首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the 20 or so human amyloid diseases is associated with the deposition in vital organs of full-length mutational variants of the antibacterial protein lysozyme. Here, we report experimental data that permit a detailed comparison to be made of the behaviour of two of these amyloidogenic variants, I56T and D67H, under identical conditions. Hydrogen/deuterium exchange experiments monitored by NMR and mass spectrometry reveal that, despite their different locations and the different effects of the two mutations on the structure of the native state of lysozyme, both mutations cause a cooperative destabilisation of a remarkably similar segment of the structure, comprising in both cases the beta-domain and the adjacent C-helix. As a result, both variant proteins populate transiently a closely similar, partially unstructured intermediate in which the beta-domain and the adjacent C-helix are substantially and simultaneously unfolded, whereas the three remaining alpha-helices that form the core of the alpha-domain still have their native-like structure. We show, in addition, that the binding of a camel antibody fragment, cAb-HuL6, which was raised against wild-type lysozyme, restores to both variant proteins the stability and cooperativity characteristic of the wild-type protein; as a consequence, it inhibits the formation of amyloid fibrils by both variants. These results indicate that the reduction in global cooperativity, and the associated ability to populate transiently a specific, partly unfolded intermediate state under physiologically relevant conditions, is a common feature underlying the behaviour of these two pathogenic mutations. The formation of intermolecular interactions between lysozyme molecules that are in this partially unfolded state is therefore likely to be the fundamental trigger of the aggregation process that ultimately leads to the formation and deposition in tissue of amyloid fibrils.  相似文献   

2.
Wild-type human lysozyme and its two stable amyloidogenic variants have been found to form partially folded states at low pH. These states are characterized by extensive disruption of tertiary interactions and partial loss of secondary structure. Incubation of the proteins at pH 2.0 and 37 degrees C (Ile56Thr and Asp67His variants) or 57 degrees C (wild-type) results in the formation of large numbers of fibrils over several days of incubation. Smaller numbers of fibrils could be observed under other conditions, including neutral pH. These fibrils were analyzed by electron microscopy, Congo red birefringence, thioflavine-T binding, and X-ray fiber diffraction, which unequivocally show their amyloid character. These data demonstrate that amyloidogenicity is an intrinsic property of human lysozyme and does not require the presence of specific mutations in its primary structure. The amyloid fibril formation is greatly facilitated, however, by the introduction of "seeds" of preformed fibrils to the solutions of the variant proteins, suggesting that seeding effects could be important in the development of systemic amyloidosis. Fibril formation by wild-type human lysozyme is greatly accelerated by fibrils of the variant proteins and vice versa, showing that seeding is not specific to a given protein. The fact that wild-type lysozyme has not been found in ex vivo deposits from patients suffering from this disease is likely to be related to the much lower population of incompletely folded states for the wild-type protein compared to its amyloidogenic variants under physiological conditions. These results support the concept that the ability to form amyloid is a generic property of proteins, but one that is mitigated against in a normally functioning organism.  相似文献   

3.
Definition of the transition mechanism from the native globular protein into fibrillar polymer was greatly improved by the biochemical and biophysical studies carried out on the two amyloidogenic variants of human lysozyme, I56T and D67H. Here we report thermodynamic and kinetic data on folding as well as structural features of a naturally occurring variant of human lysozyme, T70N, which is present in the British population at an allele frequency of 5% and, according to clinical and histopathological data, is not amyloidogenic. This variant is less stable than the wild-type protein by 3.7 kcal/mol, but more stable than the pathological, amyloidogenic variants. Unfolding kinetics in guanidine are six times faster than in the wild-type, but three and twenty times slower than in the amyloidogenic variants. Enzyme catalytic parameters, such as maximal velocity and affinity, are reduced in comparison to the wild-type. The solution structure, determined by 1H NMR and modeling calculations, exhibits a more compact arrangement at the interface between the beta-sheet domain and the subsequent loop on one side and part of the alpha domain on the other side, compared with the wild-type protein. This is the opposite of the conformational variation shown by the amyloidogenic variant D67H, but it accounts for the reduced stability and catalytic performance of T70N.  相似文献   

4.
The oxidative refolding of human lysozyme and its two best characterised amyloidogenic variants, Ile56Thr and Asp67His, has been investigated in vitro by means of the concerted application of a range of biophysical techniques. The results show that in each case the ensemble of reduced denatured conformers initially collapses into a large number of unstructured intermediates with one or two disulphide bonds, the majority of which then fold to form the native-like three-disulphide intermediate, des-[77-95]. The slow step in the overall folding reaction involves the rearrangement of the latter to the fully oxidised native protein containing four disulphide bonds. The Ile56Thr and Asp67His variants were found to fold faster than the wild-type protein by a factor of 2 and 3 respectively, an observation that can be attributed primarily to the reduction in the barriers to conformational rearrangements that results from both the mutations. The efficient folding of these variants despite their enhanced propensities to aggregate when compared to the wild-type protein is consistent with their ability to be secreted in sufficient quantities to give rise to the systemic amyloidoses with which they are associated.  相似文献   

5.
In this study, various ethanol- and temperature-induced molecular dynamics simulations were conducted to investigate the conformational changes of several human lysozyme variants (I56T, D67H, and T70N) associated with hereditary systemic amyloidosis. The results show that these variants are all more sensitive to conditions affecting the structural integrity of this protein. The structural analyses of these variants reveal a high population of more unstable beta-domain and distorted hydrophobic core compared to the wild-type human lysozyme, particularly for the two natural amyloidogenic variants D67H and I56T. For the D67H variant, the distance between the mass centers of residues 54 and 67 was found to elongate as a result of the destruction of the hydrogen-bonding network stabilizing the two long loops in the beta-domain. It further accelerates the unfolding of this variant, starting from the hydrophobic core between the alpha- and beta-domains. For the I56T variant, the introduction of a hydrophilic residue in the hydrophobic core directly destroys the native contacts in the alpha-beta interface, leading to fast unfolding. The present results are consistent with the previous hypothesis suggesting that the distortion of the hydrophobic core at the alpha-beta interface putatively results in the formation of the initial "seed" for amyloid fibrils.  相似文献   

6.
Relative to conventional full-length immunoglobulin G (IgG) antibodies and antibody fragments, single-domain antibodies, derived from the antigen-binding domain of the immunoglobulin of camelid species or cartilaginous fish, hold great potential for many biotechnological applications due to their small size and excellent physicochemical properties. To bypass animal immunization and facilitate the isolation of antigen-specific single-domain antibodies with ease, we have constructed a synthetic single-domain antibody library comprising three diversified synthetic complementarity determining regions (CDRs) grafted into a humanized camelid heavy- chain antibody VH (VHH) framework. Using three types of model antigens, interleukin-1β (IL-1β), amyloid-β, and vascular endothelial growth factor, the constructed single-domain antibody library, which has a vast diversity of approximately 1.8 × 1010, was evaluated, and single-domain antibody sequences against them were identified.  相似文献   

7.
We have studied the effects of the extracellular molecular chaperone, clusterin, on the in vitro aggregation of mutational variants of human lysozyme, including one associated with familial amyloid disease. The aggregation of the amyloidogenic variant I56T is inhibited significantly at clusterin to lysozyme ratios as low as 1:80 (i.e. one clusterin molecule per 80 lysozyme molecules). Experiments indicate that under the conditions where inhibition of aggregation occurs, clusterin does not bind detectably to the native or fibrillar states of lysozyme, or to the monomeric transient intermediate known to be a key species in the aggregation reaction. Rather, it seems to interact with oligomeric species that are present at low concentrations during the lag (nucleation) phase of the aggregation reaction. This behavior suggests that clusterin, and perhaps other extracellular chaperones, could have a key role in curtailing the potentially pathogenic effects of the misfolding and aggregation of proteins that, like lysozyme, are secreted into the extracellular environment.  相似文献   

8.
The unfolding and refolding properties of human lysozyme and two amyloidogenic variants (Ile56Thr and Asp67His) have been studied by stopped-flow fluorescence and hydrogen exchange pulse labeling coupled with mass spectrometry. The unfolding of each protein in 5.4 M guanidine hydrochloride (GuHCl) is well described as a two-state process, but the rates of unfolding of the Ile56Thr variant and the Asp67His variant in 5.4 M GuHCl are ca. 30 and 160 times greater, respectively, than that of the wild type. The refolding of all three proteins in 0.54 M GuHCl at pH 5.0 proceeds through persistent intermediates, revealed by multistep kinetics in fluorescence experiments and by the detection of well-defined populations in quenched-flow hydrogen exchange experiments. These findings are consistent with a predominant mechanism for refolding of human lysozyme in which one of the structural domains (the alpha-domain) is formed in two distinct steps and is followed by the folding of the other domain (the beta-domain) prior to the assembly of the two domains to form the native structure. The refolding kinetics of the Asp67His variant are closely similar to those of the wild-type protein, consistent with the location of this mutation in an outer loop of the beta-domain which gains native structure only toward the end of the refolding process. By contrast, the Ile56Thr mutation is located at the base of the beta-domain and is involved in the domain interface. The refolding of the alpha-domain is unaffected by this substitution, but the latter has the effect of dramatically slowing the folding of the beta-domain and the final assembly of the native structure. These studies suggest that the amyloidogenic nature of the lysozyme variants arises from a decrease in the stability of the native fold relative to partially folded intermediates. The origin of this instability is different in the two variants, being caused in one case primarily by a reduction in the folding rate and in the other by an increase in the unfolding rate. In both cases this results in a low population of soluble partially folded species that can aggregate in a slow and controlled manner to form amyloid fibrils.  相似文献   

9.
Amyloid fibrils obtained after incubating hen egg-white lysozyme (HEWL) at pH 2.0 and 65 degrees C for extended periods of time have been found to consist predominantly of fragments of the protein corresponding to residues 49-100, 49-101, 53-100 and 53-101, derived largely from the partial acid hydrolysis of Asp-X peptide bonds. These internal fragments of HEWL encompass part of the beta-domain and all the residues forming the C-helix in the native protein, and contain two internal disulfide bridges Cys64-Cys80 and Cys76-Cys94. The complementary protein fragments, including helices A, B and D of the native protein, are not significantly incorporated into the network of fibrils, but remain largely soluble, in agreement with their predicted lower propensities to aggregate. Further analysis of the properties of different regions of HEWL to form amyloid fibrils was carried out by studying fragments produced by limited proteolysis of the protein by pepsin. Here, we show that only fragment 57-107, but not fragment 1-38/108-129, is able to generate well-defined amyloid fibrils under the conditions used. This finding is of particular importance, as the beta-domain and C-helix of the highly homologous human lysozyme have been shown to unfold locally in the amyloidogenic variant D67H, which is associated with the familial cases of systemic amyloidosis linked to lysozyme deposition. The identification of the highly amyloidogenic character of this region of the polypeptide chain provides strong support for the involvement of partially unfolded species in the initiation of the aggregation events that lead to amyloid deposition in clinical disease.  相似文献   

10.
We have created a Drosophila model of lysozyme amyloidosis to investigate the in vivo behavior of disease-associated variants. To achieve this objective, wild-type (WT) protein and the amyloidogenic variants F57I and D67H were expressed in Drosophila melanogaster using the UAS-gal4 system and both the ubiquitous and retinal expression drivers Act5C-gal4 and gmr-gal4. The nontransgenic w(1118) Drosophila line was used as a control throughout. We utilized ELISA experiments to probe lysozyme protein levels, scanning electron microscopy for eye phenotype classification, and immunohistochemistry to detect the unfolded protein response (UPR) activation. We observed that expressing the destabilized F57I and D67H lysozymes triggers UPR activation, resulting in degradation of these variants, whereas the WT lysozyme is secreted into the fly hemolymph. Indeed, the level of WT was up to 17 times more abundant than the variant proteins. In addition, the F57I variant gave rise to a significant disruption of the eye development, and this correlated to pronounced UPR activation. These results support the concept that the onset of familial amyloid disease is linked to an inability of the UPR to degrade completely the amyloidogenic lysozymes prior to secretion, resulting in secretion of these destabilized variants, thereby leading to deposition and associated organ damage.  相似文献   

11.
Affinity maturation of classic antibodies supposedly proceeds through the pre-organization of the reactive germ line conformational isomer. It is less evident to foresee how this can be accomplished by camelid heavy-chain antibodies lacking light chains. Although these antibodies are subjected to somatic hypermutation, their antigen-binding fragment consists of a single domain with restricted flexibility in favor of binding energy. An antigen-binding domain derived from a dromedary heavy-chain antibody, cAb-Lys3, accumulated five amino acid substitutions in CDR1 and CDR2 upon maturation against lysozyme. Three of these residues have hydrophobic side chains, replacing serines, and participate in the hydrophobic core of the CDR1 in the mature antibody, suggesting that conformational rearrangements might occur in this loop during maturation. However, transition state analysis of the binding kinetics of mature cAb-Lys3 and germ line variants show that the maturation of this antibody relies on events late in the reaction pathway. This is reflected by a limited perturbation of k(a) and a significantly decreased k(d) upon maturation. In addition, binding reactions and the maturation event are predominantly enthalpically driven. Therefore, maturation proceeds through the increase of favorable binding interactions, or by the reduction of the enthalpic penalty for desolvation, as opposed to large entropic penalties associated with conformational changes and structural plasticity. Furthermore, the crystal structure of the mutant with a restored germ line CDR2 sequence illustrates that the matured hydrophobic core of CDR1 in cAb-Lys3 might be compensated in the germ line precursor by burying solvent molecules engaged in a stable hydrogen-bonding network with CDR1 and CDR2.  相似文献   

12.
Hydrogen exchange experiments monitored by NMR and mass spectrometry reveal that the amyloidogenic D67H mutation in human lysozyme significantly reduces the stability of the beta-domain and the adjacent C-helix in the native structure. In addition, mass spectrometric data reveal that transient unfolding of these regions occurs with a high degree of cooperativity. This behavior results in the occasional population of a partially structured intermediate in which the three alpha-helices that form the core of the alpha-domain still have native-like structure, whereas the beta-domain and C-helix are simultaneously substantially unfolded. This finding suggests that the extensive intermolecular interactions that will be possible in such a species are likely to initiate the aggregation events that ultimately lead to the formation of the well-defined fibrillar structures observed in the tissues of patients carrying this mutation in the lysozyme gene.  相似文献   

13.
A major architectural class in engineered binding proteins ("antibody mimics") involves the presentation of recognition loops off a single-domain scaffold. This class of binding proteins, both natural and synthetic, has a strong tendency to bind a preformed cleft using a convex binding interface (paratope). To explore their capacity to produce high-affinity interfaces with diverse shape and topography, we examined the interface energetics and explored the affinity limit achievable with a flat paratope. We chose a minimalist paratope limited to two loops found in a natural camelid heavy-chain antibody (VHH) that binds to ribonuclease A. Ala scanning of the VHH revealed only three "hot spot" side chains and additional four residues important for supporting backbone-mediated interactions. The small number of critical residues suggested that this is not an optimized paratope. Using selection from synthetic combinatorial libraries, we enhanced its affinity by >100-fold, resulting in variants with Kd as low as 180 pM with no detectable loss of binding specificity. High-resolution crystal structures revealed that the mutations induced only subtle structural changes but extended the network of interactions. This resulted in an expanded hot spot region including four additional residues located at the periphery of the paratope with a concomitant loss of the so-called "O-ring" arrangement of energetically inert residues. These results suggest that this class of simple, single-domain scaffolds is capable of generating high-performance binding interfaces with diverse shape. More generally, they suggest that highly functional interfaces can be designed without closely mimicking natural interfaces.  相似文献   

14.
T70N human lysozyme is the only known naturally occurring destabilised lysozyme variant that has not been detected in amyloid deposits in human patients. Its study and a comparison of its properties with those of the amyloidogenic variants of lysozyme is therefore important for understanding the determinants of amyloid disease. We report here the X-ray crystal structure and the solution dynamics of T70N lysozyme, as monitored by hydrogen/deuterium exchange and NMR relaxation experiments. The X-ray crystal structure shows that a substantial structural rearrangement results from the amino acid substitution, involving residues 45-51 and 68-75 in particular, and gives rise to a concomitant separation of these two loops of up to 6.5A. A marked decrease in the magnitudes of the generalised order parameter (S2) values of the amide nitrogen atom, for residues 70-74, shows that the T70N substitution increases the flexibility of the peptide backbone around the site of mutation. Hydrogen/deuterium exchange protection factors measured by NMR spectroscopy were calculated for the T70N variant and the wild-type protein. The protection factors for many of backbone amide groups in the beta-domain of the T70N variant are decreased relative to those in the wild-type protein, whereas those in the alpha-domain display wild-type-like values. In pulse-labelled hydrogen/deuterium exchange experiments monitored by mass spectrometry, transient but locally cooperative unfolding of the beta-domain of the T70N variant and the wild-type protein was observed, but at higher temperatures than for the amyloidogenic variants I56T and D67H. These findings reveal that such partial unfolding is an intrinsic property of the human lysozyme structure, and suggest that the readiness with which it occurs is a critical feature determining whether or not amyloid deposition occurs in vivo.  相似文献   

15.
Transmissible spongiform encephalopathies are associated with the misfolding of the cellular Prion Protein (PrPC) to an abnormal protein isoform, called scrapie prion protein (PrPSc). The structural rearrangement of the fragment of N-terminal domain of the protein spanning residues 91–127 is critical for the observed structural transition. The amyloidogenic domain of the protein encloses two copper-binding sites corresponding to His-96 and His-111 residues that act as anchors for metal ion binding. Previous studies have shown that Cu(II) sequestration by both sites may modulate the peptide’s tendency to aggregation as it inflicts the hairpin-like structure that stabilizes the transition states leading to β-sheet formation. On the other hand, since both His sites differ in their ability to Cu(II) sequestration, with His-111 as a preferred binding site, we found it interesting to test the role of Cu(II) coordination to this single site on the structural properties of amyloidogenic domain. The obtained results reveal that copper binding to His-111 site imposes precise backbone bending and weakens the natural tendency of apo peptide to β-sheet formation.  相似文献   

16.
Nanobodies are single chain antibodies that are uniquely produced in Camelidae, e.g. camels and llamas. They have the desirable features of small sizes (Mw < 14 kDa) and high affinities against antigens (Kd ~ nM), making them ideal as structural probes for biomedically relevant motifs both in vitro and in vivo. We have previously shown that nanobody binding to amyloidogenic human lysozyme variants can effectively inhibit their aggregation, the process that is at the origin of systemic amyloid disease. Here we report the NMR assignments of a new nanobody, termed NbSyn2, which recognises the C-terminus of the intrinsically disordered protein, human α-synuclein (aS), whose aberrant self-association is implicated in Parkinson’s disease.  相似文献   

17.
Monoclonal antibodies are a remarkably successful class of therapeutics used to treat a wide range of indications. There has been growing interest in smaller antibody fragments such as Fabs, scFvs and domain antibodies in recent years. In particular, the development of human VH and VL single-domain antibody therapeutics, as stand-alone affinity reagents or as “warheads” for larger molecules, are favored over other sources of antibodies due to their perceived lack of immunogenicity in humans. However, unlike camelid heavy-chain antibody variable domains (VHHs) which almost unanimously resist aggregation and are highly stable, human VHs and VLs are prone to aggregation and exhibit poor solubility. Approaches to reduce VH and VL aggregation and increase solubility are therefore very active areas of research within the antibody engineering community. Here we extensively chronicle the various mutational approaches that have been applied to human VHs and VLs to improve their biophysical properties such as expression yield, thermal stability, reversible unfolding and aggregation resistance. In addition, we describe stages of the VH and VL development process where these mutations could best be implemented. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   

18.
Small proteins are generally observed to fold in an apparent two-state manner. Recently, however, more sensitive techniques have demonstrated that even seemingly single-domain proteins are actually made up of smaller subdomains. T4 lysozyme is one such protein. We explored the relative autonomy of its two individual subdomains and their contribution to the overall stability of T4 lysozyme by examining a circular permutation (CP13*) that relocates the N-terminal A-helix, creating subdomains that are contiguous in sequence. By determining the high-resolution structure of CP13* and characterizing its energy landscape using native state hydrogen exchange (NSHX), we show that connectivity between the subdomains is an important determinant of the energetic cooperativity but not structural integrity of the protein. The circular permutation results in a protein more easily able to populate a partially unfolded form in which the C-terminal subdomain is folded and the N-terminal subdomain is unfolded. We also created a fragment model of this intermediate and demonstrate using X-ray crystallography that its structure is identical to the corresponding residues in the full-length protein with the exception of a small network of hydrophobic interactions. In sum, we conclude that the C-terminal subdomain dominates the energetics of T4 lysozyme folding, and the A-helix serves an important role in coupling the two subdomains.  相似文献   

19.

Background

Amyloidogenic proteins are most often associated with neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, but there are more than two dozen human proteins known to form amyloid fibrils associated with disease. Lysozyme is an antimicrobial protein that is used as a general model to study amyloid fibril formation. Studies aimed at elucidating the process of amyloid formation of lysozyme tend to focus on partial unfolding of the native state due to the relative instability of mutant amyloidogenic variants. While this is well supported, the data presented here suggest the native structure of the variants may also play a role in primary nucleation.

Results

Three-dimensional structural analysis identified lysozyme residues 21, 62, 104, and 122 as displaced in both amyloidogenic variants compared to wild type lysozyme. Residue interaction network (RIN) analysis found greater clustering of residues 112–117 in amyloidogenic variants of lysozyme compared to wild type. An analysis of the most energetically favored predicted dimers and trimers provided further evidence for a role for residues 21, 62, 104, 122, and 112–117 in amyloid formation.

Conclusions

This study used lysozyme as a model to demonstrate the utility of combining 3D structural analysis with RIN analysis for studying the general process of amyloidogenesis. Results indicated that binding of two or more amyloidogenic lysozyme mutants may be involved in amyloid nucleation by placing key residues (21, 62, 104, 122, and 112–117) in proximity before partial unfolding occurs. Identifying residues in the native state that may be involved in amyloid formation could provide novel drug targets to prevent a range of amyloidoses.
  相似文献   

20.
The 93-residue N-terminal fragment of apolipoprotein A-I (ApoA-I) is the major constituent of fibrils isolated from patients affected by the amyloidosis caused by ApoA-I mutations. We have prepared eight polypeptides corresponding to all the currently known amyloidogenic variants of the N-terminal region of ApoA-I, other than a truncation mutation, and investigated their aggregation kinetics and the associated structural modifications. All the variants adopted a monomeric highly disordered structure in solution at neutral pH, whereas acidification of the solution induced an unstable α-helical conformation and the subsequent aggregation into the cross-β structure aggregate. Two mutations (Δ70-72 and L90P) almost abrogated the lag phase of the aggregation process, three mutations (Δ60-71, L75P, and W50R) significantly accelerated the aggregation rate by 2- to 3-fold, while the remaining three variants (L64P, L60R, and G26R) were not significantly different from the wild type. Therefore, an increase in aggregation propensity cannot explain per se the mechanism of the disease for all the variants. Prediction of the protection factors for hydrogen exchange in the native state of full-length protein reveals, in almost all the variants, an expansion of the conformational fluctuations that could favour the proteolytic cleavage and the release of the amyloidogenic peptide. Such an event seems to be a necessary prerequisite for ApoA-I fibrillogenesis in vivo, but the observed increased aggregation propensity of certain variants can have a strong influence on the severity of the disease, such as an earlier onset and a faster progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号