首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostaglandin E2 (PGE2) is shown to be essential for female reproduction. Cyclooxygenase (COX) is a rate-limiting enzyme in prostaglandin synthesis from arachidonic acid and exists in two isoforms: COX-1 and COX-2. Prostaglandin E synthase (PGES) is a terminal prostanoid synthase and can catalyse the isomerization of the COX product PGH2 to PGE2, including microsomal PGES-1 (mPGES-1), cytosolic PGES (cPGES) and mPGES-2. This study examined the protein expression of COX-1, COX-2, mPGES-1, cPGES and mPGES-2 in preimplantation mouse embryos by immunohistochemistry. Embryos at different stages collected from oviducts or uteri were transferred into a flushed oviduct of non-pregnant mice. The oviducts containing embryos were paraffin-embedded and processed for immunostaining. COX-1 immunostaining was at a basal level in zygotes and a low level at the 2-cell stage, reaching a high level from the 4-cell to blastocyst stage. COX-2 immunostaining was at a low level at the zygote stage and was maintained at a high level from the 2-cell to blastocyst stages. A low level of mPGES-1 immunostaining was observed from the zygote to 8-cell stages. The signal for mPGES-1 immunostaining became stronger at the morula stage and was strongly seen at the blastocyst stage. cPGES immunostaining was strongly observed in zygotes, 2-cell and 8-cell embryos. There was a slight decrease in cPGES immunostaining at the 4-cell, morula and blastocyst stages. mPGES-2 immunostaining was at a low level from the zygote to morula stages and at a high level at the blastocyst stage. We found that the COX-1, COX-2, mPGES-1, cPGES and mPGES-2 protein signals were all at a high level at the blastocyst stage. PGE2 produced during the preimplantation development may play roles during embryo transport and implantation.  相似文献   

2.
We have previously shown that the cyclooxygenase (COX)-2/PGE2 pathway plays a key role in VEGF production in gastric fibroblasts. Recent studies have identified three PGE synthase (PGES) isozymes: cytosolic PGES (cPGES) and microsomal PGES (mPGES)-1 and -2, but little is known regarding the expression and roles of these enzymes in gastric fibroblasts. Thus we examined IL-1beta-stimulated mPGES-1 and cPGES mRNA and protein expression in gastric fibroblasts by quantitative PCR and Western blot analysis, respectively, and studied both their relationship to COX-1 and -2 and their roles in PGE2 and VEGF production in vitro. IL-1beta stimulated increases in both COX-2 and mPGES-1 mRNA and protein expression levels. However, COX-2 mRNA and protein expression were more rapidly induced than mPGES-1 mRNA and protein expression. Furthermore, MK-886, a nonselective mPGES-1 inhibitor, failed to inhibit IL-1beta-induced PGE2 release at the 8-h time point, while totally inhibiting PGE2 at the later stage. However, MK-886 did inhibit IL-1beta-stimulated PGES activity in vitro by 86.8%. N-(2-cyclohexyloxy-4-nitrophenyl)-methanesulfonamide (NS-398), a selective COX-2 inhibitor, totally inhibited PGE2 production at both the 8-h and 24-h time points, suggesting that COX-2-dependent PGE2 generation does not depend on mPGES-1 activity at the early stage. In contrast, NS-398 did not inhibit VEGF production at 8 h, and only partially at 24 h, whereas MK-886 totally inhibited VEGF production at each time point. These results suggest that IL-1beta-induced mPGES-1 protein expression preferentially coupled with COX-2 protein at late stages of PGE2 production and that IL-1beta-stimulated VEGF production was totally dependent on membrane-associated proteins involved in eicosanoid and glutathione metabolism (MAPEG) superfamily proteins, which includes mPGES-1, but was partially dependent on the COX-2/PGE2 pathway.  相似文献   

3.
Prostaglandin E2 (PGE2) is the major primary prostaglandin generated by brain cells. However, the coordination and intracellular localization of the cyclooxygenases (COXs) and prostaglandin E synthases (PGESs) that convert arachidonic acid to PGE2 in brain tissue are not known. We aimed to determine whether microsomal and cytosolic PGES (mPGES-1 and cPGES) colocalize and coordinate activity with either COX-1 or COX-2 in brain tissue, particularly during development. Importantly, we found that cytosolic PGES also associates with microsomes (cPGES-m) from the cerebrum and cerebral vasculature of the pig and rat as well as microsomes from various cell lines; this seemed dependent on the carboxyl terminal 35-amino acid domain and a cysteine residue (C58) of cPGES. In microsomal membranes from the postnatal brain and cerebral microvessels of mature animals, cPGES-m colocalized with both COX-1 and COX-2, whereas mPGES-1 was undetectable in these microsomes. Accordingly, in this cell compartment, cPGES could coordinate its activity with COX-2 and COX-1 (partly inhibited by NS398); albeit in microsomes of the brain microvasculature from newborns, mPGES-1 was also present. In contrast, in nuclei of brain parenchymal and endothelial cells, mPGES-1 and cPGES colocalized exclusively with COX-2 (determined by immunoblotting and immunohistochemistry); these PGESs contributed to conversion of PGH2 into PGE2. Hence, contrary to a previously proposed model of exclusive COX-2/mPGES-1 coordination, COX-2 can coordinate with mPGES-1 and/or cPGES in the brain, depending on the cell compartment and the age group.  相似文献   

4.
We investigated possible involvement of three isozymes of prostaglandin E synthase (PGES), microsomal PGES-1 (mPGES-1), mPGES-2 and cytosolic PGES (cPGES) in COX-2-dependent prostaglandin E(2) (PGE(2)) formation following proteinase-activated receptor-2 (PAR2) stimulation in human lung epithelial cells. PAR2 stimulation up-regulated mPGES-1 as well as COX-2, but not mPGES-2 or cPGES, leading to PGE(2) formation. The PAR2-triggered up-regulation of mPGES-1 was suppressed by inhibitors of COX-1, cytosolic phospholipase A(2) (cPLA(2)) and MEK, but not COX-2. Finally, a selective inhibitor of mPGES-1 strongly suppressed the PAR2-evoked PGE(2) formation. PAR2 thus appears to trigger specific up-regulation of mPGES-1 that is dependent on prostanoids formed via the MEK/ERK/cPLA(2)/COX-1 pathway, being critical for PGE(2) formation.  相似文献   

5.
Biosynthesis of prostanoids is regulated by three sequential enzymatic steps, namely phospholipase A2 enzymes, cyclooxygenase (COX) enzymes, and various lineagespecific terminal prostanoid synthases. Prostaglandin E synthase (PGES), which isomerizes COX-derived PGH2 specifically to PGE2, occurs in multiple forms with distinct enzymatic properties, expressions, localizations and functions. Two of them are membrane-bound enzymes and have been designated as mPGES-1 and mPGES-2. mPGES-1 is a perinuclear protein that is markedly induced by proinflammatory stimuli, is down-regulated by antiinflammatory glucocorticoids, and is functionally coupled with COX-2 in marked preference to COX-1. Recent gene targeting studies of mPGES-1 have revealed that this enzyme represents a novel target for anti-inflammatory and anti-cancer drugs. mPGES-2 is synthesized as a Golgi membrane-associated protein, and the proteolytic removal of the N-terminal hydrophobic domain leads to the formation of a mature cytosolic enzyme. This enzyme is rather constitutively expressed in various cells and tissues and is functionally coupled with both COX-1 and COX-2. Cytosolic PGES (cPGES) is constitutively expressed in a wide variety of cells and is functionally linked to COX-1 to promote immediate PGE2 production. This review highlights the latest understanding of the expression, regulation and functions of these three PGES enzymes.  相似文献   

6.
7.
Prostaglandin E2 (PGE2) is a key mediator involved in several inflammatory conditions. In this study, we investigated the expression and regulation of the terminal PGE2 synthesizing enzyme prostaglandin E synthases (mPGES-1, mPGES-2 and cPGES) in gingival fibroblasts stimulated with pro-inflammatory cytokines. We used siRNA knockdown of mPGES-1 to elucidate the impact of mPGES-1 inhibition on mPGES-2 and cPGES expression, as well as on PGE2 production. The cytokines TNFalpha and IL-1beta increased protein expression and activity of mPGES-1, accompanied by increased COX-2 expression and PGE2 production. The isoenzymes mPGES-2 and cPGES, constitutively expressed at mRNA and protein levels, were unaffected by the pro-inflammatory cytokines. We show for the first time that treatment with mPGES-1 siRNA down-regulated the cytokine-induced mPGES-1 protein expression and activity. Interestingly, mPGES-1 siRNA did not affect the cytokine-stimulated PGE2 production, whereas PGF(2alpha) levels were enhanced. Neither mPGES-2 nor cPGES expression was affected by siRNA silencing of mPGES-1. Dexamethasone and MK-886 both inhibited the cytokine-induced mPGES-1 expression while mPGES-2 and cPGES expression remained unaffected. In conclusion, mPGES-1 siRNA down-regulates mPGES-1 expression, and neither mPGES-2 nor cPGES substituted for mPGES-1 in a knockdown setting in gingival fibroblasts. Moreover, mPGES-1 siRNA did not affect PGE2 levels, whereas PGF(2alpha) increased, suggesting a compensatory pathway of PGE2 synthesis when mPGES-1 is knocked down.  相似文献   

8.
The oviduct is a specialized organ responsible for the storage and the transport of male and female gametes. It also provides an optimal environment for final gamete maturation, fertilization, and early embryo development. Prostaglandin (PG) E2 is involved in many female reproductive functions, including ovulation, fertilization, implantation, and parturition. However, the control of its synthesis in the oviduct is not fully understood. Cyclooxygenases (COXs) are involved in the first step of the transformation of arachidonic acid to PGH2. The prostaglandin E synthases (PGESs) constitute a family of enzymes that catalyze the conversion of PGH2 to PGE2, the terminal step in the formation of this bioactive prostaglandin. Quantitative real-time PCR was used to determine the expression of COX-1, COX-2, microsomal prostaglandin E synthase-1 (mPGES-1), microsomal prostaglandin E synthase-2 (mPGES-2), and cytosolic prostaglandin E synthase (cPGES) mRNA in various sections of the oviduct, both ipsilateral and contralateral (to the ovary on which ovulation occurred) at various stages of the estrous cycle. Furthermore, protein expression and localization of cPGES, mPGES-1, and mPGES-2 were determined by Western blot and immunohistochemistry. All three PGESs were detected at both mRNA and protein levels in the oviduct. These PGESs were mostly concentrated in the oviductal epithelial layer and primarily expressed in the ampulla section of the oviduct and to a lesser extent in the isthmus and the isthmic-ampullary junction. The mPGES-1 protein was highly expressed in the contralateral oviduct, which contrasted with mPGES-2 mostly expressed in the ipsilateral oviduct. This is apparently the first report documenting that the three PGESs involved in PGE2 production were present in the Bos taurus oviduct.  相似文献   

9.
To better define the role of the various prostanoid synthases in the adjuvant-induced arthritis (AIA) model, we have determined the temporal expression of the inducible PGE synthase (mPGES-1), mPGES-2, the cytosolic PGES (cPGES/p23), and prostacyclin synthase, and compared with that of cyclooxygenase-1 (COX-1) and COX-2. The profile of induction of mPGES-1 (50- to 80-fold) in the primary paw was similar to that of COX-2 by both RNA and protein analysis. Quantitative PCR analysis indicated that induction of mPGES-1 at day 15 was within 2-fold that of COX-2. Increased PGES activity was measurable in membrane preparations of inflamed paws, and the activity was inhibitable by MK-886 to >or=90% with a potency similar to that of recombinant rat mPGES-1 (IC(50) = 2.4 microM). The RNA of the newly described mPGES-2 decreased by 2- to 3-fold in primary paws between days 1 and 15 postadjuvant. The cPGES/p23 and COX-1 were induced during AIA, but at much lower levels (2- to 6-fold) than mPGES-1, with the peak of cPGES/p23 expression occurring later than that of COX-2 and PGE(2) production. Prostacyclin (measured as 6-keto-PGF(1alpha)) was transiently elevated on day 1, and prostacyclin synthase was down-regulated at the RNA level after day 3, suggesting a diminished role of prostacyclin during the maintenance of chronic inflammation in the rat AIA. These results show that mPGES-1 is up-regulated throughout the development of AIA and suggest that it plays a major role in the elevated production of PGE(2) in this model.  相似文献   

10.
The recent identification and cloning of two glutathione-dependent prostaglandin E(2) synthase (PGES) genes has yielded important insights into the terminal step of PGE(2) synthesis. These enzymes form efficient functional pairs with specific members of the prostaglandin-endoperoxide H synthase (PGHS) family. Microsomal PGES (mPGES) is inducible and works more efficiently with PGHS-2, the inflammatory cyclooxygenase, while the cytoplasmic isoform (cPGES) pairs functionally with PGHS-1, the cyclooxygenase that ordinarily exhibits constitutive expression. KAT-50, a well differentiated thyroid epithelial cell line, expresses high levels of PGHS-2 but surprisingly low levels of PGE(2) when compared with human orbital fibroblasts. Moreover, PGHS-1 protein cannot be detected in KAT-50. We report here that KAT-50 cells express high basal levels of cPGES but mPGES mRNA and protein are undetectable. Thus, KAT-50 cells express the inefficient PGHS-2/cPGES pair, and this results in modest PGE(2) production. The high levels of cPGES and the absence of mPGES expression result from dramatic differences in the activities of their respective gene promoters. When mPGES is expressed in KAT-50 by transiently transfecting the cells, PGE(2) production is up-regulated substantially. These observations indicate that naturally occurring cells can express a suboptimal profile of PGHS and PGES isoforms, resulting in diminished levels of PGE(2) generation.  相似文献   

11.
Microsomal prostaglandin E synthase (mPGES)-1, which is dramatically induced in macrophages by inflammatory stimuli such as lipopolysaccharide (LPS), catalyzes the conversion of cyclooxygenase-2 (COX-2) reaction product prostaglandin H(2) (PGH(2)) into prostaglandin E(2) (PGE(2)). The mPGES-1-derived PGE(2) is thought to help regulate inflammatory responses. On the other hand, excess PGE(2) derived from mPGES-1 contributes to the development of inflammatory diseases such as arthritis and inflammatory pain. Here, we examined the effects of liver X receptor (LXR) ligands on LPS-induced mPGES-1 expression in murine peritoneal macrophages. The LXR ligands 22(R)-hydroxycholesterol (22R-HC) and T0901317 reduced LPS-induced expression of mPGES-1 mRNA and mPGES-1 protein as well as that of COX-2 protein. However, LXR ligands did not influence the expression of microsomal PGES-2 (mPGES-2) or cytosolic PGES (cPGES) protein. Consequently, LXR ligands suppressed the production of PGE(2) in macrophages. These results suggest that LXR ligands diminish PGE(2) production by inhibiting the LPS-induced gene expression of the COX-2-mPGES-1 axis in LPS-activated macrophages.  相似文献   

12.
13.
Arachidonic acid is converted to prostaglandin E(2) (PGE(2)) by a sequential enzymatic reaction performed by two isoenzyme groups, cyclooxygenases (COX-1 and COX-2) and terminal prostaglandin E synthases (cPGES, mPGES-1, and mPGES-2). mPGES-1 is widely considered to be the final enzyme regulating COX-2-dependent PGE(2) synthesis. These generalizations have been based in most part on experiments utilizing gene expression analyses of cell lines and tumor tissue. To assess the relevance of these generalizations to a native mammalian tissue, we used isolated human and rodent pancreatic islets to examine interleukin (IL)-1β-induced PGE(2) production, because PGE(2) has been shown to mediate IL-1β inhibition of islet function. Rat islets constitutively expressed mRNAs of COX-1, COX-2, cPGES, and mPGES-1. As expected, IL-1β increased mRNA levels for COX-2 and mPGES-1, but not for COX-1 or cPGES. Basal protein levels of COX-1, cPGES, and mPGES-2 were readily detected in whole cell extracts but were not regulated by IL-1β. IL-1β increased protein levels of COX-2, but unexpectedly mPGES-1 protein levels were low and unaffected. In microsomal extracts, mPGES-1 protein was barely detectable in rat islets but clearly present in human islets; however, in neither case did IL-1β increase mPGES-1 protein levels. To further assess the importance of mPGES-1 to IL-1β regulation of an islet physiologic response, glucose-stimulated insulin secretion was examined in isolated islets of WT and mPGES-1-deficient mice. IL-1β inhibited glucose-stimulated insulin secretion equally in both WT and mPGES-1(-/-) islets, indicating that COX-2, not mPGES-1, mediates IL-1β-induced PGE(2) production and subsequent inhibition of insulin secretion.  相似文献   

14.
In this paper we investigated the possible involvement of prostaglandin E synthases (PGESs) in compensatory mechanism. Our findings showed that microsomal (m)PGES-1 expression was significantly up-regulated in COX knock-out (K/O) cells whereas the expression of cytosolic PGES was not changed indicating that the induction of mPGES-1 may, at least in part, contribute to the substantial increase of PGE2 production in COX K/O cell lines. The selective up-regulation of mPGES-1 in COX-2 K/O cells suggests that mPGES-1 may be metabolically coupled with COX-1 for PGE2 formation. Addition of arachidonic acid caused significant induction of mPGES-1 and COX-2 in WT cells, whereas COX-1 and cPGES were not affected. Our earlier and the current studies demonstrate the coregulation of cPLA2, COX, and mPGES-1, in PGE2 synthesis pathway, and that these enzymes contribute to the elevation of PGE2 level when one COX isoform is absent.  相似文献   

15.
Mechanical stress and prostaglandin E2 synthesis in cartilage   总被引:1,自引:0,他引:1  
Knee osteoarthritis (OA) results, at least in part, from overloading and inflammation leading to cartilage degradation. Prostaglandin E2 (PGE2) is one of the main catabolic factors involved in OA in which metalloproteinase (MMP) is crucial for cartilage degradation. Its synthesis is the result of cyclooxygenase (COX) and prostaglandin E synthase (PGES) activities whereas NAD+-dependent 15 hydroxy-prostaglandin dehydrogenase (15-PGDH) is the key enzyme implicated in the catabolism of PGE2. Among the isoforms described, COX-1 and cytosolic PGES are constitutively expressed whereas COX-2 and microsomal PGES type 1 (mPGES-1) are inducible in an inflammatory context. We investigated the regulation of the COX, PGES and 15-PGDH and MMP-2, MMP-9 and MMP-13 genes by mechanical stress applied to cartilage explants. Mouse cartilage explants were subjected to compression (0.5 Hz, 1 MPa) from 2 to 24 h. After determination of the PGE2 release in the media, mRNA and proteins were extracted directly from the cartilage explants and analyzed by real-time RT-PCR and western blot respectively. Mechanical compression of cartilage explants significantly increased PGE2 production in a time dependent manner. This was not due to the synthesis of IL-1, since pretreatment with IL1-Ra did not alter the PGE2 synthesis. Interestingly, COX-2 and mPGES-1 mRNA expression significantly increased after 2 hours, in parallel with protein expression. Moreover, we observed a delayed overexpression of 15-PGDH just before the decline of PGE2 synthesis after 18 hours suggesting that PGE2 synthesis could be altered by the induction of 15-PGDH expression. MAPK are involved in signaling, since specific inhibitors partially inhibited COX-2 and mPGES-1 expressions. Lastly, compression induced MMP-2, -9, -13 mRNA expressions in cartilage. We conclude that dynamic compression induces pro-inflammatroy mediators release and matrix degradating enzymes synthesis. Notably, compression increases mPGES-1 mRNA and protein expression in cartilage explants. Thus, the mechanosensitive mPGES-1 enzyme represents a potential therapeutic target in osteoarthritis.  相似文献   

16.
Current evidence suggests that two forms of prostaglandin (PG) E synthase (PGES), cytosolic PGES and membrane-bound PGES (mPGES) -1, preferentially lie downstream of cyclooxygenase (COX) -1 and -2, respectively, in the PGE2 biosynthetic pathway. In this study, we examined the expression and functional aspects of the third PGES enzyme, mPGES-2, in mammalian cells and tissues. mPGES-2 was synthesized as a Golgi membrane-associated protein, and spontaneous cleavage of the N-terminal hydrophobic domain led to the formation of a truncated mature protein that was distributed in the cytosol with a trend to be enriched in the perinuclear region. In several cell lines, mPGES-2 promoted PGE2 production via both COX-1 and COX-2 in the immediate and delayed responses with modest COX-2 preference. In contrast to the marked inducibility of mPGES-1, mPGES-2 was constitutively expressed in various cells and tissues and was not increased appreciably during tissue inflammation or damage. Interestingly, a considerable elevation of mPGES-2 expression was observed in human colorectal cancer. Collectively, mPGES-2 is a unique PGES that can be coupled with both COXs and may play a role in the production of the PGE2 involved in both tissue homeostasis and disease.  相似文献   

17.
Here we report the molecular identification of cytosolic glutathione (GSH)-dependent prostaglandin (PG) E(2) synthase (cPGES), a terminal enzyme of the cyclooxygenase (COX)-1-mediated PGE(2) biosynthetic pathway. GSH-dependent PGES activity in the cytosol of rat brains, but not of other tissues, increased 3-fold after lipopolysaccharide (LPS) challenge. Peptide microsequencing of purified enzyme revealed that it was identical to p23, which is reportedly the weakly bound component of the steroid hormone receptor/hsp90 complex. Recombinant p23 expressed in Escherichia coli and 293 cells exhibited all the features of PGES activity detected in rat brain cytosol. A tyrosine residue near the N terminus (Tyr(9)), which is known to be critical for the activity of cytosolic GSH S-transferases, was essential for PGES activity. The expression of cPGES/p23 was constitutive and was unaltered by proinflammatory stimuli in various cells and tissues, except that it was increased significantly in rat brain after LPS treatment. cPGES/p23 was functionally linked with COX-1 in marked preference to COX-2 to produce PGE(2) from exogenous and endogenous arachidonic acid, the latter being supplied by cytosolic phospholipase A(2) in the immediate response. Thus, functional coupling between COX-1 and cPGES/p23 may contribute to production of the PGE(2) that plays a role in maintenance of tissue homeostasis.  相似文献   

18.
We have recently reported that cyclooxygenase (COX)-2-deficiency affects brain upstream and downstream enzymes in the arachidonic acid (AA) metabolic pathway to prostaglandin E2 (PGE2), as well as enzyme activity, protein and mRNA levels of the reciprocal isozyme, COX-1. To gain a better insight into the specific roles of COX isoforms and characterize the interactions between upstream and downstream enzymes in brain AA cascade, we examined the expression and activity of COX-2 and phospholipase A2 enzymes (cPLA2 and sPLA2), as well as the expression of terminal prostaglandin E synthases (cPGES, mPGES-1, and - 2) in wild type and COX-1(-/-) mice. We found that brain PGE2 concentration was significantly increased, whereas thromboxane B2 (TXB2) concentration was decreased in COX-1(-/-) mice. There was a compensatory up-regulation of COX-2, accompanied by the activation of the NF-kappaB pathway, and also an increase in the upstream cPLA2 and sPLA2 enzymes. The mechanism of NF-kappaB activation in the COX-1(-/-) mice involved the up-regulation of protein expression of the p50 and p65 subunits of NF-kappaB, as well as the increased protein levels of phosphorylated IkappaBalpha and of phosphorylated IKKalpha/beta. Overall, our data suggest that COX-1 and COX-2 play a distinct role in brain PG biosynthesis, with basal PGE2 production being metabolically coupled with COX-2 and TXB2 production being preferentially linked to COX-1. Additionally, COX-1 deficiency can affect the expression of reciprocal and coupled enzymes, COX-2, Ca2+ -dependent PLA2, and terminal mPGES-2, to overcome defects in brain AA cascade.  相似文献   

19.
Prostaglandin E(2) (PGE(2)) is the most common prostanoid and has a variety of bioactivities including a crucial role in urogenital function. Multiple enzymes are involved in its biosynthesis. Among 3 PGE(2) terminal synthetic enzymes, membrane-associated PGE(2) synthase-2 (mPGES-2) is the most recently identified, and its role remains uncharacterized. In previous studies, membrane-associated PGE(2) synthase-1 (mPGES-1) and cytosolic PGE(2) synthase (cPGES) were reported to be expressed along the urogenital tracts. Here we report the genomic structure and tissue distribution of mPGES-2 in the urogenital system. Analysis of several bioinformatic databases demonstrated that mouse mPGES-2 spans 7 kb and consists of 7 exons. The mPGES-2 promoter contains multiple Sp1 sites and a GC box without a TATA box motif. Real-time quantitative PCR revealed that constitutive mPGES-2 mRNA was most abundant in the heart, brain, kidney and small intestine. In the urogenital system, mPGES-2 was highly expressed in the renal cortex, followed by the renal medulla and ovary, with lower levels in the ureter, bladder and uterus. Immunohistochemistry studies indicated that mPGES-2 was ubiquitously expressed along the nephron, with much lower levels in the glomeruli. In the ureter and bladder, mPGES-2 was mainly localized to the urothelium. In the reproductive system, mPGES-2 was restricted to the epithelial cells of the testis, epididymis, vas deferens and seminal vesicle in males, and oocytes, stroma cells and corpus luteum of the ovary and epithelial cells of the oviduct and uterus in females. This expression pattern is consistent with an important role for mPGES-2-mediated PGE(2) in urogenital function.  相似文献   

20.
Prostaglandin E(2) (PGE(2)) is considered important for blastocyst spacing, implantation, and decidualization in rodent uteri. PGE synthase (PGES) catalyzes the isomerization of PGH(2) to PGE(2). Two isoforms of PGES exist: microsomal PGES (mPGES) and cytosolic PGES (cPGES); however, the expression and regulation of cPGES in the mammalian uterus during early pregnancy are still unknown. The aim of this study was to investigate the differential expression of cPGES in mouse uterus during early pregnancy and its regulation under different conditions using in situ hybridization and immunohistochemistry. A strong level of cPGES mRNA signal was exhibited in the stromal cells at the implantation site on Day 5 of pregnancy, whereas cPGES immunostaining was strongly detected in the luminal epithelium. The signals for both cPGES mRNA and immunostaining were strongly detected in the decidualized cells from Days 6-8 of pregnancy. A basal level of cPGES mRNA signal and immunostaining was exhibited in the uterus in delayed implantation. After delayed implantation was terminated by estrogen treatment and embryo implantation was initiated, cPGES mRNA signal was strongly detected in the stroma underlying the luminal epithelium at the implantation site, and cPGES immunostaining was strongly observed in the luminal epithelium surrounding the implanting blastocyst. A strong cPGES mRNA signal and immunostaining were detected in decidualized cells under artificial decidualization, whereas only a basal level of cPGES mRNA signal and immunostaining were observed in the control horn. Our data suggest that cPGES may play an important role during implantation and decidualization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号