首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Positive supercoils are introduced in cellular DNA in front of and negative supercoils behind tracking polymerases. Since DNA purified from cells is normally under-wound, most studies addressing the relaxation activity of topoisomerase I have utilized negatively supercoiled plasmids. The present report compares the relaxation activity of human topoisomerase I variants on plasmids containing equal numbers of superhelical twists with opposite handedness. We demonstrate that the wild-type enzyme and mutants lacking amino acids 1–206 or 191–206, or having tryptophane-205 replaced with a glycine relax positive supercoils faster than negative supercoils under both processive and distributive conditions. In contrast to wild-type topoisomerase I, which exhibited camptothecin sensitivity during relaxation of both negative and positive supercoils, the investigated N-terminally mutated variants were sensitive to camptothecin only during removal of positive supercoils. These data suggest different mechanisms of action during removal of supercoils of opposite handedness and are consistent with a recently published simulation study [Sari and Andricioaei (2005) Nucleic Acids Res., 33, 6621–6634] suggesting flexibility in distinct parts of the enzyme during clockwise or counterclockwise strand rotation.  相似文献   

2.
In this study, we report what we believe to be the first multiscale simulation of the dynamic relaxation of DNA supercoils by human topoisomerase IB (topo IB). We leverage our previous molecular dynamics calculations of the free energy landscape describing the interaction between a short DNA fragment and topo IB. Herein, this landscape is used to prescribe boundary conditions for a computational, elastodynamic continuum rod model of a long length of supercoiled DNA. The rod model, which accounts for the nonlinear bending, twisting, and electrostatic interaction of the (negatively charged) DNA backbone, is extended to include the hydrodynamic drag induced by the surrounding physiological buffer. Simulations for a 200-bp-long DNA supercoil in complex with topo IB reveal a relaxation timescale of ∼0.1–1.0 μs. The relaxation follows a sequence of cascading reductions in the supercoil linking number (Lk), twist (Tw), and writhe (Wr) that follow companion cascading reductions in the supercoil elastic and electrostatic energies. The novel (to our knowledge) multiscale modeling method may enable simulations of the entire experimental setup that measures DNA supercoiling and relaxation via single molecule magnetic trapping.  相似文献   

3.
4.
5.
Escherichia coli topoisomerases I and III (Topo I and Topo III) relax negatively supercoiled DNA and also catenate/decatenate DNA molecules containing single-stranded DNA regions. Although these enzymes share the same mechanism of action and have similar structures, they participate in different cellular processes. In bulk experiments Topo I is more efficient at DNA relaxation, whereas Topo III is more efficient at catenation/decatenation, probably reflecting their differing cellular roles. To examine the differences in the mechanism of these two related type IA topoisomerases, single-molecule relaxation studies were conducted on several DNA substrates: negatively supercoiled DNA, positively supercoiled DNA with a mismatch and positively supercoiled DNA with a bulge. The experiments show differences in the way the two proteins work at the single-molecule level, while also recovering observations from the bulk experiments. Overall, Topo III relaxes DNA efficiently in fast processive runs, but with long pauses before relaxation runs, whereas Topo I relaxes DNA in slow processive runs but with short pauses before runs. The combination of these properties results in Topo I having an overall faster total relaxation rate, even though the relaxation rate during a run for Topo III is much faster.  相似文献   

6.
Regulating the topological state of DNA is a vital function of the enzyme DNA topoisomerase I. However, when acting on damaged DNA, topoisomerase I may get trapped in a covalent complex with nicked DNA (stalled topoisomerase I), that, if unrepaired, may lead to genomic instability or cell death. Here we show that ADP-ribose polymers target specific domains of topoisomerase I and reprogram the enzyme to remove itself from cleaved DNA and close the resulting gap. Two members of the poly(ADP-ribose) polymerase family, PARP-1 and 2, act as poly(ADP-ribose) carriers to stalled topoisomerase I sites and induce efficient repair of enzyme-associated DNA strand breaks. Thus, by counteracting topoisomerase I-induced DNA damage, PARP-1 and PARP-2 act as positive regulators of genomic stability in eukaryotic cells.  相似文献   

7.
The human topoisomerase I N-terminal domain is the only part of the enzyme still not crystallized and the function of this domain remains enigmatical. In the present study, we have addressed the specific functions of individual N-terminal regions of topoisomerase I by characterizing mutants lacking amino acid residues 1-202 or 191-206 or having tryptophane-205 substituted by glycine in a broad variety of in vitro activity assays. As a result of these investigations we find that mutants altered in the region 191-206 distinguished themselves from the wild-type enzyme by a faster strand rotation step, insensitivity towards the anti-cancer drug camptothecin in relaxation and the inability to ligate blunt end DNA fragments. The mutant lacking amino acid residues 1-202 was impaired in blunt end DNA ligation and showed wild-type sensitivity towards camptothecin in relaxation. Taken together, the presented data support a model according to which tryptophane-205 and possibly other residues located between position 191-206 coordinates the restriction of free strand rotation during the topoisomerization step of catalysis. Moreover, tryptophane-205 appears important for the function of the bulk part of the N-terminal domain in direct DNA interaction.  相似文献   

8.
9.
Human topoisomerase I interacts with and phosphorylates the SR-family of RNA splicing factors, including ASF/SF2, and has been suggested to play an important role in the regulation of RNA splicing. Here we present evidence to support the theory that the regulation can go the other way around with the SR-proteins controlling topoisomerase I DNA activity. We demonstrate that the splicing factor ASF/SF2 inhibits relaxation by interfering with the DNA cleavage and/or DNA binding steps of human topoisomerase I catalysis. The inhibition of relaxation correlated with the ability of various deletion mutants of the two proteins to interact directly, suggesting that an interaction between the RS-domain of ASF/SF2 and a region between amino acid residues 208-735 on topoisomerase I accounts for the observed effect. Consistently, phosphorylation of the RS-domain with either topoisomerase I or a human cell extract reduced the inhibition of relaxation activity. Taken together with the previously published studies of the topoisomerase I kinase activity, these observations suggest that topoisomerase I activity is shifted from relaxation to kinasing by specific interaction with SR-splicing factors.  相似文献   

10.
11.
Characterization of a camptothecin-resistant human DNA topoisomerase I   总被引:6,自引:0,他引:6  
Topoisomerase I purified from a camptothecin-resistant human leukemia cell line and from the parental, camptothecin-sensitive line were compared in vitro. Relaxation of supercoiled DNA by the wild type enzyme was inhibited in the presence of camptothecin, while the mutant enzyme was unimpaired. Camptothecin altered the cleavage pattern of the wild type but not of the mutant enzyme. The stability of cleavable complexes was studied at a preferred topoisomerase I-binding sequence recognized by both enzymes. Camptothecin greatly enhanced the kinetic stability of the cleavable complex formed by the wild type enzyme, whereas that of the mutant enzyme was only marginally affected. In the absence of camptothecin, the cleavable complex formed by the mutant enzyme was stabilized relative to that of the wild type by several criteria. Thus, the mutant enzyme cleaved the topoisomerase I recognition sequence with 2-fold higher efficiency than the wild type enzyme. The mutant cleavable complex had a higher kinetic stability and was less sensitive to salt dissociation than the wild type complex. Furthermore, the mutant enzyme formed cleavable complexes in the absence of divalent cations, which were required for complex formation by the wild type enzyme.  相似文献   

12.
Human topoisomerase I is composed of four major domains: the highly charged NH(2)-terminal region, the conserved core domain, the positively charged linker domain, and the highly conserved COOH-terminal domain. Near complete enzyme activity can be reconstituted by combining recombinant polypeptides that approximate the core and COOH-terminal domains, although DNA binding is reduced somewhat for the reconstituted enzyme (Stewart, L., Ireton, G. C., and Champoux, J. J. (1997) J. Mol. Biol. 269, 355-372). A reconstituted enzyme comprising the core domain plus a COOH-terminal fragment containing the complete linker region exhibits the same biochemical properties as a reconstituted enzyme lacking the linker altogether, and thus detachment of the linker from the core domain renders the linker non-functional. The rate of religation by the reconstituted enzyme is increased relative to the forms of the enzyme containing the linker indicating that in the intact enzyme the linker slows religation. Relaxation of plasmid DNA by full-length human topoisomerase I or a 70-kDa form of the enzyme that is missing only the non-essential NH(2)-terminal domain (topo70) is inhibited approximately 16-fold by the anticancer compound, camptothecin, whereas the reconstituted enzyme is nearly resistant to the inhibitory effects of the drug despite similar affinities for the drug by the two forms of the enzyme. Based on these results and in light of the crystal structure of human topoisomerase I, we propose that the linker plays a role in hindering supercoil relaxation during the normal relaxation reaction and that camptothecin inhibition of DNA relaxation depends on a direct effect of the drug on DNA rotation that is also dependent on the linker.  相似文献   

13.
The proposed mechanism of type IA DNA topoisomerase I includes conformational changes by the single enzyme polypeptide to allow binding of the G strand of the DNA substrate at the active site, and the opening or closing of the "gate" created on the G strand of DNA to the passing single or double DNA strand(s) through the cleaved G strand DNA. The shifting of an alpha helix upon G strand DNA binding has been observed from the comparison of the type IA DNA topoisomerase crystal structures. Site-directed mutagenesis of the strictly conserved Gly-194 at the N terminus of this alpha helix in Escherichia coli DNA topoisomerase I showed that flexibility around this glycine residue is required for DNA cleavage and relaxation activity and supports a functional role for this hinge region in the enzyme conformational change.  相似文献   

14.
15.
Purified vaccinia virus DNA topoisomerase I forms a cleavable complex with duplex DNA at a conserved sequence element 5'(C/T)CCTTdecreases in the incised DNA strand. DNase I footprint studies show that vaccinia topoisomerase protects the region around the site of covalent adduct formation from nuclease digestion. On the cleaved DNA strand, the protected region extends from +13 to -13 (+1 being the site of cleavage). On the noncleaved strand, the protected region extends from +13 to -9. Similar nuclease protection is observed for a mutant topoisomerase (containing a Tyr ---- Phe substitution at the active site amino acid 274) that is catalytically inert and does not form the covalent intermediate. Thus, vaccinia topoisomerase is a specific DNA binding protein independent of its competence in transesterification. By studying the cleavage of a series of 12-mer DNA duplexes in which the position of the CCCTTdecreases motif within the substrate is systematically phased, the "minimal" substrate for cleavage has been defined; cleavage requires six nucleotides upstream of the cleavage site and two nucleotides downstream of the site. An analysis of the cleavage of oligomer substrates mutated singly in the CCCTT sequence reveals a hierarchy of mutational effects based on position within the pentamer motif and the nature of the sequence alteration.  相似文献   

16.
Molecular structures of two human DNA topoisomerase I retrosequences   总被引:2,自引:0,他引:2  
  相似文献   

17.
Structure of the human type I DNA topoisomerase gene   总被引:7,自引:0,他引:7  
We describe the molecular organization of the human gene coding for type I DNA topoisomerase. The coding sequence is split into 21 exons distributed over at least 85 kilobase pairs (kb) of human genomic DNA. The sizes of the 20 introns vary widely between 0.2 and at least 30 kb and all contain the sequence elements known to be required for pre-mRNA splicing. Several of the intron sequences separate exons encoding parts of the enzyme that are highly conserved between human and yeast suggesting that at least some of the exons may code for individual, structurally, or functionally important domains of the enzyme. We also describe the promoter sequence of the human topoisomerase I gene and show that it is composed of distinct functional elements.  相似文献   

18.
19.
We employed Raman and circular dichroism (CD) spectroscopy to probe the molecular structure of 68-kDa recombinant human DNA topoisomerase I (TopoI) in solution, in a complex with a 16-bp DNA fragment containing a camptothecin-enhanced TopoI cleavage site, and in a ternary complex with this oligonucleotide and topotecan. Raman spectroscopy reveals a TopoI secondary structure transition and significant changes in the hydrogen bonding of the tyrosine residues induced by the DNA binding. CD spectroscopy confirms the Raman data and identifies a DNA-induced (>7%) decrease of the TopoI alpha helix accompanied by at least a 6% increase of the beta structure. The Raman DNA molecular signatures demonstrated a bandshift that is expected for a net change in the environment of guanine C6 [double bond] O groups from pairing to solvent exposure. The formation of a ternary cleavage complex with TopoI, DNA, and topotecan as probed by CD spectroscopy reveals neither additional modifications of the TopoI secondary structure nor of the oligonucleotide structure, compared to the TopoI-oligonucleotide complex.  相似文献   

20.
Base damage and topoisomerase I (Top1)-linked DNA breaks are abundant forms of endogenous DNA breakage, contributing to hereditary ataxia and underlying the cytotoxicity of a wide range of anti-cancer agents. Despite their frequency, the overlapping mechanisms that repair these forms of DNA breakage are largely unknown. Here, we report that depletion of Tyrosyl DNA phosphodiesterase 1 (TDP1) sensitizes human cells to alkylation damage and the additional depletion of apurinic/apyrimidinic endonuclease I (APE1) confers hypersensitivity above that observed for TDP1 or APE1 depletion alone. Quantification of DNA breaks and clonogenic survival assays confirm a role for TDP1 in response to base damage, independently of APE1. The hypersensitivity to alkylation damage is partly restored by depletion of Top1, illustrating that alkylating agents can trigger cytotoxic Top1-breaks. Although inhibition of PARP activity does not sensitize TDP1-deficient cells to Top1 poisons, it confers increased sensitivity to alkylation damage, highlighting partially overlapping roles for PARP and TDP1 in response to genotoxic challenge. Finally, we demonstrate that cancer cells in which TDP1 is inherently deficient are hypersensitive to alkylation damage and that TDP1 depletion sensitizes glioblastoma-resistant cancer cells to the alkylating agent temozolomide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号