levels and the nuclear translocation of p53. All of these effects of LPS on HUVECs were strongly inhibited by 3BDO. Importantly, the ROS scavenger N-acetylcysteine (NAC) could inhibited LPS-induced autophagy and knockdown of p8 by RNA interference inhibited the autophagy, p53 protein level increase, the translocation of p53 into nuclei and the ROS level increase induced by LPS in HUVECs. The data suggested that 3BDO inhibited LPS-induced autophagy in HUVECs through inhibiting the ROS overproduction, the increase of p8 and p53 expression and the nuclear translocation of p53. Our findings provide a potential tool for understanding the mechanism underlying LPS-induced autophagy in HUVECs and open the door to a novel therapeutic drug for LPS-induced vascular diseases.  相似文献   

15.
Hyperhomocysteinemia is believed to induce endothelial dysfunction and promote atherosclerosis; however, the pathogenic mechanism has not been clearly elucidated. In this study, we examined the molecular mechanism by which homocysteine (HCy) causes endothelial cell apoptosis and by which nitric oxide (NO) affects HCy-induced apoptosis. Our data demonstrated that HCy caused caspase-dependent apoptosis in cultured human umbilical vein endothelial cells, as determined by cell viability, nuclear condensation, and caspase-3 activation and activity. These apoptotic characteristics were correlated with reactive oxygen species (ROS) production, lipid peroxidation, p53 and Noxa expression, and mitochondrial cytochrome c release following HCy treatment. HCy also induced p53 and Noxa expression and apoptosis in endothelial cells from wild type mice but not in the p53-deficient cells. The NO donor S-nitroso-N-acetylpenicillamine, adenoviral transfer of inducible NO synthase gene, and antioxidants (alpha-tocopherol and superoxide dismutase plus catalase) but not oxidized SNAP, 8-Br-cGMP, nitrite, and nitrate, suppressed ROS production, p53-dependent Noxa expression, and apoptosis induced by HCy. The cytotoxic effect of HCy was decreased by small interfering RNA-mediated suppression of Noxa expression, indicating that Noxa up-regulation plays an important role in HCy-induced endothelial cell apoptosis. Overexpression of inducible NO synthase increased the formation of S-nitroso-HCy, which was inhibited by the NO synthase inhibitor N-monomethyl-l-arginine. Moreover, S-nitroso-HCy did not increase ROS generation, p53-dependent Noxa expression, and apoptosis. These results suggest that up-regulation of p53-dependent Noxa expression may play an important role in the pathogenesis of atherosclerosis induced by HCy and that an increase in vascular NO production may prevent HCy-induced endothelial dysfunction by S-nitrosylation.  相似文献   

16.
Sphingosylphosphorylcholine (SPC), an important cardiovascular mediator derived from sphingomyelin that has atheroprotective effects via actions on vascular endothelial cells (VECs) at normal levels in vivo. However, the underlying mechanism is not well known. To clarify this question, we first investigated the effect of SPC on VEC apoptosis and autophagy induced by deprivation of serum and fibroblast growth factor 2 (FGF‐2). SPC at 5–20 µM inhibited apoptosis and induced autophagy in vitro. To understand the underlying mechanism, we investigated the role of integrin β4 in SPC‐induced autophagy in VECs. SPC significantly decreased the level of integrin β4, whereas overexpression of integrin β4 inhibited SPC‐induced autophagy. Moreover, knockdown of integrin β4 promoted VEC autophagy. To understand the downstream factors of integrin β4 in this process, we observed the effects of SPC on phosphatidylcholine‐specific phospholipase C (PC‐PLC) activity and level of p53. PC‐PLC activity and p53 level in cytoplasm was decreased during autophagy induced by SPC, and knockdown of integrin β4 inhibited the activity of PC‐PLC and the cytoplasmic level of p53. SPC may promote autophagy via integrin β4. Moreover, PC‐PLC and p53 may be the downstream factors of integrin β4 in autophagy of VECs deprived of serum and FGF‐2. J. Cell. Physiol. 226: 2827–2833, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
At present, vascular endothelial cell (VEC) apoptosis induced by deprivation of fibroblast growth factor-2 (FGF-2) and serum has been well studied. But how to trigger VEC apoptosis in the presence of FGF-2 and serum is not well known. To address this question, in this study, the effects of safrole oxide on angiogenesis and VEC growth stimulated by FGF-2 were investigated. The results showed that safrole oxide inhibited angiogenesis and induced VEC apoptosis in the presence of FGF-2 and serum. To understand the possible mechanism of safrole oxide acting, we first examined the phosphorylation of Akt and the activity of nitric oxide synthase (NOS); secondly, we analyzed the expressions and distributions of Fas and P53; then we measured the activity of phosphatidylcholine specific phospholipase C (PC-PLC) in the VECs treated with and without safrole oxide. The results showed that this small molecule obviously suppressed Akt phosphorylation and the activity of NOS, and promoted the expressions of Fas and P53 markedly. Simultaneously, Fas protein clumped on cell membrane, instead of homogenously distributed. The activity of PC-PLC was not changed obviously. The data suggested that safrole oxide effectively inhibited angiogenesis and triggered VEC apoptosis in the presence of FGF-2 and serum, and it might perform its functions by suppressing Akt/NOS signal pathway, upregulating the expressions of Fas and P53 and modifying the distributing pattern of Fas in VEC. This finding provided a powerful chemical probe for promoting VEC apoptosis during angiogenesis stimulated by FGF-2.  相似文献   

18.
It has been shown that the genesis of atherosclerotic lesions is resulted from the injury of vascular endothelial cells and the cell damage is triggered by oxygen radicals generated from various tissues. Human vascular endothelial cells can survive and proliferate depending on growth factors such as VEGF or basic FGF and are induced apoptosis by the deprivation of growth factor or serum. It was found that type 1 IFN inhibits the growth factor deprived cell death of human aortic endothelial cells (HAEC) and protects the cells from chemically induced oxidative cytotoxicity. The anti‐apoptotic effects of type 1 IFN were certified by flow cytometry using annexin‐V‐FITC/PI double staining and cell cycle analysis, fluorescence microscopy using Hoechst33342 and PI, colorimetric assay for caspase‐3 activity, p53 and bax mRNA expressions, and cell counts. It was considered that IFN‐β inhibits the executive late stage apoptosis from the results of annexin‐V‐FITC/PI double staining and the inhibition of caspase‐3 activity, and that the anti‐apoptotic effect might be owing to the direct inhibition of the apoptotic pathway mediated by p53 from the transient down‐regulation of bax mRNA expression. Whereas, type 1 IFN protected the cells from the oxidative cytotoxicity induced by tertiary butylhydroperoxide (TBH) under the presence of Ca2+. The effects of IFN‐β is more potent inhibitor of cell death than IFN‐α. These results indicate that type 1 IFN, especially IFN‐β may be useful for the diseases with vascular endothelium damage such as atherosclerosis or restenosis after angioplasty as a medical treatment or a prophylactic. J. Cell. Biochem. 113: 3823–3834, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Endothelial injury is a major manifestation of septic shock induced by LPS. Recently, LPS was shown to induce apoptosis in different types of endothelial cells. In this study, we observed that pretreatment with vascular endothelial growth factor (VEGF), a known cell survival factor, blocked LPS-induced apoptosis in endothelial cells. We then further defined this LPS-induced apoptotic pathway and its inhibition by VEGF. We found that LPS treatment increased caspase-3 and caspase-1 activities and induced the cleavage of focal adhesion kinase. LPS also augmented expression of the pro-apoptotic protein Bax and the tumor suppressor gene p53. The pro-apoptotic Bax was found to translocate to the mitochondria from the cytosol following stimulation with LPS. Pretreatment of endothelial cells with VEGF inhibited the induction of both Bax and p53 as well as the activation of caspase-3. These data suggest that VEGF inhibits LPS-induced endothelial apoptosis by blocking pathways that lead to caspase activation.  相似文献   

20.
Induction of p53 gene expression in cancer cells can lead to both cell cycle arrest and apoptosis. To clarify whether the level of p53 expression determines the apoptotic response of hepatocellullar carcinoma (HCC) cells, we assessed the effect of various levels of expression of p53 gene on a p53-deficient HCC cell line, Hep3B, utilizing a doxycycline (Dox)-regulated inducible p53 expression system. Our results showed that apoptosis was induced in HCC cells with high levels of p53 expression. However, lower level of p53 expression induced only cell cycle arrest but not apoptosis. Bax expression was up-regulated following high levels of p53 expression, while bcl-2 expression was not altered by the level of p53 expression. Moreover, p21 expression was observed in both high and low expression of p53. These results suggest the level of p53 expression could determine if the HCC cells would go into cell cycle arrest or apoptosis. Bax may participate, at least in part, in inducing p53-dependent apoptosis and the induction of p21 alone was able to cause cell cycle arrest but not apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号