首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flor strains of Saccharomyces cerevisiae form a flor on the surface of wine after alcoholic fermentation. High hydrophobicity of the cell surface is suggested to be important for flor formation by the flor wine yeasts. However, the molecular mechanism of flor formation is not clear. We found that expression of C-terminal deleted NRG1 lacking its two C2H2 zinc finger motifs (NRG1(1-470)) on the multicopy plasmid conferred the ability to form a flor to a non-flor laboratory strain. The cell surface hydrophobicity of NRG1(1-470) was higher than of the non-flor strain. Disruption of the Nrg1p-repressed gene FLO11, which encodes a cell surface glycoprotein that functions as a flocculin or an adhesin, abolished flor formation. Moreover, expression of FLO11 on a multicopy plasmid could also cause flor formation. These results indicate that FLO11 is essential for flor formation by NRG1(1-470). In addition, the results suggest that the C-terminal truncated form of Nrg1p exerts a dominant negative effect on FLO11 repression, resulting in FLO11 expression and, thus, flor formation.  相似文献   

2.
3.
ABSTRACT

Some wild Zygosaccharomyces rouxii impair the quality of soy sauce through the generation of unpleasant odors induced by the formation of flor. Flor formation in Z. rouxii depends on the expression of the FLO11D gene, which is a homolog of the FLO11 gene that encodes a cell surface protein in Saccharomyces cerevisiae. FLO11 expression in S. cerevisiae is regulated by multiple pathways. To investigate the regulation of FLO11D expression in Z. rouxii, we created 13 gene knockout mutants (STE12, TEC1, HOG1, MSS11, FLO8, MSN1, MSN2/4, SKO1, TUP1, CYC8, YAK1, MIG1, and SFL1) related to those pathways and examined whether these mutants form flor. Unexpectedly, SFL1 knockout mutant could only form a very weak flor due to decreased FLO11D expression, suggesting that SFL1 acts as a potential activator of flor formation through FLO11D expression. This result is in contrast to S. cerevisiae SFL1, which acts as a repressor of FLO11 expression.  相似文献   

4.
Wine biological aging is a wine making process used to produce specific beverages in several countries in Europe, including Spain, Italy, France, and Hungary. This process involves the formation of a velum at the surface of the wine. Here, we present the first large scale comparison of all European flor strains involved in this process. We inferred the population structure of these European flor strains from their microsatellite genotype diversity and analyzed their ploidy. We show that almost all of these flor strains belong to the same cluster and are diploid, except for a few Spanish strains. Comparison of the array hybridization profile of six flor strains originating from these four countries, with that of three wine strains did not reveal any large segmental amplification. Nonetheless, some genes, including YKL221W/MCH2 and YKL222C, were amplified in the genome of four out of six flor strains. Finally, we correlated ICR1 ncRNA and FLO11 polymorphisms with flor yeast population structure, and associate the presence of wild type ICR1 and a long Flo11p with thin velum formation in a cluster of Jura strains. These results provide new insight into the diversity of flor yeast and show that combinations of different adaptive changes can lead to an increase of hydrophobicity and affect velum formation.  相似文献   

5.
Depending on the genetic background of Saccharomyces strains, a wide range of phenotypic adhesion identities can be directly attributed to the FLO11-encoded glycoprotein, which includes asexual flocculation, invasive growth and pseudohyphal formation, flor formation and adhesion to biotic and abiotic surfaces. In a previous study, we reported that HSP30-mediated stationary-phase expression of the native chromosomal FLO11 ORF in two nonflocculent commercial Saccharomyces cerevisiae wine yeast strains, BM45 or VIN13 did not generate a flocculent phenotype under either standard laboratory media or synthetic MS300 must fermentation conditions. In the present study, the BM45- and VIN13-derived HSP30p-FLO11 wine yeast transformants were observed to be exclusively and strongly flocculent under authentic red wine-making conditions, thus suggesting that this specific fermentation environment specifically contributes to the development of a flocculent phenotype, which is insensitive to either glucose or mannose. Furthermore, irrespective of the strain involved this phenotype displayed both Ca(2+)-dependent and Ca(2+)-independent flocculation characteristics. A distinct advantage of this unique FLO11-based phenotype was highlighted in its ability to dramatically promote faster lees settling rates. Moreover, wines produced by BM45-F11H and VIN13-F11H transformants were significantly less turbid than those produced by their wild-type parental strains.  相似文献   

6.
7.
The specific flavour of Sherry-type wines requires aromatic compounds produced as by-products of the oxidative metabolism of yeasts that are able to form a biofilm (flor) at the wine surface. A similar yeast pellicle develops on the surface of 'Tokaji Szamorodni', one of the traditional Hungarian botrytized wines, during maturation. In this work, patterns of biotinylated cell wall proteins extracted from film-forming and nonfilm-forming Saccharomyces cerevisiae strains were compared. It was found that all the tested 23 film-forming 'Szamorodni' yeast strains had a decreased size of the Ccw7/Hsp150 protein, one of the members of the Pir-protein family. Sequencing of the encoding genes revealed that the strains were lacking three out of the 11 repeating sequences characteristic to this protein family. One of the film-forming strains contained CCW7 alleles of different length, which was generated by intragenic tandem duplication of a sequence containing two repetitive domains. Unlike the film-forming strains, 16 nonfilm-forming wine yeasts isolated from a different botrytized wine, 'Tokaji Aszu', showed pronounced polymorphism of the CCW7 locus. It is highly probable that the modified Ccw7 protein does not contribute to the increased hydrophobicity of film-forming strains but it may influence molecular reorganization of the cell wall during stress adaptation.  相似文献   

8.
9.
10.
Saccharomyces cerevisiae “flor” yeasts have the ability to form a buoyant biofilm at the air-liquid interface of wine. The formation of biofilm, also called velum, depends on FLO11 gene length and expression. FLO11 encodes a cell wall mucin-like glycoprotein with a highly O-glycosylated central domain and an N-terminal domain that mediates homotypic adhesion between cells. In the present study, we tested previously known antimicrobial peptides with different mechanisms of antimicrobial action for their effect on the viability and ability to form biofilm of S. cerevisiae flor strains. We found that PAF26, a synthetic tryptophan-rich cationic hexapeptide that belongs to the class of antimicrobial peptides with cell-penetrating properties, but not other antimicrobial peptides, enhanced biofilm formation without affecting cell viability in ethanol-rich medium. The PAF26 biofilm enhancement required a functional FLO11 but was not accompanied by increased FLO11 expression. Moreover, fluorescence microscopy and flow cytometry analyses showed that the PAF26 peptide binds flor yeast cells and that a flo11 gene knockout mutant lost the ability to bind PAF26 but not P113, a different cell-penetrating antifungal peptide, demonstrating that the FLO11 gene is selectively involved in the interaction of PAF26 with cells. Taken together, our data suggest that the cationic and hydrophobic PAF26 hexapeptide interacts with the hydrophobic and negatively charged cell wall, favoring Flo11p-mediated cell-to-cell adhesion and thus increasing biofilm biomass formation. The results are consistent with previous data that point to glycosylated mucin-like proteins at the fungal cell wall as potential interacting partners for antifungal peptides.  相似文献   

11.
Saccharomyces flor yeasts proliferate at the surface of sherry wine, which contains over 15% (vol) ethanol. Since ethanol is a powerful inducer of respiration-deficient mutants, this alcohol has been proposed to be the source of the high diversity found in the mitochondrial genomes of flor yeasts and other wine yeasts. Southern blot analysis suggests that mitochondrial DNA (mtDNA) polymorphic changes are due to minor lesions in the mitochondrial genome. As determined in this work by pulsed-field gel electrophoresis, restriction analysis, and Southern blot analysis, ethanol-induced petite mutants completely lack mtDNA (rho zero). Ethanol-induced changes in the mitochondrial genome that could explain the observed mtDNA polymorphism in flor yeasts were not found. The transfer of two different mtDNA variants from flor yeasts to a laboratory strain conferred in both cases an increase in ethanol tolerance in the recipient strain, suggesting that mtDNAs are probably subjected to positive selection pressure concerning their ability to confer ethanol tolerance.  相似文献   

12.
Saccharomyces cerevisiae flor yeasts, which are subjected to stressful conditions during wine ageing, exhibit a number of characteristics which distinguish them from non-flor S. cerevisiae wine strains. In the present work, 22 flor and 14 non-flor S. cerevisiae wine strains are compared, in order to elucidate other possible peculiarities of these yeasts. The results obtained demonstrate that in contrast to the homothallic nature of the non-flor strains, 77% of the flor strains exhibit two variants of a semi-homothallic life cycle. Moreover, the flor-forming ability is shown to be inversely correlated to spore viability and the utilisation of maltose and galactose.  相似文献   

13.
The traditional biological process by which sherry wines are aged can be accelerated by using submerged Saccharomyces cerevisiae var. capensis (G1) strain cultures previously grown in glycerol. The used controlled shaking conditions raise the acetaldehyde, acetoin, and meso 2,3-butanediol contents in the wine, and increases the consumption of gluconic acid by flor yeast relative to traditional biological aging under flor yeast velum.  相似文献   

14.
Sardinian wine strains of Saccharomyces cerevisiae used to make sherry-like wines form a biofilm at the air-liquid interface at the end of ethanolic fermentation, when grape sugar is depleted and further growth becomes dependent on access to oxygen. Here, we show that FLO11, which encodes a hydrophobic cell wall glycoprotein, is required for the air-liquid interfacial biofilm and that biofilm cells have a buoyant density greater than the suspending medium. We propose a model for biofilm formation based on an increase in cell surface hydrophobicity occurring at the diauxic shift. This increase leads to formation of multicellular aggregates that effectively entrap carbon dioxide, providing buoyancy. A visible biofilm appears when a sufficient number of hydrophobic cell aggregates are carried to and grow on the liquid surface.  相似文献   

15.
16.
Sardinian wine strains of Saccharomyces cerevisiae used to make sherry-like wines form a biofilm at the air-liquid interface at the end of ethanolic fermentation, when grape sugar is depleted and further growth becomes dependent on access to oxygen. Here, we show that FLO11, which encodes a hydrophobic cell wall glycoprotein, is required for the air-liquid interfacial biofilm and that biofilm cells have a buoyant density greater than the suspending medium. We propose a model for biofilm formation based on an increase in cell surface hydrophobicity occurring at the diauxic shift. This increase leads to formation of multicellular aggregates that effectively entrap carbon dioxide, providing buoyancy. A visible biofilm appears when a sufficient number of hydrophobic cell aggregates are carried to and grow on the liquid surface.  相似文献   

17.
Copy number variations (CNVs) contribute to the adaptation process in two possible ways. First, they may have a direct role, in which a certain number of copies often provide a selective advantage. Second, CNVs can also indirectly contribute to adaptation because a higher copy number increases the so-called “mutational target size.” In this study, we show that the copy number amplification of FLO11D in the osmotolerant yeast Zygosaccharomyces rouxii promotes its further adaptation to a flor-formative environment, such as osmostress static culture conditions. We demonstrate that a gene, which was identified as FLO11D, is responsible for flor formation and that its expression is induced by osmostress under glucose-free conditions, which confer unique characteristics to Z. rouxii, such as osmostress-dependent flor formation. This organism possesses zero to three copies of FLO11D, and it appears likely that the FLO11D copy number increased in a branch of the Z. rouxii tree. The cellular hydrophobicity correlates with the FLO11D copy number, and the strain with a higher copy number of FLO11D exhibits a fitness advantage compared to a reference strain under osmostress static culture conditions. Our data indicate that the FLO gene-related system in Z. rouxii has evolved remarkably to adapt to osmostress environments.  相似文献   

18.
19.
Surface properties of lactobacilli isolated from the small intestine of pigs   总被引:12,自引:0,他引:12  
One hundred wild-type strains of the genus Lactobacillus were isolated from the small intestine of newly-slaughtered pigs up to 6 months of age. Cell surface hydrophobicity and capsule formation were studied on a number of strains. Strains showing high surface hydrophobicity as measured by the salt-aggregation test and hydrophobic interaction chromatography on Octyl Sepharose were commonly found to adhere in high numbers to isolated pig intestinal epithelial cells. Heat and protease treatment of bacteria of high surface hydrophobicity, including autoaggregating strains in phosphate-buffered saline, showed a drastic decline in this surface property. Three hydrophilic strains (LBp 1044, 1068 and 1073) also showed binding to intestinal cells but at a lower level (approx. 5 bacteria/cell) as compared with the best binding hydrophobic strain (LBp 1063, approx. 11 bacteria/cell). These findings suggest that different or multiple adhesion mechanisms may be involved in the colonization of the small intestinal mucosa of pigs. Cultures of selected strains grown in liquid media rich in carbohydrates did not affect their hydrophobic cell surface character. Therefore it seems less likely that carbohydrate capsule polymers are the major determinants of intestinal colonization of lactobacilli in pigs.  相似文献   

20.
One hundred wild-type strains of the genus Lactobacillus were isolated from the small intestine of newly-slaughtered pigs up to 6 months of age. Cell surface hydrophobicity and capsule formation were studied on a number of strains. Strains showing high surface hydrophobicity as measured by the salt-aggregation test and hydrophobic interaction chromatography on Octyl Sepharose were commonly found to adhere in high numbers to isolated pig intestinal epithelial cells. Heat and protease treatment of bacteria of high surface hydrophobicity, including autoaggregating strains in phosphate-buffered saline, showed a drastic decline in this surface property. Three hydrophilic strains (LBp 1044, 1068 and 1073) also showed binding to intestinal cells but at a lower level (approx. 5 bacteria/cell) as compared with the best binding hydrophobic strain (LBp 1063, approx. 11 bacteria/cell). These findings suggest that different or multiple adhesion mechanisms may be involved in the colonization of the small intestinal mucosa of pigs. Cultures of selected strains grown in liquid media rich in carbohydrates did not affect their hydrophobic cell surface character. Therefore it seems less likely that carbohydrate capsule polymers are the major determinants of intestinal colonization of lactobacilli in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号