首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) generated by inducible NO synthase (iNOS) contributes critically to inflammatory injury and host defense. While previously thought as a soluble protein, iNOS was recently reported to form aggresomes inside cells. But what causes iNOS aggresome formation is unknown. Here we provide evidence demonstrating that iNOS aggresome formation is mediated by its own product NO. Exposure to inflammatory stimuli (lipopolysaccharide and interferon-γ) induced robust iNOS expression in mouse macrophages. While initially existing as a soluble protein, iNOS progressively formed protein aggregates as a function of time. Aggregated iNOS was inactive. Treating the cells with the NOS inhibitor N-nitro-l-arginine methyl ester (L-NAME) blocked NO production from iNOS without affecting iNOS expression. However, iNOS aggregation in cells was prevented by L-NAME. The preventing effect of NO blockade on iNOS aggresome formation was directly observed in GFP-iNOS-transfected cells by fluorescence imaging. Moreover, iNOS aggresome formation could be recaptured by adding exogenous NO to L-NAME-treated cells. These studies demonstrate that iNOS aggresome formation is caused by NO. The finding that NO induces iNOS aggregation and inactivation suggests aggresome formation as a feedback inhibition mechanism in iNOS regulation.  相似文献   

2.
Malaria has re-emerged as a global health problem, leading to an increased focus on the cellular and molecular biology of the mosquito Anopheles and the parasite Plasmodium with the goal of identifying novel points of intervention in the parasite life cycle. Anti-parasite defenses mounted by both mammalian hosts and Anopheles can suppress the growth of Plasmodium. Nonetheless, the parasite is able to escape complete elimination in vivo, perhaps by thwarting or co-opting these mechanisms for its own survival, as do numerous other pathogens. Among the defense systems used by the mammalian host against Plasmodium is the synthesis of nitric oxide (NO), catalyzed by an inducible NO synthase (iNOS). Nitric oxide produced by the action of an inducible Anopheles stephensi NO synthase (AsNOS) may be central to the anti-parasitic arsenal of this mosquito. In mammals, iNOS can be modulated by members of the transforming growth factor-beta (TGF-beta) cytokine superfamily. Transforming growth factor-beta is produced as an inactive precursor that is activated following dissociation of certain inhibitory proteins, a process that can be promoted by reaction products of NO as well as by hemin. Ingestion by Anopheles of blood containing Plasmodium initiates parasite development, blood digestion which results in the accumulation of hematin (hemin) in the insect midgut, and induction of both AsNOS and TGF-beta-like (As60A) gene expression in the midgut epithelium. Active mammalian TGF-beta1 can be detected in the A. stephensi midgut up to 48h post-ingestion and latent TGF-beta1 can be activated by midgut components in vitro, a process that is potentiated by NO and that may involve hematin. Further, mammalian TGF-beta1 is perceived as a cytokine by A. stephensi cells in vitro and can alter Plasmodium development in vivo. Bloodfeeding by Anopheles, therefore, results in a juxtaposition of evolutionarily conserved mosquito and mammalian TGF-beta superfamily homologs that may influence transmission dynamics of Plasmodium in endemic regions.  相似文献   

3.
We early show that glutamate (Glu) mediate hyperoxia-induced newborn rat lung injury through N-methyl-d-aspartate receptor (NMDAR). In this study, we search for evidence of NMDAR expression on newborn rat alveolar macrophages (AMs) and the difference between newborn and adult rat AMs, and the possible effect on nitric oxide (NO) production of AMs by exogenous NMDA. The protein of NMDAR was showed by immunocytochemistry, and the mRNA was examined by RT-PCR and real-time PCR. The results show that: (i) both newborn and adult rat AMs express NMDAR1 and the four NMDAR2 subtypes and newborn rat AMs are higher expression. (ii) NMDA administration increase NO production, inducible nitric oxide synthase (iNOS) activity and iNOS mRNA expression of AMs. (iii) NMDAR activation elevates NO secretion of AMs, which suggests that AM may be one of the key cellular origin of the elevated NO secretion in hyperoxia-induced lung injury.  相似文献   

4.
Glucagon-like-peptide-1 (GLP-1) is a proglucagon-derived peptide expressed in the intestinal enteroendocrine-L cells and released after meal ingestion. GLP-1 reduces postprandial glycemia not only by its hormonal effects, but also by its inhibitory effects on gastrointestinal motility. Recently, we showed that GLP-1 acts in the enteric nervous system of mouse intestine. Therefore our working hypothesis was that GLP-1 may have also a direct influence on the gastric mechanical activity since the major part of experimental studies about its involvement in the regulation of gastric motility have been conducted in in vivo conditions. The purposes of this study were (i) to examine exogenous GLP-1 effects on mouse gastric mechanical activity using isolated whole stomach; (ii) to clarify the regional activity of GLP-1 using circular muscular strips from gastric fundus or antrum; (iii) to analyze the mechanism of action underlying the observed effects; (iv) to verify regional differences of GLP-1 receptors (GLP-1R) expression by RT-PCR. In the whole stomach GLP-1 caused concentration-dependent relaxation significantly anatagonized by exendin (9-39), an antagonist of GLP-1R and abolished by tetrodotoxin (TTX) or Nω-nitro-l-arginine methyl ester (l-NAME), inhibitor of nitric oxide (NO) synthase. GLP-1 was without any effect in fundic strips, but it induced concentration-dependent relaxation in carbachol-precontracted antral strips. The effect was abolished by TTX or l-NAME. RT-PCR analysis revealed a higher expression of GLP-1R mRNA in antrum than in fundus. These results suggest that exogenous GLP-1 is able to reduce mouse gastric motility by acting peripherally in the antral region, through neural NO release.  相似文献   

5.
High doses of diazepam (10.0-20.0 mg/kg) were shown to reduce the volume of acute inflammatory paw edema in rats as a response to carrageenan administration. This effect was attributed to an action of diazepam on the peripheral-type benzodiazepine receptor (PBR) present in the adrenal and/or immune/inflammatory cells. The present study was undertaken to analyze the involvement of nitric oxide (NO) on the effects of diazepam on carrageenan-induced paw edema in rats (CIPE) and to look for the presence of PBR and inducible/constitutive NO synthases (NOS) on slices taken from the inflamed paws of diazepam-treated rats. For that, an acute inhibition of NO biosynthesis was achieved using 50.0 mg/kg No mega-nitro-L-arginine (L-NAME), L-arginine (300.0 mg/kg), the true precursor of NO, and D-arginine (300.0 mg/kg), its false substrate, were also used. The following results were obtained: (1) diazepam (10.0 and 20.0 mg/kg) decreased CIPE values in a dose- and time-dependent way; (2) diazepam effects on CIPE were increased by L-NAME pretreatment; (3) treatment with L-arginine but not with D-arginine reverted at least in part the decrements of CIPE values observed after diazepam administration; (4) PBR were found in endothelial and inflammatory cells that migrated to the inflammatory site at the rat paw; (5) confocal microscopy showed the presence of both PBR and NOS in endothelial and inflammatory cells taken from inflamed paw tissues of rats treated with diazepam a finding not observed in tissues provided from rats treated with diazepam's control solution. These results suggest an important role for NO on the effects of diazepam on CIPE. Most probably, these effects reflect a direct action of diazepam on PBR present in the endothelium of the microvascular ambient and/or on immune/inflammatory cells. An action like that would lead, among other factors, to a decrease in NO, generated by NO synthase, and thus in the mechanisms responsible for CIPE.  相似文献   

6.
Toxoplasmosis is a worldwide disease caused by Toxoplasma gondii. Activated macrophages control T. gondii growth by nitric oxide (NO) production. However, T. gondii active invasion inhibits NO production, allowing parasite persistence. Here we show that the mechanism used by T. gondii to inhibit NO production persisting in activated macrophages depends on phosphatidylserine (PS) exposure. Masking PS with annexin-V on parasites or activated macrophages abolished NO production inhibition and parasite persistence. NO production inhibition depended on a transforming growth factor-beta1 (TGF-beta1) autocrine effect confirmed by the expression of Smad 2 and 3 in infected macrophages. TGF-beta1 led to inducible nitric oxide synthase (iNOS) degradation, actin filament (F-actin) depolymerization, and lack of nuclear factor-kappaB (NF-kappaB) in the nucleus. All these features were reverted by TGF-beta1 neutralizing antibody treatment. Thus, T. gondii mimics the evasion mechanism used by Leishmania amazonensis and also the anti-inflammatory response evoked by apoptotic cells.  相似文献   

7.
Recent report from this lab has shown role of Rac2 in the translocation of inducible nitric oxide synthase (iNOS) to the phagosomal compartment of polymorphonuclear leukocytes (PMNs) following phagocytosis of beads. This study was undertaken to further assess the status and role of tetrahydrobiopterin (BH4), a redox-sensitive cofactor, L-arginine, and the substrate of nitric oxide synthase (NOS) in sustained nitric oxide (˙NO) production in killing of phagocytosed microbes (Escherichia coli) by human PMNs. Time-dependent study revealed consistent NO and reactive oxygen species (ROS) production in the PMNs following phagocytosis of beads. In addition, levels of L-arginine and BH4 were maintained or increased simultaneously to support the enzymatic activity of NOS in the bead activated PMNs. Moreover, translocation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) subunits along with iNOS was reconfirmed in the isolated phagosomes. We demonstrate that increase in the level of NO was supported by L-arginine and BH4 to kill E. coli, by using PMNs from NOS2?/? mice, human PMNs treated with biopterin inhibitor, N-acetyl serotonin (NAS), or by suspending human PMNs in L-arginine deficient medium. Altogether, this study demonstrates that following phagocytosis, sustained. NO production in the PMNs was well-maintained by redox sensitive cofactor, BH4 and substrate, and L-arginine to enable microbial killing. Further results suggest NO production in the human PMNs, along with ROS and myeloperoxidase (MPO) is important to execute antimicrobial activity.  相似文献   

8.
Hu DE  Brindle KM 《FEBS letters》2005,579(13):2833-2841
Induction of apoptosis in a lymphoma cell line using immune cell-conditioned medium, etoposide or an nitric oxide (NO) donor, resulted in the production of reactive oxygen species (ROS). Agents that inhibited NO production or scavenged ROS or species formed by reaction of NO with ROS, protected the cells from apoptosis. These data support the suggestion that immune rejection of an immunogenic derivative of this lymphoma in vivo involves the induced synthesis of both NO and ROS by the tumour cells.  相似文献   

9.
As a primary antioxidant, ascorbic acid (AA) provides beneficial effects for vascular health mitigating oxidative stress and endothelial dysfunction. However, the association of intracellular AA with NO production occurring inside the endothelial cells remains unclear. In the present study, we addressed this issue by increasing intracellular AA directly through de novo synthesis. To restore AA synthesis pathway, bovine aortic endothelial cells were transfected with the plasmid vector encoding L-gulono-1,4-lactone oxidase (GULO, EC 1.1.3.8), the missing enzyme converting L-gulono-1,4-lactone (GUL) to AA. Functional expression of GULO was verified by Western blotting and in vitro enzyme activity assay. GULO expression alone did not lead to AA synthesis but the supply of GUL resulted in a marked increase of intracellular AA. When the cells were stimulated with calcium ionophore, A23187, NO production was more active in the GULO-expressing cells supplied with GUL, in comparison with the cells without GULO expression or without GUL supply, indicating that intracellular AA regulated NO production. Enhancement of NO production by intracellular AA was further verified in aortic endothelial cells obtained from eNOS knockout mice that were cotransfected with eNOS and GULO constructs. GULO-dependent AA synthesis also elevated intracellular tetrahydrobiopterin content, implicating that this essential cofactor of endothelial nitric oxide synthase (eNOS) might mediate the AA effect. The present study strongly suggests that intracellular AA plays critical roles in vascular physiology through enhancing endothelial NO production.  相似文献   

10.
Nitric oxide (NO) is an important vasorelaxant produced along with L-citrulline from L-arginine in a reaction catalyzed by endothelial nitric oxide synthase (eNOS). Previous studies suggested that the recycling of L-citrulline to L-arginine is essential for NO production in endothelial cells. However, there is no direct evidence demonstrating the degree to which the recycling of L-citrulline to L-arginine is coupled to NO production. We hypothesized that the amount of NO formed would be significantly higher than the amount of L-citrulline formed due to the efficiency of L-citrulline recycling via the citrulline-NO cycle. To test this hypothesis, endothelial cells were incubated with [14C]-L-arginine and stimulated by various agents to produce NO. The extent of NO and [14C]-L-citrulline formation were simultaneously determined. NO production exceeded apparent L-citrulline formation of the order of 8 to 1, under both basal and stimulated conditions. As further support, alpha-methyl-DL-aspartate, an inhibitor of argininosuccinate synthase (AS), a component of the citrulline-NO cycle, inhibited NO production in a dose-dependent manner. The results of this study provide evidence for the essential and efficient coupling of L-citrulline recycling, via the citrulline-NO cycle, to endothelial NO production.  相似文献   

11.
Liew HC  Khoo HE  Moore PK  Bhatia M  Lu J  Moochhala SM 《Life sciences》2007,80(18):1664-1668
Stonustoxin (SNTX) is a 148 kDa, dimeric, hypotensive and lethal protein factor isolated from the venom of the stonefish Synanceja horrida. SNTX (10-320 ng/ml) progressively causes relaxation of endothelium-intact, phenylephrine (PE)-precontracted rat thoracic aortic rings. The SNTX-induced vasorelaxation was inhibited by L-N(G)-nitro arginine methyl ester (L-NAME), suggesting that nitric oxide (NO) contributes to the SNTX-induced response. Interestingly, D, L-proparglyglycine (PAG) and beta-cyano-L-alanine (BCA), irreversible and competitive inhibitors of cystathionine-gamma-lyase (CSE) respectively, also inhibited SNTX-induced vasorelaxation, indicating that H(2)S may also play a part in the effect of SNTX. The combined use of L-NAME with PAG or BCA showed that H(2)S and NO act synergistically in effecting SNTX-induced vasorelaxation.  相似文献   

12.
13.
14.
15.
The interactions between the heme CO ligand in the oxygenase domain of nitric oxide synthase and a set of substrate analogues were determined by measuring the resonance Raman spectra of the Fe-C-O vibrational modes. Substrates were selected that have variations in all the functional units: the guanidino group, the amino acid site and the number of methylene units connecting the two ends. In comparison to the substrate free form of the enzyme, Interactions of the analogues with the CO moiety caused the Fe-CO stretching and the Fe-C-O bending modes to shift in frequency due to the electrostatic environment. An unmodified guanidino group interacted with the CO in a similar fashion despite changes in the amino acid end. However, an unmodified amino acid end is required for catalysis owing to the H-bonding network involving the substrate, the heme and the pterin cofactor.  相似文献   

16.
Pamenter ME  Hogg DW  Buck LT 《FEBS letters》2008,582(12):1738-1742
Increased nitric oxide (NO) production from hypoxic mammalian neurons increases cerebral blood flow (CBF) but also glutamatergic excitotoxicity and DNA fragmentation. Anoxia-tolerant freshwater turtles have evolved NO-independent mechanisms to increase CBF; however, the mechanism(s) of NO regulation are not understood. In turtle cortex, anoxia or NMDAR blockade depressed NO production by 27+/-3% and 41+/-5%, respectively. NMDAR antagonists also reduced the subsequent anoxic decrease in NO by 74+/-6%, suggesting the majority of the anoxic decrease is due to endogenous suppression of NMDAR activity. Prevention of NO-mediated damage during the transition to and from anoxia may be incidental to natural reductions of NMDAR activity in the anoxic turtle cortex.  相似文献   

17.
Nitric oxide (NO) is one of the most versatile players in the immune system. Most parasites induce inflammation in the host associated with NO production. Here, we compare the in vitro effect of Schistosoma bovis somatic (SbS) and excretory-secretory (SbES) antigens, and excretory-secretory Paragonimus mexicanus adult worm (PmES) molecules on rat alveolar macrophages NO production measured by the Griess method and by RT-PCR. Additionally, we address the divergence of the NO stimulatory/inhibitory effects of these two parasites. Polymyxin B was used to assess possible LPS contamination. In vitro incubation of rat alveolar macrophages with PmES (10 microg/ml) and SbS (50 microg/ml), but not with SbES extracts, resulted in NO production and an increase in iNOS cell mRNA. This production was specific and inhibited by L-NAME and L-canavanine. Different effects were observed when cells were incubated with P. mexicanus and S. bovis antigens.  相似文献   

18.
Xia HJ  Dai DZ  Dai Y 《Life sciences》2006,79(19):1812-1819
The exaggerated cardiac arrhythmias in cardiomyopathy induced by L-thyroxine treatment are related to ion channelopathies and to an abnormal endothelin (ET) pathway. It was hypothesized that an increased incidence of ventricular fibrillation (VF) could be mediated by inflammatory factors including the ET pathway, nuclear factor kappa B (NFkappaB), tumor necrosis factor-alpha (TNFalpha) and inducible nitric oxide synthase (iNOS). Abnormal expression of NFkappaB, TNFalpha, iNOS and enhanced VF are linked with the activated ET pathway and a significant reversion could be achieved by the selective endothelin A receptor antagonist darusentan. Cardiomyopathy in rats was produced by L-thyroxine treatment (0.3 mg kg(-1) d(-1), sc) for 10 days. The mRNA expression of the ET pathway, NFkappaB, TNFalpha, iNOS and the activity of the redox system were assayed in association with the incidence of VF produced by coronary ligation/reperfusion. Darusentan was administered on days 6-10 of L-thyroxine treatment. The VF incidence, which was higher in the l-thyroxine cardiomyopathy group, was suppressed by darusentan. The mRNA levels of preproET-1, endothelin converting enzyme, endothelin receptor A (ET(A)R), endothelin receptor B (ET(B)R), NFkappaB, TNFalpha and iNOS in left ventricle were up-regulated in the cardiomyopathic heart. There was significant oxidative stress in this cardiomyopathy model. Darusentan suppressed the up-regulated mRNA levels of ET(A)R, ET(B)R, NFkappaB, TNFalpha, and iNOS. These results indicate that the high incidence of VF which is related to up-regulation of inflammatory factors in the cardiomyopathic myocardium is significantly suppressed by selective ET(A)R blockade.  相似文献   

19.
Cystic fibrosis (CF), characterized by chronic airway infection and inflammation, ultimately leads to respiratory failure. Exhaled nitric oxide (NO), elevated in most inflammatory airway diseases, is decreased in CF, suggesting either decreased production or accelerated metabolism of NO. The present studies performed on two groups of CF patients provide further support for a disordered NO airway metabolism in CF respiratory tract disease. Despite confirmation of subnormal NOS2 in the CF airway epithelium, alternative isoforms NOS1 and NOS3 were present, and inflammatory cells in the CF airway expressed abundant NOS2. Increased immunohistochemical staining for nitrotyrosine was demonstrated in lung tissues from patients with CF as compared to control. To our knowledge, this is the first report localizing nitrotyrosine in diseased CF lung tissue. While the relative NOS2 deficiency in CF respiratory tract epithelium may contribute to the lower expired NO levels, these results suggest that increased metabolism of NO is also present in advanced CF lung disease. The significance of altered NO metabolism and protein nitration in CF remains to be fully elucidated.  相似文献   

20.
Here, we show that extracorporeal shock waves (ESW), at a low energy density value, quickly increase neuronal nitric oxide synthase (nNOS) activity and basal nitric oxide (NO) production in the rat glioma cell line C6. In addition, the treatment of C6 cells with ESW reverts the decrease of nNOS activity and NO production induced by a mixture of lipopolysaccharides (LPS), interferon-gamma (IFN-gamma) plus tumour necrosis factor-alpha (TNF-alpha). Finally, ESW treatment efficiently downregulates NF-kappaB activation and NF-kappaB-dependent gene expression, including inducible NOS and TNF-alpha. The present report suggests a possible molecular mechanism of the anti-inflammatory action of ESW treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号