首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
This investigation aimed to assess whether the mitochondrial ATP-sensitive potassium channel blocker 5-hydroxydecanoate (5-HD) could abolish the protection conferred by fasting and ischemic preconditioning (IPC) and to ascertain whether these effects are associated with glycogen breakdown and glycolytic activity. Langendorff perfused hearts of fed and 24-h fasted rats were exposed to 25 min ischemia plus 30 min reperfusion. IPC was achieved by a 3 min ischemia plus a 5 min reperfusion cycle. 5-HD (100 microM) perfusion begun 5 min before IPC or 13 min before sustained ischemia in the non preconditioned groups. Fasting improved the reperfusion recovery of contraction, decreased the contracture and the lactate production, increased glycogenolysis and did not affect the percentage of viable tissue. 5-HD abolished the effects of fasting on the contractile recovery but did not affect the contracture. 5-HD decreased the lactate production in the fed group, increased the preischemic glycogen content in both nutritional groups and did not affect the ischemic glycogen fall. IPC improved the contractile function but prevented the contracture only in the fed group, reduced lactate accumulation and glycogenolysis and evoked an increase of the viable tissue. 5-HD abolished the effects of IPC on the contractile recovery and did not affect its effect on the contracture, lactate production, glycogenolysis and viable tissue. These data suggest that the mitocondrial ATP-sensitive potassium channel is involved in the effects of fasting and IPC on the contractile function but the other cardioprotective and metabolic effects appear evoked through other mechanisms. Also suggest that besides the inhibition of the mitochondrial potassium channel, other mechanisms mediate the effects of 5-HD.  相似文献   

2.
This investigation aimed to assess whether the mitochondrial ATP-sensitive potassium channel opener diazoxide could reproduce the protection conferred by ischemic preconditioning and to ascertain whether its effects are associated with changes in glycogen breakdown and glycolytic activity. Hearts of fed and 24-h fasted rats were perfused with 10 mM glucose containing medium and exposed to 25 min no-flow ischemia plus 30 min reperfusion. Diazoxide (10 microM) perfusion was begun 10 min before ischemia and continued throughout the experiment. Fasting accelerated reperfusion recovery of contraction, reduced the post-ischemic contracture and decreased lactate accumulation during ischemia but had no effects on glycogen levels and cellular viability. Diazoxide, did not affect glycogen catabolism but improved reperfusion recovery of contraction. Furthermore, diazoxide reduced ischemic lactate accumulation and contracture amplitude only in the fed group whereas it improved cell viability in the fed and fasted groups. These data indicate that: 1) reduced lactate production which may attenuate myocyte acidification might explain, at least in part, the beneficial effects of diazoxide on mechanical function, although data obtained with the fasted rat hearts indicate that other mechanisms must be involved as well; 2) the reduction of lactate production occurring in the fed group, does not seem to be related to glycogenolysis; and 3) since diazoxide improved cell viability in the fasted rat group where it did not reduce glycolytic activity, other mechanisms may be responsible for this cytoprotective effect.  相似文献   

3.
To assess whether glycolysis, Na+-H+ exchange and oxidation of fatty acid derived from endogenous lipolysis are involved in the beneficial effects of 24-h fasting on the ischaemic - reperfused heart, it was studied the effects of inhibiting Na+ - H+ exchange using 10 muM dimethylamiloride and fatty acid oxidation using 2 mM oxfenicine, on the functional activity, lactate production and cell viability measured with tetrazolium stain. Since fasting accelerates heart fatty acid oxidation, data were compared to those from fed rats; using Langendorff perfused (glucose 10 mM) hearts of 250-350 g Wistar rats exposed to 25 min ischaemia - 30 min reperfusion. Fasting reduced the ischaemic rise of end diastolic pressure (contracture), improved recovery of contraction and lowered lactate production in comparison with the fed whereas cellular viability was similar in both groups. Dimethylamiloride improved the recovery of contraction (fed control 24 +/- 9%, fed treated 68 +/- 11%, P < 0.05 at the end of reperfusion), attenuated the contracture (fed control 40 +/- 9%, fed treated 24 +/- 11%, P < 0.05 at the beginning of reperfusion) and reduced lactate production in the fed group and increased cellular viability in both groups (fed control 21 +/- 6%, fed treated 69 +/- 7%, P < 0.05, and fasted control 18 +/- 7%, fasted treated 53 +/- 8%, P < 0.05). Oxfenicine reduced the recovery of contraction (fasted control 88 +/- 6%, fasted treated 60 +/- 11%, P < 0.05) and increased lactate production of fasted group and attenuated the contracture in the fed. These data suggest that beneficial effects of fasting owe, at least in part, to a lowered glycolysis probably secondary to the increased fatty acid oxidation and to the accumulation of energy supplying acyl esters. Dimethylamiloride slowing of glycolysis might explain functional improvement, whereas it seems unrelated to the protection on cell viability.  相似文献   

4.
Under hypoxic conditions the atrial contents of long-chain acyl CoA (LCCoA) and long-chain acylcarnitine display a close correlation with the noxious effects of fasting on the atrial functions as well as with the amelioration effected by inhibitors of carnitine palmitoyltransferase I. These findings suggested that fatty acid oxidation was detrimental for the hypoxic atria. However, since changes of the LCCoA and LCCa levels which may occur together with the hypoxic disturbances attained under some other metabolic interventions had not been assessed yet, present investigation aimed to provide information about this issue. At the end of the prehypoxic equilibration period, all the treatments tested evoked a fall of the free-CoA levels whereas free-carnitine, LCCoA and LCCa remained unchanged. In the hypoxic atria, 4-pentenoate, an inhibitor of fatty acid beta-oxidation that also can be oxidized, did not change LCCoA and LCCa levels whereas the readily oxidizable pentanoate evoked a drop of LCCoA. These effects may be due to the trapping of CoA as the short-chain acyl esters of both substances. Since 4-pentenoate and pentanoate were noxious on the hypoxic atria even though they did not increase LCCoA and LCCa contents, it may be inferred that short-chain acyl esters might be deleterious during oxygen shortage. The exposure to 3-hydroxybutyrate, an oxidizable substrate whose availability increases during fasting, did not alter the LCCoA and LCCa contents, agreeing with the weak detrimental effects that it exerts on the hypoxic atria. On the other hand, insulin elicited a rise in the LCCoA and a fall in the LCCa contents. Inasmuch insulin had been shown to improve the performance of the hypoxic atria, these findings suggest that LCCoA might not be involved in the noxious effects of fatty acid oxidation whereas LCCa would be the major toxic catabolite.  相似文献   

5.
Endogenous glycogen stores are essential to maintain cell functions during myocardial ischemia.. Fasting and L-glutamate improve left ventricular function after an ischemic episode. We studied their effects on myocardial glycogen depletion during ischemia and on left ventricular function and glycogen resynthesis during reperfusion. We allocated 185 Wistar rats to 4 groups: 1) Control, 2) Fasting, 16-20 hours (Fast) 3) L-glutamate supplementation [100 mM] (Glt) or 4) Fasting + L-glutamate supplementation [100 mM]. n = 8-10 in each group. Hearts were mounted in an isolated perfused rat hearts model for 20 min stabilisation, 10/20/30 min ischemia and 60 min reperfusion. At each time point hearts were frozen in liquid nitrogen (-196 degrees C) within 2 seconds and myocardial contents of glycogen, lactate, alanine and glutamate were determined. Left ventricular pressure was measured continuously. Fasting and L-glutamate supplementation improved LV function after ischemia (Fast: p < 0.05, Glt: p < 0.01) and delayed myocardial glycogen depletion (Fast: p < 0.05, Glt: p < 0.01) compared to control. Decreased lactate accumulation and increased alanine content during ischemia were found in fasted (lactate: p < 0.05, alanine: p < 0.05) and L-glutamate supplemented (lactate: p < 0.01, alanine: p < 0.01) hearts compared to control. We did not find any additive effects of fasting and L-glutamate supplementation. In conclusion fasting and L-glutamate supplementation improve left ventricular function during reperfusion and delay myocardial glycogen depletion during ischemia. There were no additive effects of Fasting and L-glutamate supplementation. These finding suggest common metabolic pathways underlying the effects of L-glutamate supplementation and fasting.  相似文献   

6.
The investigation aimed to assess the effects of hypoxic preconditioning in right ventricle strips of fed and 24-h fasted rats, which display a fast fatty acid catabolism, and to ascertain whether these effects are associated with changes in the tissue levels of long-chain acylCoA and acyl carnitine and glycolytic activity. Strips were mounted isometrically in Krebs-bicarbonate solution with 10 mM dextrose and paced at 1 Hz. Strips were exposed to 30 min hypoxia and 60 min reoxygenation with or without a previous preconditioning cycle of 5 min hypoxia followed by a 10 min reoxygenation. During hypoxia the fasted rat strips underwent a greater contracture with respect to the fed group. Preconditioning reduced the contracture strength and accelerated the post-hypoxic recovery only in the fasted rat strips. Hypoxia evoked an increase in the acylCoA and acyl carnitine tissue-contents of the strips which reached higher levels in the fasted than in the fed rat groups. Preconditioning had no effects on the content of these metabolites. During hypoxia lactate output was lower in the fasted than in the fed rat strips and preconditioning abolished this decrease. These data suggest that the protective effects of hypoxic preconditioning occur in the heart tissue predisposed to the oxidation of fatty acid and can not be ascribed to changes in the accumulation of acylCoA and acyl carnitine but could be due, at least in part, to an activation of glycolysis.  相似文献   

7.
The end-effectors of ischemic preconditioning (IPC) are not well known. It has been recently shown that transgenic mice underexpressing the gap junction protein connexin43 (Cx43) cannot be preconditioned. Because gap junctions allow spreading of cell death during ischemia-reperfusion in different tissues, including myocardium, we hypothesized that the protection afforded by IPC is mediated by effects on gap junction-mediated intercellular communication. To test this hypothesis, we analyzed the effect of IPC (5 min ischemia-5 min reperfusion x 2) on the changes in electrical impedance (four electrode probe) and impulse propagation velocity (transmembrane action potential) induced by ischemia (60 min) and reperfusion (60 min) in isolated rat hearts. IPC (n = 8) reduced reperfusion-induced lactate dehydrogenase release by 65.8% with respect to control hearts (n = 9) (P = 0.04) but had no effect on the time of onset of rigor contracture (increase in diastolic tension), electrical uncoupling (sharp changes in tissue resistivity and phase angle in impedance recordings), or block of impulse propagation during ischemia. Normalization of electrical impedance during reperfusion was also unaffected by IPC. The lack of effect of IPC on ischemic rigor contracture and on changes in tissue impedance during ischemia-reperfusion were validated under in vivo conditions in pigs submitted to 48 min of coronary occlusion and 120 min of reperfusion. IPC (n = 12) reduced infarct size (triphenyltetrazolium) by 64.9% (P = 0.01) with respect to controls (n = 17). We conclude that the protection afforded by IPC is not mediated by effects on electrical coupling. This result is consistent with recent findings suggesting that Cx43 could have effects on cell survival independent on changes in cell-to-cell communication.  相似文献   

8.
Nicotinic acid (niacin) has been shown to decrease myocyte injury. Because interventions that lower the cytosolic NADH/NAD(+) ratio improve glycolysis and limit infarct size, we hypothesized that 1) niacin, as a precursor of NAD(+), would lower the NADH/NAD(+) ratio, increase glycolysis, and limit ischemic injury and 2) these cardioprotective benefits of niacin would be limited in conditions that block lactate removal. Isolated rat hearts were perfused without (Ctl) or with 1 microM niacin (Nia) and subjected to 30 min of low-flow ischemia (10% of baseline flow, LF) and reperfusion. To examine the effects of limiting lactate efflux, experiments were performed with 1) Ctl and Nia groups subjected to zero-flow ischemia and 2) the Nia group treated with the lactate-H(+) cotransport inhibitor alpha-cyano-4-hydroxycinnamate under LF conditions. Measured variables included ATP, pH, cardiac function, tissue lactate-to-pyruvate ratio (reflecting NADH/NAD(+)), lactate efflux rate, and creatine kinase release. The lactate-to-pyruvate ratio was reduced by more than twofold in Nia-LF hearts during baseline and ischemic conditions (P < 0.001 and P < 0.01, respectively), with concurrent lower creatine kinase release than Ctl hearts (P < 0.05). Nia-LF hearts had significantly greater lactate release during ischemia (P < 0.05 vs. Ctl hearts) as well as higher functional recovery and a relative preservation of high-energy phosphates. Inhibiting lactate efflux with alpha-cyano-4-hydroxycinnamate and blocking lactate washout with zero flow negated some of the beneficial effects of niacin. During LF, niacin lowered the cytosolic redox state and increased lactate efflux, consistent with redox regulation of glycolysis. Niacin significantly improved functional and metabolic parameters under these conditions, providing additional rationale for use of niacin as a therapeutic agent in patients with ischemic heart disease.  相似文献   

9.
Ischemic preconditioning (IPC) protects the heart against subsequent sustained ischemia reperfusion (RP). Despite many triggers and signaling pathways, which seem to be involved in IPC, the IPC-mechanisms remain a controversial issue. One of them is endogenous production of nitric oxide (NO). To assess the role of NO in IPC and its relation with glycogen and glycolysis, the effects of inhibiting NO synthase with L-NAME (50 microM) were examined in IPC rat hearts perfused with medium containing 10 mM glucose. Left ventricular developed pressure-rate product (RPP) and end diastolic pressure (EDP), lactate and glycogen contents, and cell viability were measured. Global ischemia (25 min) was followed by 30 min RP. IPC consisted in one cycle of 3 min ischemia-5 min RP. IPC reduced EDP and improved RP recovery of RPP. L-NAME had no effects on the non-IPC group but abolished these effects of IPC. IPC reduced ischemic decrease of glycogen and the acceleration of glycolysis, and improved cell viability. L-NAME did not affect these effects of IPC. The results suggest that NO is ineffective on the noxious effects of ischemia-RP in non-IPC hearts and on the effects of IPC on cell viability, glycogenolysis and glycolysis whereas it is only involved in functional protection.  相似文献   

10.
Postischemic recovery of contractile function is better in hearts from fasted rats than in hearts from fed rats. In this study, we examined whether feeding-induced inhibition of palmitate oxidation at the level of carnitine palmitoyl transferase I is involved in the mechanism underlying impaired recovery of contractile function. Hearts isolated from fasted or fed rats were submitted to no-flow ischemia followed by reperfusion with buffer containing 8 mM glucose and either 0.4 mM palmitate or 0.8 mM octanoate. During reperfusion, oxidation of palmitate was higher after fasting than after feeding, whereas oxidation of octanoate was not influenced by the nutritional state. In the presence of palmitate, recovery of left ventricular developed pressure was better in hearts from fasted rats. Substitution of octanoate for palmitate during reperfusion enhanced recovery of left ventricular developed pressure in hearts from fed rats. However, the chain length of the fatty acid did not influence diastolic contracture. The results suggest that nutritional variation of mitochondrial fatty acid transfer may influence postischemic recovery of contractile function.  相似文献   

11.
The effect of dichloroacetate on the isolated no flow arrested rat heart   总被引:1,自引:0,他引:1  
Ischemic dysfunction, including contracture, has been attributed to lack of ATP, although previous work has not been consistent with this concept. We describe here a model of no flow ischemic arrest, characterized by depressed levels of mechanical function upon reperfusion and high energy phosphate stores within normal limits. The decreased mechanical function bears an inverse relationship to myocardial lactate levels after twenty-minutes of reperfusion in the absence or presence of dichloroacetic acid (DCA). Post-ischemic non-DCA treated hearts attained peak work of only 25% of that of controls, while those treated with DCA following ischemia performed almost as well as controls. ATP and CP levels remained high in both DCA treated and non-DCA treated hearts. Lactate levels were high in hearts immediately following ischemia, but were reduced to control levels in post-ischemic hearts perfused with DCA within twenty minutes, whereas those not treated with DCA had lactate levels two to three times that of controls within the same time period. Pyruvate dehydrogenase (PDH) activity was reduced in non-DCA treated post ischemic hearts after twenty minutes reperfusion but was elevated above controls in hearts reperfused with DCA. The data indicates that DCA increases mechanical performance of the isolated post-ischemic rat heart and the proposed mechanism for this increase is the oxidative removal of lactate resulting from an increase in PDH activity.  相似文献   

12.
The effects of allopurinol (AP) on functional and metabolic recovery of the isolated rat heart after global ischemia were studied. Hearts were subjected to aerobic perfusion (30 min), cardioplegic infusion (5 min), normothermic ischemia (37 min), and reperfusion (50 min) which was started with secondary cardioplegic infusion (10 min). AP was injected into rats (44 mg/kg body wt ip 2 h before heart excision) and added to cardioplegic solution (2 mM) prior and after ischemia. AP treatment significantly improved postischemic recovery of the function and reduced the leakage of lactate dehydrogenase from reperfused hearts. These beneficial effects were accompanied by a better preservation of tissue content of ATP, the total adenine nucleotides, phosphocreatine, and the total creatine at the end of reperfusion. Inhibition of xanthine oxidase by AP substantially decreased pre- and postischemic release of xanthine and uric acid and increased postischemic release of hypoxanthine into the coronary effluent. Despite this, AP treated hearts did not exhibit a reduction in hydroxyl radical adduct formation in the effluents at reperfusion assessed by the spin-trap measurements. The results suggest that AP may protect the heart from ischemia/reperfusion injury due to enhanced energy provision rather than by prevention of oxygen-derived free radical formation.  相似文献   

13.
Ischemic preconditioning (IP) reduces infarct size in young animals; however, its impact on aging is underinvestigated. The effect of variations in IP stimuli was studied in young, middle-aged, and aged rat hearts. Isolated hearts underwent 35 min of regional ischemia and 120 min of reperfusion. Hearts with IP were subjected to either one ischemia-reperfusion cycle (5 min of ischemia and 5 min of reperfusion per cycle) or three successive cycles before 35 min of regional ischemia. Additional studies investigated the effects of pharmacological preconditioning in aged hearts using the adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentyladenosine, the protein kinase C analog 1,2-dioctanoyl-sn-glycerol, and the mitochondrial ATP-sensitive potassium (K(ATP))-channel opener diazoxide. Infarct sizes indicated that the aged rat heart could not be preconditioned via ischemic or pharmacological means. The middle-aged rat heart had a blunted IP response compared with the young adult (only an increased IP stimulus caused a significant reduction in infarct size). These results suggest that there are defects within the IP signaling cascade of the aged heart. Clinical relevance is important if we are to use any IP-like mimetics to the benefit of an aging population.  相似文献   

14.
The aim of the present study was to assess whether the protective effects of ischemic preconditioning (PC) are associated with activation of the mitochondrial ATP-sensitive potassium channels (mitoKATP) and if there is any relationship between the activity of these channels and the mitochondrial permeability transition pore (MPTP) opening in ischemic-reperfused rat hearts under different nutritional conditions. Langendorff-perfused hearts of fed and 24-h fasted rats were exposed to 25 min of no-flow global ischemia plus 30 min of reperfusion. Fasting accelerated functional recovery and attenuated MPTP opening. The mitoKATP blocker, 5-hydroxydecanoic (HD), did not influence functional recovery and MPTP opening induced by ischemia–reperfusion in the fed hearts but partially reversed the beneficial effects of fasting. PC and the mitoKATP opener, diazoxide (DZ), improved functional recovery, preserved cell viability, and inhibited MPTP opening in both fed and fasted hearts. The protection elicited by PC and DZ on contractile recovery and MPTP opening was reversed by HD, which did not affect cell viability. Altogether, these results argue for a role of mitoKATP and its impact on preservation mitochondrial inner membrane permeability as a relevant factor in the improvement of contractile function in the ischemic-reperfused rat heart. They also suggest that the functional protection elicited by PC may be related to this mechanism.  相似文献   

15.
While carnitine overload appears to have therapeutic effects in pathological situations such as heart recovery after ischemia, its benefits as dietary supplementation for aerobic exercise have been questioned. We studied the effect of carnitine supplementation on the response of perfused rat heart to ischemia and reperfusion. Supplementation of the perfusion medium with 1 mM carnitine had no effect on cardiac performance in normoxic hearts, although it lowered lactate production by nearly 80%. Carnitine did not affect the amount of lactate accumulated during 30 min of ischemia, which was recovered in the perfusate immediately after reperfusion. However, carnitine worsened tissue injury, as shown by the 70% increase in creatine kinase release. Carnitine also worsened the recovery of contractile function, as revealed by the slower increase in heart rate and contractile force. In addition, carnitine supplementation increased contracture of the heart shortly after reperfusion. Therefore, in conditions where it does not increase glucose oxidation, carnitine supplementation worsens both injury and recovery of contractile function after transient ischemia in perfused rat heart.  相似文献   

16.
Ischemic preconditioning (IP) triggers cardioprotection via a signaling pathway that converges on mitochondria. The effects of the inhibition of carnitine palmitoyltransferase I (CPT-I), a key enzyme for transport of long chain fatty acids (LCFA) into the mitochondria, on ischemia/reperfusion (I/R) injury are unknown. Here we investigated, in isolated perfused rat hearts, whether sub-chronic CPT-I inhibition (5 days i.p. injection of 25 mg/kg/day of Etomoxir) affects I/R-induced damages and whether cardioprotection by IP can be induced after this inhibition. Effects of global ischemia (30 min) and reperfusion (120 min) were examined in hearts harvested from Control (untreated), Vehicle- or Etomoxir-treated animals. In subsets of hearts from the three treated groups, IP was induced by three cycles of 3 min ischemia followed by 10 min reperfusion prior to I/R. The extent of I/R injury under each condition was assessed by changes in infarct size as well as in myocardial contractility. Postischemic contractility, as indexed by developed pressure and dP/dt(max), was similarly affected by I/R, and was similarly improved with IP in Control, Vehicle or Etomoxir treated animals. Infarct size was also similar in the three subsets without IP, and was significantly reduced by IP regardless of CPT-I inhibition. We conclude that CPT-I inhibition does not affect I/R damages. Our data also show that IP affords myocardial protection in CPT-I inhibited hearts to a degree similar to untreated animals, suggesting that a long-term treatment with the metabolic anti-ischemic agent Etomoxir does not impede the possibility to afford cardioprotection by ischemic preconditioning.  相似文献   

17.
Zhang SZ  Gao Q  Cao CM  Bruce IC  Xia Q 《Life sciences》2006,78(7):738-745
The objective of the present study was to determine whether the mitochondrial calcium uniporter plays a role in the cardioprotection induced by ischemic preconditioning (IPC). Isolated rat hearts were subjected to 30 min of regional ischemia by ligation of the left anterior descending artery followed by 120 min of reperfusion. IPC was achieved by two 5-min periods of global ischemia separated by 5 min of reperfusion. IPC reduced the infarct size and lactate dehydrogenase release in coronary effluent, which was associated with improved recovery of left ventricular contractility. Treatment with ruthenium red (RR, 5 μM), an inhibitor of the uniporter, or with Ru360 (10 μM), a highly specific uniporter inhibitor, provided cardioprotective effects like those of IPC. The cardioprotection induced by IPC was abolished by spermine (20 μM), an activator of the uniporter. Cyclosporin A (CsA, 0.2 μM), an inhibitor of the mitochondrial permeability transition pore, reversed the effects caused by spermine. In mitochondria isolated from untreated hearts, both Ru360 (10 μM) and RR (1 μM) decreased pore opening, while spermine (20 μM) increased pore opening which was blocked by CsA (0.2 μM). In mitochondria from preconditioned hearts, the opening of the pore was inhibited, but this inhibition did not occur in the mitochondria from hearts treated with IPC plus spermine. These results indicate that the mitochondrial calcium uniporter is involved in the cardioprotection conferred by ischemic preconditioning.  相似文献   

18.
Ischemic preconditioning (IP) is a cardioprotective mechanism against myocellular death and cardiac dysfunction resulting from reperfusion of the ischemic heart. At present, the precise list of mediators involved in IP and the pathways of their mechanisms of action are not completely known. The aim of the present study was to investigate the role of platelet-activating factor (PAF), a phospholipid mediator that is known to be released by the ischemic-reperfused heart, as a possible endogenous agent involved in IP. Experiments were performed on Langendorff-perfused rat hearts undergoing 30 min of ischemia followed by 2 h of reperfusion. Treatment with a low concentration of PAF (2 x 10(-11) M) before ischemia reduced the extension of infarct size and improved the recovery of left ventricular developed pressure during reperfusion. The cardioprotective effect of PAF was comparable to that observed in hearts in which IP was induced by three brief (3 min) periods of ischemia separated by 5-min reperfusion intervals. The PAF receptor antagonist WEB-2170 (1 x 10(-9) M) abrogated the cardioprotective effect induced by both PAF and IP. The protein kinase C (PKC) inhibitor chelerythrine (5 x 10(-6) M) or the phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 (5 x 10(-5) M) also reduced the cardioprotective effect of PAF. Western blot analysis revealed that following IP treatment or PAF infusion, the phosphorylation of PKC-epsilon and Akt (the downstream target of PI3K) was higher than that in control hearts. The present data indicate that exogenous applications of low quantities of PAF induce a cardioprotective effect through PI3K and PKC activation, similar to that afforded by IP. Moreover, the study suggests that endogenous release of PAF, induced by brief periods of ischemia and reperfusion, may participate to the triggering of the IP of the heart.  相似文献   

19.
We assessed the role of A(1) adenosine receptor (A(1)AR) activation by endogenous adenosine in the modulation of ischemic contracture and postischemic recovery in Langendorff-perfused mouse hearts subjected to 20 min of total ischemia and 30 min of reperfusion. In control hearts, the rate-pressure product (RPP) and first derivative of pressure development over time (+dP/dt) recovered to 57 +/- 3 and 58 +/- 3% of preischemia, respectively. Diastolic pressure remained elevated at 20 +/- 2 mmHg (compared with 3 +/- 1 mmHg preischemia). Interstitial adenosine, assessed by microdialysis, rose from approximately 0.3 to 1.9 microM during ischemia compared with approximately 15 microM in rat heart. Nonetheless, these levels will near maximally activate A(1)ARs on the basis of effects of exogenous adenosine and 2-chloroadenosine. Neither A(1)AR blockade with 200 nM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) during the ischemic period alone nor A(1)AR activation with 50 nM N(6)-cyclopentyladenosine altered rapidity or extent of ischemic contracture. However, ischemic DPCPX treatment significantly depressed postischemic recovery of RPP and +dP/dt (44 +/- 3 and 40 +/- 4% of preischemia, respectively). DPCPX treatment during the reperfusion period alone also reduced recovery of RPP and +dP/dt (to 44 +/- 2 and 47 +/- 2% of preischemia, respectively). These data indicate that 1) interstitial adenosine is lower in mouse versus rat myocardium during ischemia, 2) A(1)AR activation by endogenous adenosine or exogenous agonists does not modify ischemic contracture in murine myocardium, 3) A(1)AR activation by endogenous adenosine during ischemia attenuates postischemic stunning, and 4) A(1)AR activation by endogenous adenosine during the reperfusion period also improves postischemic contractile recovery.  相似文献   

20.
We investigated the effects of in vivo treatment with the angiotensin-converting enzyme inhibitor (ACE-I) captopril and/or of in vitro administration of L-arginine on the metabolism and ischemia-reperfusion injury of the isolated perfused rat myocardium. Captopril (50 mg/l in drinking water, 4 weeks) raised the myocardial content of glycogen. After 25-min global ischemia, captopril treatment, compared with the controls, resulted in lower rates of lactate dehydrogenase release during reperfusion (8.58 +/- 1.12 vs. 13.39 +/- 1.88 U/heart/30 min, p<0.05), lower myocardial lactate contents (11.34 +/- 0.93 vs. 21.22 +/- 4.28 micromol/g d.w., p<0.05) and higher coronary flow recovery (by 25%), and prevented the decrease of NO release into the perfusate during reperfusion. In control hearts L-arginine added to the perfusate (1 mmol/l) 10 min before ischemia had no effect on the parameters evaluated under our experimental conditions, presumably because of sufficient saturation of the myocardium with L-arginine. In the hearts of captopril-treated rats, L-arginine further increased NO production during reperfusion and the cGMP content before ischemia. Our results have shown that long-term captopril treatment increases the energy potential and has a beneficial effect on tolerance of the isolated heart to ischemia. L-arginine added into the perfusate potentiates the effect of captopril on the NO signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号