首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(2-methacryloyloxyethyl phosphorylcholine) for protein conjugation   总被引:1,自引:0,他引:1  
The water-soluble, biocompatible polymer poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) was evaluated for protein conjugation. PMPC is a zwitterionic polymer that is able to form a more compact conformation in aqueous solution than poly(ethylene glycol) (PEG). While a terminally functionalized N-hydroxysuccinimide derivative of PMPC was not efficient for conjugation to an amine moiety on interferon-alpha2a (IFN), we found that a bis-thiol specific derivative of PMPC could be conjugated after reduction of the disulfide bonds in IFN. Utilizing PMPC that displayed a similar hydrodynamic volume to 20 kDa PEG, we evaluated the in vitro antiviral and antiproliferative activity and pharmacokinetics of a PMPC-IFN conjugate. As a hygroscopic zwitterionic polymer, PMPC is able to form a compact conformation in aqueous solution, which was found to be more compact than PEG. This suggests that PMPC protein conjugates may display different plasma elimination characteristics than PEG protein conjugates. PMPC-IFN displayed marked resistance to antibody binding in Western blot analysis with a polyclonal anti-IFN antibody while displaying comparable in vitro antiviral and antiproliferative activity to PEG-IFN. During an in vivo pharmacokinetic study, the absorption t(1/2) for PMPC-IFN was considerably extended compared to the native IFN and 20 kDa PEG analogue. This is also consistent with the SDS-PAGE result where an apparent reduction in mobility through a hydrated medium was observed. The elimination t(1/2) was also vastly extended over the native IFN and twice the value of 20 kDa PEG-IFN. This suggests that tissue migration of PMPC-IFN occurs more slowly than the 20 kDa PEG-IFN despite their similarity in hydrodynamic volume, leading to an an improved depot effect, which could explain the longer elimination t(1/2). In this study, we demonstrate a potential use of PMPCylation as a novel tool for enhancing the pharmacokinetic profile of therapeutic proteins in ways that complement PEGylation.  相似文献   

2.
3.
Simple synthesis of luminescent europium(III) and terbium(III) chelates tethered to a maleimido function (7, 8) is described. The method is based on the following: (i) synthesis of protected ligands tethered to a maleimido function and their purification on silica gel; (ii) deprotection by acidolysis; (iii) conversion of the deprotected ligands to the corresponding lanthanide(III) chelates by passing them through a column of strong cation exchange resin loaded with the appropriate lanthanide(III) ions. According to this procedure, large quantities of mercapto-selective biomolecule-labeling reactants of high purity can be prepared.  相似文献   

4.
5.
A simple method for the preparation of phosphorylcholine derivatives of bovine serum albumin (PC-BSA) by reductive alkylation of the amino groups of bovine serum albumin with choline phosphoryl glycoaldehyde is described. Choline phosphoryl glycoaldehyde was generated by periodate oxidation of glyceryl phosphorylcholine. PC-BSA was immobilized on SH-derivatized Toyopearl HW 65 by reacting the single SH group of PC-BSA with a bismaleimido reagent and then coupling maleimidated PC-BSA to the thiolated gel. The affinity purification of C-reactive protein (CRP), which is based on the Ca2+-dependent affinity of CRP for the phosphorylcholine residue of PC-BSA, was readily accomplished using the PC-BSA Toyopearl HW 65 column. The resulting CRP preparation from serum and pleural fluid was homogeneous as assessed by native polyacrylamide gel electrophoresis. PC-BSA derivatives were also shown to be reactive with Limulus polyphemus CRP.  相似文献   

6.
Rat serum phosphorylcholine binding protein (PCBP), a normal component of rat serum, inhibits in vitro aggregation of rat, rabbit and human platelets by interacting with platelets. In the present study, we have demonstrated the calcium-dependent, specific and saturable binding of 125I-PCBP to rat, rabbit and human platelets. Scatchard analysis of the binding data reveal a class of specific high-affinity binding sites with Kd values of 45.2 +/- 14.9, 26.1 +/- 8.3 and 32.2 +/- 9.9 nM on rat, rabbit and human platelets, respectively. These platelets also expressed a high capacity for binding to 125I-PCBP. The binding of 125I-PCBP to platelets was calcium- and time-dependent, and could be inhibited by phosphorylcholine (IC50 = 5.6 microM). Occupation of these binding sites by PCBP may be responsible for inhibition of platelet aggregation.  相似文献   

7.
The binding of rat serum phosphorylcholine binding protein (PCBP) to platelet activating factor (PAF) has been demonstrated using a HPLC-gel filtration technique. The bulk of the bound [3H]-PAF eluted with a higher molecular weight species of PCBP, possibly an aggregated form of PCBP. A smaller amount of [3H]-PAF co-eluted with the major monomeric species of PCBP. Formation of the PCBP-PAF complex was calcium dependent and could be inhibited by phosphorylcholine, suggesting the involvement of the phosphorylcholine binding site on PCBP. Binding of albumin and alpha 1-acid glycoprotein to PAF was not affected by phosphorylcholine or calcium. The specificity of this binding may explain the inhibitory effect of PCBP and related phosphorylcholine binding proteins on PAF induced aggregation of platelets.  相似文献   

8.
Twenty-six flavonoids and related compounds were screened for their ability to modulate microsome mediated covalent adduct formation between [3H]benzo[a]pyrene ([3H]BP) and DNA in vitro. Some of these flavonoids, notably robinetin, quercetin, isorhamnetin and kaempferol were observed to inhibit the adduct formation significantly at very low levels. The unsubstituted flavone and some of the other flavonoids moderately inhibited this adduct formation, while some flavonoids were inactive, viz., most of the isoflavonoids and methylether derivatives of polyhydroxylated flavonoids. Structural features contributory towards the inhibitory activity of flavonoids appeared to be hydroxyl groups in 3 position of C ring, 5,7-positions of A ring and 3',4'- and 5'-positions of B ring. Methylation or glycosylation of hydroxyl group rendered the flavonoid less active or inactive. Flavanones, with saturated 2,3 double bond, were also inactive. Metabolic activation of BP to proximate carcinogen (+/-)-trans-7,8-dihydroxy-7,8-dihydro-BP (BP-7,8-dihydrodiol) was also measured in presence of some of these flavonoids. The extent of inhibition of metabolism by these flavonoids did not correlate with their ability to inhibit the adduct formation. Thus, suppression of metabolism did not appear to be a major contributory factor towards inhibition of adduct formation. The solvolysis in aqueous dioxane of (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydro-BP (BPDE I), the ultimate carcinogen of BP, was accelerated in presence of selected flavonoids. Inactivation of BPDE I, therefore, appeared to be the major mechanism by which some of these flavonoids inhibited the adduct formation between BP and DNA, and this could be the basis for the anti-carcinogenic nature of these flavonoids.  相似文献   

9.
10.
P McCaldon  P Argos 《Proteins》1988,4(2):99-122
We have examined oligopeptides with lengths ranging from 2 to 11 residues in protein sequences that show no obvious evolutionary relationship. All sequences in the Protein Identification Resource database were carefully classified by sensitive homology searches into superfamilies to obtain unbiased oligopeptide counts. The results, contrary to previous studies, show clear prejudices in protein sequences. The oligopeptide preferences were used to help decide the significance of sequence homologies and to improve the more general methods for detecting protein coding regions within nucleotide sequences.  相似文献   

11.
Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes.  相似文献   

12.
Chemical modification of proteins has been crucial in engineering protein‐based therapies, targeted biopharmaceutics, molecular probes, and biomaterials. Here, we explore the use of a conjugation‐based approach to sense alternative conformational states in proteins. Tyrosine has both hydrophobic and hydrophilic qualities, thus allowing it to be positioned at protein surfaces, or binding interfaces, or to be buried within a protein. Tyrosine can be conjugated with 4‐phenyl‐3H‐1,2,4‐triazole‐3,5(4H)‐dione (PTAD). We hypothesized that individual protein conformations could be distinguished by labeling tyrosine residues in the protein with PTAD. We conjugated tyrosine residues in a well‐folded protein, bovine serum albumin (BSA), and quantified labeled tyrosine with liquid chromatography with tandem mass spectrometry. We applied this approach to alternative conformations of BSA produced in the presence of urea. The amount of PTAD labeling was found to relate to the depth of each tyrosine relative to the protein surface. This study demonstrates a new use of tyrosine conjugation using PTAD as an analytic tool able to distinguish the conformational states of a protein.  相似文献   

13.
14.
Catecholamine derivatives were synthesized with potential applications as coating antigens in biosensors or in the raising of specific antibodies. Thioether-bridged derivatives of the catecholamines dopamine, norepinephrine, and epinephrine that attach carboxylic acid functionalities directly to the aromatic ring via an easily incremented linker chain were synthesized by an electrochemical method. These derivatives were purified by convenient ion-exchange chromatography, exact positions of conjugation determined by NMR, and a dopamine derivative immobilized in situ in a BIAcore surface plasmon resonance (SPR) biosensor and its antibody binding studied in comparison with immobilization via the catecholamine primary amine. Binding of an antibody raised to an amine-conjugated protein conjugate showed clear distinction between conjugations at different positions on the catecholamine, illustrating the importance of rational conjugate design in immunosensing of the catecholamines.  相似文献   

15.
16.
It is becoming clear that, in addition to structural properties, the mechanical properties of proteins can play an important role in their biological activity. It nevertheless remains difficult to probe these properties experimentally. Whereas single-molecule experiments give access to overall mechanical behavior, notably the impact of end-to-end stretching, it is currently impossible to directly obtain data on more local properties. We propose a theoretical method for probing the mechanical properties of protein structures at the single-amino acid level. This approach can be applied to both all-atom and simplified protein representations. The probing leads to force constants for local deformations and to deformation vectors indicating the paths of least mechanical resistance. It also reveals the mechanical coupling that exists between residues. Results obtained for a variety of proteins show that the calculated force constants vary over a wide range. An analysis of the induced deformations provides information that is distinct from that obtained with measures of atomic fluctuations and is more easily linked to residue-level properties than normal mode analyses or dynamic trajectories. It is also shown that the mechanical information obtained by residue-level probing opens a new route for defining so-called dynamical domains within protein structures.  相似文献   

17.
Conjugation to folic acid is known to enhance the uptake of molecules by human cells that over-produce folate receptors. Variants of bovine pancreatic ribonuclease (RNase A) that have attenuated affinity for the endogenous ribonuclease inhibitor protein (RI) are toxic to mammalian cells. Here, the random acylation of amino groups in wild-type RNase A with folic acid is shown to decrease its catalytic activity dramatically, presumably because of the alteration to a key active-site residue, Lys41. To effect site-specific coupling, Nδ-bromoacetyl-Nα-pteroyl-l-ornithine, which is a folate analogue with an electrophilic bromoacetamido group, was synthesized and used to S-alkylate Cys88 of the G88C variant of RNase A. The pendant folate moiety does not decrease enzymatic activity, enables RI-evasion, and endows toxicity for cancer cells that over-produce the folate receptor. These data reveal a propitious means for targeting proteins and other molecules to cancer cells.  相似文献   

18.
Carboxyacyl derivatives of phosphatidylethanolamine with different chain length were synthesized. These compounds were generally prepared by conversion of an appropriate dicarboxylic acid to its anhydride with dicyclohexylcarbodiimide, then reaction with phosphatidylethanolamine (PE) and triethylamine, followed by acidification. These derivatives, when incorporated into liposomes, were highly efficient in conjugating protein to liposomes. Liposomes with PE amide derivative incorporated were activated with water-soluble carbodiimide, and subsequently reacted with protein. The protein to lipid coupling efficiency was shown to be dependent on the chain length of the derivative, and the optimum coupling efficiency was achieved with PE amide of 1,12-dodecanedicarboxylic acid. Up to 60% covalent coupling efficiency of mouse IgG to liposomes was demonstrated with little non-covalent binding. This method will be of great importance in the liposome-targeting field.  相似文献   

19.
Two vitamin K analogues bearing a carboxylic acid side chain (9a and its deuterated analogue 9b) were each synthesised in six steps from commercially available menadione. Analogue 9b was conjugated to lysozyme and bovine serum albumin (BSA) using EDCI/HOBT and by prior formation of its activated succinimidyl ester 11. Quantification of the thus formed conjugates by ESMS and LC-MS revealed that the number of equivalents of the analogue used in the couplings systematically controls the number of analogues that conjugate to the protein.  相似文献   

20.
We recently introduced ENCoM, an elastic network atomic contact model, as the first coarse-grained normal mode analysis method that accounts for the nature of amino acids and can predict the effect of mutations on thermostability based on changes vibrational entropy. In this proof-of-concept article, we use pairs of mesophile and thermophile homolog proteins with identical structures to determine if a measure of vibrational entropy based on normal mode analysis can discriminate thermophile from mesophile proteins. We observe that in around 60% of cases, thermophile proteins are more rigid at equivalent temperatures than their mesophile counterpart and this difference can guide the design of proteins to increase their thermostability through series of mutations. We observe that mutations separating thermophile proteins from their mesophile orthologs contribute independently to a decrease in vibrational entropy and discuss the application and implications of this methodology to protein engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号