首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The processes determining where seeds fall relative to their parent plant influence the spatial structure and dynamics of plant populations and communities. For animal dispersed species the factors influencing seed shadows are poorly understood. In this paper we test the hypothesis that the daily temporal distribution of disperser behaviours, for example, foraging and movement, influences dispersal outcomes, in particular the shape and scale of dispersal curves. To do this, we describe frugivory and the dispersal curves produced by the southern cassowary, Casuarius casuarius, the only large-bodied disperser in Australia’s rainforests. We found C. casuarius consumed fruits of 238 species and of all fleshy-fruit types. In feeding trials, seeds of 11 species were retained on average for 309 min (±256 SD). Sampling radio-telemetry data randomly, that is, assuming foraging occurs at random times during the day, gives an estimated average dispersal distance of 239 m (±207 SD) for seeds consumed by C. casuarius. Approximately 4% of seeds were dispersed further than 1,000 m. However, observation of wild birds indicated that foraging and movement occur more frequently early and late in the day. Seeds consumed early in the day were estimated to receive dispersal distances 1.4 times the ‘random’ average estimate, while afternoon consumed seeds received estimated mean dispersal distances of 0.46 times the ‘random’ estimate. Sampling movement data according to the daily distribution of C. casuarius foraging gives an estimated mean dispersal distance of 337 m (±194 SD). Most animals’ behaviour has a non-random temporal distribution. Consequently such effects should be common and need to be incorporated into seed shadow estimation. Our results point to dispersal curves being an emergent property of the plant–disperser interaction rather than being a property of a plant or species.  相似文献   

2.
Seed dispersal can severely limit the quantity of plant recruits and their spatial distribution. However, our understanding of the role of dispersal in regeneration dynamics is limited by the lack of knowledge of seed deposition patterns in space and time. In this paper, we analyse the spatiotemporal variability of seed dispersal patterns in the Mediterranean maple, Acer opalus subsp. granatense, by monitoring seed rain along two years at a broad spatial scale (2 mountain ranges, 2 populations per range, 4 microhabitats per population). We quantified seed limitation and its components (source and dispersal limitation), and explored dispersal limitation in space by analysing dispersal distances, seed aggregation, and microhabitat seed distribution. Acer opalus subsp. granatense was strongly seed‐limited throughout the gradients explored, being always dispersal limitation much higher than source limitation. The distribution of seeds with distance from adult individuals was leptokurtic and right‐skewed in all populations, being both kurtosis and skewness higher the year of the highest seed production. Dispersal distances were shorter than expected by random in the four populations, which suggests distance‐limited dispersal. Dispersal patterns were highly aggregated and showed a preferential direction around adults. At the microhabitat scale, most seeds accumulated under adult maples. However, there were no more seeds under trees and shrubs other than maple than in open interspaces, implying that established vegetation does not disrupt patterns of seed deposition by physically trapping seeds. When compared with patterns of seedling establishment, limited dispersal ability and inter‐annual spatial concordance in seed rain patterns suggest that several potentially safe sites for recruitment have a very low probability of receiving seeds in most maple populations. These findings are especially relevant for rare species such as Acer opalus subsp. granatense, and illustrate how dispersal studies are not only crucial for our understanding of plant population dynamics but also to provide conservation directions.  相似文献   

3.
Pollen and seed dispersal are the two key processes in which plant genes move in space, mostly mediated by animal dispersal vectors in tropical forests. Due to the movement patterns of pollinators and seed dispersers and subsequent complex spatial patterns in the mortality of offspring, we have little knowledge of how pollinators and seed dispersers affect effective gene dispersal distances across successive recruitment stages. Using six highly polymorphic microsatellite loci and parentage analyses, we quantified pollen dispersal, seed dispersal, and effective paternal and maternal gene dispersal distances from pollen‐ and seed‐donors to offspring across four recruitment stages within a population of the monoecious tropical tree Prunus africana in western Kenya. In general, pollen‐dispersal and paternal gene dispersal distances were much longer than seed‐dispersal and maternal gene dispersal distances, with the long‐distance within‐population gene dispersal in P. africana being mostly mediated by pollinators. Seed dispersal, paternal and maternal gene dispersal distances increased significantly across recruitment stages, suggesting strong density‐ and distance‐dependent mortality near the parent trees. Pollen dispersal distances also varied significantly, but inconsistently across recruitment stages. The mean dispersal distance was initially much (23‐fold) farther for pollen than for seeds, yet the pollen‐to‐seed dispersal distance ratio diminished by an order of magnitude at later stages as maternal gene dispersal distances disproportionately increased. Our study elucidates the relative changes in the contribution of the two processes, pollen and seed dispersal, to effective gene dispersal across recruitment. Overall, complex sequential processes during recruitment contribute to the genetic make‐up of tree populations. This highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal‐mediated pollen and seed dispersal on small‐scale spatial genetic patterns of long‐lived tree species.  相似文献   

4.
General principles about the consequences of seed dispersal by animals for the structure and dynamics of plant populations and communities remain elusive. This is in part because seed deposition patterns emerge from interactions between frugivore behaviour and the distribution of food resources, both of which can vary over space and time. Here we advocate a frugivore‐centred, process‐based, synthetic approach to seed dispersal research that integrates seed dispersal ecology and animal movement across multiple spatio‐temporal scales. To guide this synthesis, we survey existing literature using paradigms from seed dispersal and animal movement. Specifically, studies are discussed with respect to five criteria: selection of focal organisms (animal or plant); measurement of animal movement; characterization of seed shadow; animal, plant and environmental factors included in the study; and scales of the study. Most studies focused on either frugivores or plants and characterized seed shadows directly by combining gut retention time with animal movement data or indirectly by conducting maternity analysis of seeds. Although organismal traits and environmental factors were often measured, they were seldom used to characterize seed shadows. Multi‐scale analyses were rare, with seed shadows mostly characterized at fine spatial scales, over single fruiting seasons, and for individual dispersers. Novel animal‐ and seed‐tracking technologies, remote environmental monitoring tools, and advances in analytical methods can enable effective implementation of a hierarchical mechanistic approach to the study of seed dispersal. This kind of mechanistic approach will provide novel insights regarding the complex interplay between the factors that modulate animal behaviour and subsequently influence seed dispersal patterns across spatial and temporal scales.  相似文献   

5.
According to most studies on seed dispersal in tropical forests, mammals and birds are considered the main dispersal agents and the role played by other animal groups remains poorly explored. We investigate qualitative and quantitative components of the role played by the tortoise Chelonoidis denticulata in seed dispersal in southeastern Amazon, and the influence of seasonal variation in tortoise movement patterns on resulting seed shadows. Seed shadows produced by this tortoise were estimated by combining information on seed passage times through their digestive tract, which varied from 3 to 17 days, with a robust dataset on movements obtained from 18 adult C. denticulata monitored with radio transmitters and spoon-and-line tracking devices. A total of 4,206 seeds were found in 94 collected feces, belonging to 50 seed morphotypes of, at least, 25 plant genera. Very low rates of damage to the external structure of the ingested seeds were observed. Additionally, results of germination trials suggested that passage of seeds through C. denticulata’s digestive tract does not seem to negatively affect seed germination. The estimated seed shadows are likely to contribute significantly to the dispersal of seeds away from parent plants. During the dry season seeds were dispersed, on average, 174.1 m away from the location of fruit ingestion; during the rainy season, this mean dispersal distance increased to 276.7 m. Our results suggest that C. denticulata plays an important role in seed dispersal in Amazonian forests and highlight the influence of seasonal changes in movements on the resulting seed shadows.  相似文献   

6.
Seed dispersal is a key ecological process in tropical forests, with effects on various levels ranging from plant reproductive success to the carbon storage potential of tropical rainforests. On a local and landscape scale, spatial patterns of seed dispersal create the template for the recruitment process and thus influence the population dynamics of plant species. The strength of this influence will depend on the long‐term consistency of spatial patterns of seed dispersal. We examined the long‐term consistency of spatial patterns of seed dispersal with spatially explicit data on seed dispersal by two neotropical primate species, Leontocebus nigrifrons and Saguinus mystax (Callitrichidae), collected during four independent studies between 1994 and 2013. Using distributions of dispersal probability over distances independent of plant species, cumulative dispersal distances, and kernel density estimates, we show that spatial patterns of seed dispersal are highly consistent over time. For a specific plant species, the legume Parkia panurensis, the convergence of cumulative distributions at a distance of 300 m, and the high probability of dispersal within 100 m from source trees coincide with the dimension of the spatial–genetic structure on the embryo/juvenile (300 m) and adult stage (100 m), respectively, of this plant species. Our results are the first demonstration of long‐term consistency of spatial patterns of seed dispersal created by tropical frugivores. Such consistency may translate into idiosyncratic patterns of regeneration.  相似文献   

7.
I examined the spatial patterns of seed dispersal and postdispersal seed predation of the semidesert perennial Cryptantha flava (A. Nels.) Payson (Boraginaceae) at two sites in north-eastern Utah. Most flowers mature only one seed (nutlet) which is permanently retained within a pubescent calyx. The calyx and enclosed seed abscise from the plant as a unit. These dispersal units are effectively dispersed by wind as evidenced by the highly directional seed shadows and the long distances some of them travel (up to 31.3 m). Potential seed predators at the sites include five species of rodents, of which Peromyscus maniculatus is the most common, and two species of ants, Pogonomyrmex occidentalis and an undescribed species of Conomyrma. There were no strong spatial patterns of postdispersal seed predation. More seeds were removed from dishes placed at the bases of fruiting adults than from dishes ≥ 1.0 m away in one of three experiments. More seeds were removed from under shrubs or clumps of grass than in the open in one of four experiments. After 3–4 days, there was a consistent tendency for more seed removal from high density (75 seeds per .25 m2) quadrats than from low density (75 seeds per 6.25 m2) quadrats, but the difference was not always significant. There was a similar nonsignificant difference between high- and low-density quadrats exposed for 21 days. The pubescent calyx greatly discourages seed predation by ants, and probably also reduces predation by rodents. In addition, by increasing the surface area of the dispersal unit, the calyx may facilitate dispersal by wind.  相似文献   

8.
Seed and pollen dispersal shape patterns of gene flow and genetic diversity in plants. Pollen is generally thought to travel longer distances than seeds, but seeds determine the ultimate location of gametes. Resolving how interactions between these two dispersal processes shape microevolutionary processes is a long‐standing research priority. We unambiguously isolated the separate and combined contributions of these two dispersal processes in seedlings of the animal‐dispersed palm Oenocarpus bataua to address two questions. First, what is the spatial extent of pollen versus seed movement in a system characterized by long‐distance seed dispersal? Second, how does seed dispersal mediate seedling genetic diversity? Despite evidence of frequent long‐distance seed dispersal, we found that pollen moves much further than seeds. Nonetheless, seed dispersal ultimately mediates genetic diversity and fine‐scale spatial genetic structure. Compared to undispersed seedlings, seedlings dispersed by vertebrates were characterized by higher female gametic and diploid seedling diversity and weaker fine‐scale spatial genetic structure for female gametes, male gametes and diploid seedlings. Interestingly, the diversity of maternal seed sources at seed deposition sites (N em) was associated with higher effective number of pollen sources (N ep), higher effective number of parents (N e) and weaker spatial genetic structure, whereas seed dispersal distance had little impact on these or other parameters we measured. These findings highlight the importance maternal seed source diversity (N em) at frugivore seed deposition sites in driving emergent patterns of fine‐scale genetic diversity and structure.  相似文献   

9.
Acorn dispersal estimated by radio-tracking   总被引:2,自引:0,他引:2  
Pons J  Pausas JG 《Oecologia》2007,153(4):903-911
Bird-dispersed seeds are difficult to track, especially in the case of long-distance dispersal events. To estimate the oak dispersal distance and the seed shadow generated by the European jay (Garrulus glandarius), we inserted radio-transmitters in 239 acorns, placed them in bird-feeders and then located them by radio-tracking. Using this methodology we located the exact caching site of 94 Quercus ilex and 54 Q. suber acorns and determined the caching habitat characteristics (vegetation type, distance, spatial distribution). The results show that: (1) there is no differences in the dispersal distance distribution between the different acorn species or sizes, (2) dispersal distances range from approximately 3 m up to approximately 550 m (mean = 68.6 m; median = 49.2 m), (3) recently abandoned fields and forest tracks were the sites preferred by jays to cache acorns, whereas fields and shrublands were avoided and (4) seed shadows showed acorn aggregation zones (i.e. clusters of caches) close to the feeder as well as isolated caches at longer distances. The results also suggest that radio-transmitters are a cheap and reliable way to determine seed shadows and quantify both seed dispersal and post-dispersal seed predation for medium to large seeds.  相似文献   

10.
A large proportion of dispersing propagules land near their maternal plant, even in species that have evolved structures which enhance dispersal. For these propagules, their post-dispersal spatial pattern is likely to reflect the overall shape and scale of the parental plant canopy and, especially in poorly dispersing species, aggregation of propagules on the plant prior to dispersal. Localised patterns within seed shadows are also likely to be affected by secondary movement after dispersal, leading to either more or less small-scale aggregation, depending on the mechanism. Our general aim was to study the small-scale spatial structure within patterns of seed dispersal of Raphanus raphanistrum L. to generate hypotheses about the sequence of processes and events leading to the spatial pattern of dispersal in this species. More specifically, we determined the sizes of small-scale structures within the seed shadows on the ground after dispersal and the extent to which these match the sizes of pre-dispersal aggregations within the parental canopy. Variation in plant size and shape was provided by four levels of inter-specific competition resulting from differing wheat crop densities. Positions of propagules were determined using a three-dimensional digitizer, and the data for each plant were analysed using point pattern analysis. Not surprisingly, larger plants, growing at lower plant density, had larger seed shadows, showing an overall influence of maternal plant size. The pattern of propagules exhibited significant small-scale aggregates, with similar sizes on the plant and on the ground. There was no evidence that aggregation size was greater on the ground or increased with time, but the strength of the aggregation increased with length of time on the ground.  相似文献   

11.
For many plant species in eastern North America, short observed seed dispersal distances (ranging up to a few tens of meters) fail to explain rapid rates of invasion and migration. This discrepancy points to a substantial gap in our knowledge of the mechanisms by which seeds are dispersed long distances. We investigated the potential for white-tailed deer (Odocoileus virginianus Zimm.), the dominant large herbivore in much of eastern North America, to disperse seeds via endozoochory. This is the first comprehensive study of seed dispersal by white-tailed deer, despite a vast body of research on other aspects of their ecology. More than 70 plant species germinated from deer feces collected over a 1-year period in central New York State, USA. Viable seeds included native and alien herbs, shrubs, and trees, including several invasive introduced species, from the full range of habitat types in the local flora. A mean of >30 seeds germinated per fecal pellet group, and seeds were dispersed during all months of the year. A wide variety of presumed dispersal modes were represented (endo- and exozoochory, wind, ballistic, ant, and unassisted). The majority were species with small-seeded fruits having no obvious adaptations for dispersal, underscoring the difficulty of inferring dispersal ability from diaspore morphology. Due to their broad diet, wide-ranging movements, and relatively long gut retention times, white-tailed deer have tremendous potential for effecting long-distance seed dispersal via ingestion and defecation. We conclude that white-tailed deer represent a significant and previously unappreciated vector of seed dispersal across the North American landscape, probably contributing an important long-distance component to the seed shadows of hundreds of plant species, and providing a mechanism to help explain rapid rates of plant migration.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

12.
Frugivores exhibit considerable variation in the seed dispersal services they provide. Understanding what drives these differences is a key goal for ecologists because of the central role seed dispersal plays in shaping ecological and genetic diversity in plant populations. The lek‐mating system of the Long‐wattled Umbrellabird (Cephalopterus penduliger) provides a powerful lens to examine how mating behavior may impact seed dispersal outcomes. As in all lek‐breeding species, male Umbrellabirds congregate in traditional sites (leks) to display, whereas females are solitary and visit leks only rarely. This study demonstrates how differences in mating behavior between the sexes drive distinctive seed movement and deposition patterns by male vs. female Umbrellabirds. Using radio tracking and gut retention trials, we documented divergent movement patterns between the sexes that are directly attributable to mating behavior differences. These movement differences led males to disperse seeds long distances from source trees and to deposit the majority of seeds they ingested within the lek; females dispersed seeds shorter distances and more evenly across the landscape. We empirically confirmed that the density of dispersed seeds was higher in leks than in control areas outside the lek, yet found no evidence that this higher density of seeds in leks reduced probability of seedling establishment. This research not only provides a mechanistic explanation for long dispersal distances and high levels of genetic diversity previously reported for seeds in Umbrellabird leks, but also highlights the importance of explicitly considering behavior in studies of animal‐mediated seed dispersal.  相似文献   

13.
Arnan X  Rodrigo A  Retana J 《Oecologia》2011,167(4):1027-1039
Strong interactions between dry-fruited shrubs and seed-harvesting ants are expected in early successional scrubs, where both groups have a major presence. We have analysed the implications of the seed characteristics of two dry-fruited shrub species (Coronilla minima and Dorycnium pentaphyllum) on seed predation and dispersal mediated by harvester ants and the consequences of these processes on spatio-temporal patterns of plant abundance in a heterogeneous environment. We found that large C. minima seeds were collected much more (39%) than small D. pentaphyllum seeds (2%). However, not all of the removed seeds of these plant species were consumed, and 12.8% of the seeds were lost along the trails, which increased dispersal distances compared with abiotic dispersal alone. Seed dropping occurred among all microhabitats of the two plant species, but especially in open microhabitats, which are the most suitable ones for plant establishment. The two plant species increased their presence in the study area during the study period: C. minima in open microhabitats and D. pentaphyllum in high vegetation. The large size of C. minima seeds probably limited the primary seed dispersal of this species, but may have allowed strong interaction with ants. Thus, seed dispersal by ants resulted in C. minima seeds reaching more suitable microhabitats by means of increasing dispersal distance and redistribution among microhabitats. In contrast, the smaller size of D. pentaphyllum seeds arguably allows abiotic seed dispersal over longer distances and colonization of all types of microhabitats, although it probably also limits their interaction with ants and, consequently, their redistribution in suitable microhabitats. We suggest that dyszoochory could contribute to the success of plant species with different seed characteristics in scrub habitats where seeds are abundantly collected by seed-harvesting ants.  相似文献   

14.

Background

Determining the distances over which seeds are dispersed is a crucial component for examining spatial patterns of seed dispersal and their consequences for plant reproductive success and population structure. However, following the fate of individual seeds after removal from the source tree till deposition at a distant place is generally extremely difficult. Here we provide a comparison of observationally and genetically determined seed dispersal distances and dispersal curves in a Neotropical animal-plant system.

Methodology/Principal Findings

In a field study on the dispersal of seeds of three Parkia (Fabaceae) species by two Neotropical primate species, Saguinus fuscicollis and Saguinus mystax, in Peruvian Amazonia, we observationally determined dispersal distances. These dispersal distances were then validated through DNA fingerprinting, by matching DNA from the maternally derived seed coat to DNA from potential source trees. We found that dispersal distances are strongly right-skewed, and that distributions obtained through observational and genetic methods and fitted distributions do not differ significantly from each other.

Conclusions/Significance

Our study showed that seed dispersal distances can be reliably estimated through observational methods when a strict criterion for inclusion of seeds is observed. Furthermore, dispersal distances produced by the two primate species indicated that these primates fulfil one of the criteria for efficient seed dispersers. Finally, our study demonstrated that DNA extraction methods so far employed for temperate plant species can be successfully used for hard-seeded tropical plants.  相似文献   

15.
We studied the efficiency (proportion of the crop removed) and quantitative effectiveness (number of fruits removed) of dispersal of Miconia fosteri and M. serrulata (Melastomataceae) seeds by birds in lowland tropical wet forest of Ecuador. Specifically, we examined variation in fruit removal in order to reveal the spatial scale at which crop size influences seed dispersal outcome of individual plants, and to evaluate how the effect of crop size on plant dispersal success may be affected by conspecific fruit abundance and by the spatial distribution of frugivore abundance. We established two 9-ha plots in undisturbed terra-firme understory, where six manakin species (Pipridae) disperse most seeds of these two plant species. Mean levels of fruit removal were low for both species, with high variability among plants. In general, plants with larger crop sizes experienced greater efficiency and effectiveness of fruit removal than plants with smaller crops. Fruit removal, however, was also influenced by microhabitat, such as local topography and local neighborhood. Fruit-rich and disperser-rich patches overlapped spatially for M. fosteri but not M. serrulata, nonetheless fruit removal of M. serrulata was still much greater in fruit-rich patches. Fruit removal from individual plants did not decrease in patches with many fruiting conspecifics and, in fact, removal effectiveness was enhanced for M. fosteri with small crop sizes when such plants were in patches with more conspecifics. These results suggest that benefits of attracting dispersers to a patch balanced or outweighed the costs of competition for dispersers. Spatial pattern of fruit removal, a measure of plant fitness, depended on a complex interaction among plant traits, spatial patterns of plant distribution, and disperser behavior.  相似文献   

16.
Dispersal is a key process in metapopulation dynamics as it conditions species' spatial responses to gradients of abiotic and biotic conditions and triggers individual and gene flows. In the numerous plants that are dispersed through seed consumption by herbivores (endozoochory), the distance and effectiveness of dispersal is determined by the combined effects of seed retention time in the vector's digestive system, the spatial extent of its movements, and the ability of the seeds to germinate once released. Estimating these three parameters from experimental data is therefore crucial to calibrate mechanistic metacommunity models of plant–herbivore interactions. In this study, we jointly estimated the retention time and germination probability of six herbaceous plants transported by roe deer (Capreolus capreolus), red deer (Cervus elaphus), and wild boar (Sus scrofa) through feeding experiments and a Bayesian dynamic model. Retention time was longer in the nonruminant wild boar (>36 h) than in the two ruminant species (roe deer: 18–36 h, red deer: 3–36 h). In the two ruminants, but not in wild boar, small and round seeds were excreted faster than large ones. Low germination probabilities of the excreted seeds reflected the high cost imposed by endozoochory on plant survival. Trait‐mediated variations in retention time and germination probability among animal and plant species may impact plant dispersal distances and interact with biotic and abiotic conditions at the release site to shape the spatial patterns of dispersed plant species.  相似文献   

17.
As the dominant seed dispersal agents in many ecosystems, frugivorous animals profoundly impact gene movement and fine‐scale genetic structure of plants. Most frugivores engage in some form of destination‐based dispersal, in that they move seeds towards specific destinations, resulting in clumped distributions of seeds away from the source tree. Molecular analyses of dispersed seeds and seedlings suggest that destination‐based dispersal may often yield clusters of maternal genotypes and lead to pronounced local genetic structure. The long‐wattled umbrellabird Cephalopterus penduliger is a frugivorous bird whose lek mating system creates a species‐specific pattern of seed dispersal that can potentially be distinguished from background dispersal processes. We used this system to test how destination‐based dispersal by umbrellabirds into the lek affects gene movement and genetic structure of one of their preferred food sources Oenocarpus bataua, a canopy palm tree. Relative to background dispersal processes, umbrellabird mating behaviour yielded more diverse seed pools in leks that included on average five times more seed sources and a higher incidence of long‐distance dispersal events. This resulted in markedly lower fine‐scale spatial genetic structure among established seedlings in leks than background areas. These species‐specific impacts of destination‐based dispersal illustrate how detailed knowledge of disperser behaviour can elucidate the mechanistic link driving observed patterns of seed movement and genetic structure.  相似文献   

18.
Aim We estimated the patterns of seed deposition provided by the eyed lizard, Timon lepidus, and evaluated whether these patterns can be generalized across plant species with different traits (fruit and seed size) and spatial distributions. Location Monteagudo Island, Atlantic Islands National Park (north‐western Spain). Methods We radio‐tracked seven lizards for 14 days and estimated their home ranges using fixed kernels. We also geo‐referenced all fruit‐bearing individuals of four plant species dispersed by eyed lizards in the study area (Corema album, Osyris alba, Rubus ulmifolius and Tamus communis), measured the passage time of their seeds through the lizard gut, and estimated seed predation in four habitats (bare sand, grassland, shrub and gorse). Seed dispersal kernels were estimated using a combination of these data and were combined with seed predation probability maps to incorporate post‐dispersal seed fate (‘seed survival kernels’). Results Median seed gut‐passage times were around 52–98 h, with maximum values up to 250 h. Lizards achieved maximum displacement in their home ranges within 24–48 h. Seed predation was high (80–100% of seeds in 2 months), particularly under Corema shrub and gorse. Seed dispersal kernels showed a common pattern, with two areas of preferential seed deposition, but the importance of these varied among plant species. Interspecific differences among dispersal kernels were strongly reduced by post‐dispersal seed predation; hence, seed survival kernels of the different plant species showed high auto‐ and pairwise‐correlations at small distances (< 50 m). As a result, survival to post‐dispersal seed predation increased with dispersal distance for O. alba and T. communis, but not for C. album. Main conclusions Seed dispersal by lizards was determined primarily by the interaction between the dispersers’ home ranges and the position of the fruit‐bearing plants. As a result, seed rain shared a common template, but showed considerable variation among species, determined by their specific spatial context. Seed predation increased the spatial coherence of the seed rain of the different species, but also resulted in contrasting relationships between seed survival and dispersal distance, which may be of importance for the demographic and evolutionary processes of the plants.  相似文献   

19.
This report presents data from experiments on seed dispersal by wind for ten species of the family Apiaceae. Seed shadows were obtained in the field under natural conditions, using wind speeds between four and ten m/s. The flight of individual seeds was followed by eye, and seed shadows were acquired, with median distances varying from 0.7 to 3.1 m between species. Multiple regression models of wind speed and seed weight on dispersal distance were significant for six out of ten species; wind speed had significant effects in seven cases, but seed weight only once. A good correlation between mean terminal falling velocity of the seeds of a species and median dispersal distance, indicates the promising explanatory power that individual terminal velocity data might have on dispersal distance, together with wind speed and turbulence. The theory that seeds that seem to be adapted to wind dispersal travel much longer distances than seeds that have no adaptation was tested. Flattened and winged seeds were indeed found to be transported further by wind, but not much further. Moreover, the species with wind-adapted seeds were also taller, being an alternative explanation since their seeds experienced higher wind speeds at these greater heights. Furthermore, flattened and winged seeds were disseminated from ripe umbels at lower wind speeds in the laboratory. This means that the observed difference in dispersal distance would have been smaller when species specific thresholds for wind speed were incorporated in the field experiments. We argue therefore, that seed morphology is not always the best predictor in classifying species in groups with distinctly different dispersal ability.  相似文献   

20.
Insights into processes that lead to the distribution of genetic variation within plant species require recognition of the importance of both pollen and seed movement. Here we investigate the contributions of pollen and seed movement to overall gene flow in the Central American epiphytic orchid, Laelia rubescens. Genetic diversity and structure were examined at multiple spatial scales in the tropical dry forest of Costa Rica using nuclear (allozymes) and chloroplast restriction fragment length polymorphism (RFLP) markers, which were found to be diverse (allozymes, P = 73.3%; HE = 0.174; cpDNA, HE = 0.741). Nuclear genetic structure (FSTn) was low at every spatial scale (0.005-0.091). Chloroplast markers displayed more structure (0.073-0.254) but relatively similar patterns. Neither genome displayed significant isolation-by-distance. Pollen and seed dispersal rates did not differ significantly from one another (mp/ms = 1.40) at the broadest geographical scale, among sites throughout Costa Rica. However, relative contributions of pollen and seeds to gene flow were scale-dependent, with different mechanisms determining the dominant mode of gene flow at different spatial scales. Much seed dispersal is highly localized within the maternal population, while some seeds enter the air column and are dispersed over considerable distances. At the intermediate scale (10s to 100s of metres) pollinators are responsible for substantial pollen flow. This species appears capable of distributing its genes across the anthropogenically altered landscape that now characterizes its Costa Rican dry forest habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号