首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas putida DTB grew aerobically with N,N-diethyl-m-toluamide (DEET) as a sole carbon source, initially breaking it down into 3-methylbenzoate and diethylamine. The former was further metabolized via 3-methylcatechol and meta ring cleavage. A gene from DTB, dthA, was heterologously expressed and shown to encode the ability to hydrolyze DEET into 3-methylbenzoate and diethylamine.  相似文献   

2.
N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm2 of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm2 of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm2 of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system.  相似文献   

3.
Recent studies suggest that N, N-diethyl-meta-toluamide (DEET) is an acetylcholinesterase inhibitor and that this action may result in neurotoxicity and pose a risk to humans from its use as an insect repellent. We investigated the mode of action of DEET neurotoxicity in order to define the specific neuronal targets related to its acute toxicity in insects and mammals. Although toxic to mosquitoes (LD50 ca. 1.5 µg/mg), DEET was a poor acetylcholinesterase inhibitor (<10% inhibition), even at a concentration of 10 mM. IC50 values for DEET against Drosophila melanogaster, Musca domestica, and human acetylcholinesterases were 6–12 mM. Neurophysiological recordings showed that DEET had excitatory effects on the housefly larval central nervous system (EC50: 120 µM), but was over 300-fold less potent than propoxur, a standard anticholinesterase insecticide. Phentolamine, an octopamine receptor antagonist, completely blocked the central neuroexcitation by DEET and octopamine, but was essentially ineffective against hyperexcitation by propoxur and 4-aminopyridine, a potassium channel blocker. DEET was found to illuminate the firefly light organ, a tissue utilizing octopamine as the principal neurotransmitter. Additionally, DEET was shown to increase internal free calcium via the octopamine receptors of Sf21 cells, an effect blocked by phentolamine. DEET also blocked Na+ and K+ channels in patch clamped rat cortical neurons, with IC50 values in the micromolar range. These findings suggest DEET is likely targeting octopaminergic synapses to induce neuroexcitation and toxicity in insects, while acetylcholinesterase in both insects and mammals has low (mM) sensitivity to DEET. The ion channel blocking action of DEET in neurons may contribute to the numbness experienced after inadvertent application to the lips or mouth of humans.  相似文献   

4.
For many years it has been accepted that DEET interferes with the detection of odours from the host instead of having a repellent effect. However, recent work showed that DEET acts as an odorant molecule and elicits a behavioural response in the absence of other stimuli. Therefore, DEET must promote some phenomenon connected with the stimuli-sensory system interaction, such as a sensory adaptation, where the sensory system regulates its sensitivity to different stimuli intensities during continuous or repetitive exposure. In this work, we studied different aspects of the insect-DEET interaction through behavioural observations. Previous exposure of fifth instar Rhodnius prolixus nymphs to DEET decreased the behavioural response to this repellent. We observed a decrease in repellence after different times of continuous stimulation with DEET in a time-dependent manner. The response to DEET was recovered 10 min after exposure, when insects were continuously stimulated during 5 or 10 min; maximum repellence was recovered 20 min after exposure when insects were stimulated for 20 min. DEET produced a repellent effect when nymphs were exposed only to its vapours. These results suggest that exposure to DEET produces adaptation in R. prolixus nymphs, and that the behavioural response elicited by DEET occurs via olfaction when no other stimuli are present.  相似文献   

5.
Matthew DeGennaro 《Fly》2015,9(1):45-51
DEET is the most effective insect repellent available and has been widely used for more than half a century. Here, I review what is known about the olfactory and contact mechanisms of DEET repellency. For mosquitoes, DEET has at least two molecular targets: Odorant Receptors (ORs) mediate the effect of DEET at a distance, while unknown chemoreceptors mediate repellency upon contact. Additionally, the ionotropic receptor Ir40a has recently been identified as a putative DEET chemosensor in Drosophila. The mechanism of how DEET manipulates these molecular targets to induce insect avoidance in the vapor phase is also contested. Two hypotheses are the most likely: DEET activates an innate olfactory neural circuit leading to avoidance of hosts (smell and avoid hypothesis) or DEET has no behavioral effect on its own, but instead acts cooperatively with host odors to drive repellency (confusant hypothesis). Resolving this mystery will inform the search for a new generation of insect repellents.  相似文献   

6.
DEET (N,N-Diethyl-m-toluamide) is one of the most widely used mosquito repellents. Although DEET has been shown to be extremely effective, recent studies have revealed that certain individual insects are unaffected by its presence. A genetic basis for this has been shown in Aedes aegypti mosquitoes and the fruit fly Drosophila melanogaster, but, for the triatomine bug, Rhodnius prolixus, a decrease in response to DEET occurred shortly after previous exposure, indicating that non-genetic factors may also be involved in DEET “insensitivity”. In this study, we examined host-seeking behaviour and electrophysiological responses of A. aegypti after pre-exposure to DEET. We found that three hours after pre-exposure the mosquitoes showed behavioural insensitivity, and electroantennography revealed this correlated with the olfactory receptor neurons responding less to DEET. The change in behaviour as a result of pre-exposure to DEET has implications for the use of repellents and the ability of mosquitoes to overcome them.  相似文献   

7.
Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases. By using electrophysiological, biochemichal, in vivo toxicological techniques together with calcium imaging, binding studies and in silico docking, we have shown that DEET, at low concentrations, interacts with high affinity with insect M1/M3 mAChR allosteric site potentiating agonist effects on mAChRs coupled to phospholipase C second messenger pathway. This increases the anticholinesterase activity of the carbamate propoxur through calcium-dependent regulation of acetylcholinesterase. At high concentrations, DEET interacts with low affinity on distinct M1/M3 mAChR site, counteracting the potentiation. Similar dose-dependent dual effects of DEET have also been observed at synaptic mAChR level. Additionally, binding and in silico docking studies performed on human M1 and M3 mAChR subtypes indicate that DEET only displays a low affinity antagonist profile on these M1/M3 mAChRs. These results reveal a selective high affinity positive allosteric site for DEET in insect mAChRs. Finally, bioassays conducted on Aedes aegypti confirm the synergistic interaction between DEET and propoxur observed in vitro, resulting in a higher mortality of mosquitoes. Our findings reveal an unusual allosterically potentiating action of the repellent DEET, which involves a selective site in insect. These results open exciting research areas in public health particularly in the control of the pyrethroid-resistant insect-vector borne diseases. Mixing low doses of DEET and a non-pyrethroid insecticide will lead to improvement in the efficiency treatments thus reducing both the concentration of active ingredients and side effects for non-target organisms. The discovery of this insect specific site may pave the way for the development of new strategies essential in the management of chemical use against resistant mosquitoes.  相似文献   

8.
Insect repellents are topically applied to the skin and clothing of human and pet to keep flies, mosquitoes, and ticks away. Two important repellents, N,N-diethyl-meta-toluamide (DEET) and Picaridin, have been widely used since their discovery. Although repellency and toxicological effects of DEET and Picaridin on human being and insects are well documented without understanding molecular mechanisms, there have been no attempts to study their effects on microorganisms up to now. In the current study, DEET and Picaridin have been investigated for their antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and fungi for the first time. They exhibited considerable antibacterial, anticandidal and antifungal properties. Even though bacteria was found to be more sensitive to Picaridin, yeast and fungi were more susceptible to DEET. Antimicrobial properties of these two repellents will increase the usage and application areas of the products containing DEET and Picaridin.  相似文献   

9.
《Fly》2013,7(1):45-51
DEET is the most effective insect repellent available and has been widely used for more than half a century. Here, I review what is known about the olfactory and contact mechanisms of DEET repellency. For mosquitoes, DEET has at least two molecular targets: Odorant Receptors (ORs) mediate the effect of DEET at a distance, while unknown chemoreceptors mediate repellency upon contact. Additionally, the ionotropic receptor Ir40a has recently been identified as a putative DEET chemosensor in Drosophila. The mechanism of how DEET manipulates these molecular targets to induce insect avoidance in the vapor phase is also contested. Two hypotheses are the most likely: DEET activates an innate olfactory neural circuit leading to avoidance of hosts (smell and avoid hypothesis) or DEET has no behavioral effect on its own, but instead acts cooperatively with host odors to drive repellency (confusant hypothesis). Resolving this mystery will inform the search for a new generation of insect repellents.  相似文献   

10.
N,N-diethyl-m-toluamide (DEET) is an insect repellent used worldwide, and a common micropollutant in aquatic environments. However, few studies have addressed the molecular mechanism of DEET toxicity and its effects on cell growth and apoptosis. The purpose of this study was to investigate the effect of DEET on the expression of the cell cycle and apoptosis regulatory proteins in human BE(2)-M17 cells. The results showed that DEET significantly decreased the cell viability (40.6 ∼ 68.9% of control) at concentrations of 500 ∼ 4,000 mg/L. Also, DEET significantly decreased the expressions of CDK 2, CDK 4, and cyclin D1 (3.9 ∼ 86.6% of control), at concentrations of 50 ∼ 400 mg/L but from 100 mg/L for cyclin E. Furthermore, DEET significantly increased the expression of caspase-3 (223.1 ∼ 1,770.6% of control), but significantly decreased Bcl-2 expression (46.1 ∼ 86.3% of control) at all concentrations tested. In conclusion, DEET partially affected the expression of CDK/cyclin molecules, but fully affected the expressions of caspase-3 and Bcl-2 in BE(2)-M17 cells.  相似文献   

11.
The present study was conducted to determine whether imidacloprid can impair the avoidance behaviour of the mosquito Stegomyia aegypti. Laboratory investigations using a T‐maze apparatus showed that St. aegypti mosquitoes present long term avoidance behaviour when they are exposed to repetitive trials with lemon oil and DEET. The present study tested the effect of a sublethal dose of imidacloprid on the avoidance behaviour of St. aegypti mosquitoes over a 48 h period. Data suggest that 0.5 ng of imidacloprid/mosquito reduces the avoidance behaviour of mosquitoes exposed to lemon oil, on the first day of exposure, after the second trial; whereas imidacloprid affected DEET repellency only the first day of exposure, after the second trial. Imidacloprid was toxic against St. aegypti mosquitoes, and at sublethal doses was able to impair the repellency induced by lemon oil and DEET. The present data were consistent with the finding that St. aegypti mosquitoes exhibit long term avoidance behaviour, and treatment of mosquitoes with a sublethal dose of imidacloprid under DEET application can affect the repellency of DEET against St. aegypti.  相似文献   

12.
Coping strategies including smoke screens are used against nuisance bites of Simulium damnosum Theobald (Diptera:Simuliidae) in onchocerciasis endemic communities. To find more effective alternatives, the efficacy of commercially available N,N‐diethyl‐3‐methylbenzamide (DEET) products with active concentrations of 9.5, 13, 25, 50 and 98.1–100% and ‘NO MAS,’ (active component: para‐menthane‐3,8‐diol and lemon grass oil) were tested at Bui‐Agblekame, Ghana. A Latin square study design was implemented using eight groups of two vector collectors each, who used repellents (treatment), mineral oil or nothing each day until the end of the study. Flies were caught and their numbers each hour recorded using the standard methods for onchocerciasis transmission studies. T‐tests were used to compare the mean duration of protection and a one‐way analysis of variance controlling for catchers and repellents was performed. Tukey's test was used to compare protection by repellents and mineral oil. The highest percentage protection was 80.8% by NO MAS and the least 42.5% by the 13% DEET product. The period of absolute protection was 5 h by NO MAS and 1 h by 50% DEET product. No significant increase in protection was offered beyond 25% active DEET products and no significance was observed in terms of catcher × repellent effect (F = 1.731, d.f. = 48, P = 0.209).  相似文献   

13.
A coupled achiral-chiral liquid chromatographic assay has been developed to determine the concentrations of metyrapone and the enantiomers of its chiral metabolite metyrapol in plasma and urine. The chromatographic system consisted of a silica precolumn (75 × 4.6 mm I.D.) coupled in-line to a 250 × 4.6 mm I.D. column containing cellulose tris(4-methylbenzoate) coated on silica gel (Chiralcel OJ-CSP). When plasma samples were analyzed, the mobile phase was hexane-ethanol (92:8, v/v) modified with 0.1% diethylamine and when urine samples were analyzed the mobile phase was hexane-ethanol (94:6, v/v) modified with 0.2% diethylamine. Under these chromatographic conditions the chromatographic retentions [expressed as capacity factors (k′)] for metyrapone were k′ = 2.35 (plasma) and 2.52 (urine); for (−)-metyrapol k′ = 4.22 (plasma) and 4.62 (urine); for (+)-metyrapone k′ = 5.16 (plasma) and 5.86 (urine); enantioselectivities (α) were 1.09 (plasma) and 1.13 (urine). The assay has been validated for use in metabolic studies. The analyses of plasma and urine samples from one subject following oral administration of 750 mg of metyrapone indicated that the enzymatic reduction of myterapone by aldo-keto reductase was enantiospecific.  相似文献   

14.
Active biological containment systems consist of two components, a killing element designed to induce cell death and a control element which modulates the expression of the killing function. We constructed a mini-Tn5 transposon bearing a fusion of the Plac promoter to the gef killing gene and a fusion of the Pm promoter to the lacI gene plus the positive regulator of the Pm promoter, the xylS gene. This mini-Tn5 transposon was transferred to the chromosome of Pseudomonas putida CMC4, and in culture this strain survived in the presence of 3-methylbenzoate (an XylS effector) and committed suicide in the absence of this aromatic compound. The rate of killing escape was on the order of 10−8 per cell and per generation. This contained strain and an uncontained control strain were used in outdoor tests performed in the spring-summer and autumn-winter periods to determine their survival in planted and unplanted soils with and without 3-methylbenzoate. In unplanted soils the numbers of both the contained strain and the uncontained strain per gram of soil tended to decrease, but the numbers of the contained strain decreased faster in soils without 3-methylbenzoate. The decrease in the number of CFU per gram of soil was faster in the spring-summer period than in the autumn-winter period. In planted soils survival in the rhizosphere and survival in bulk soil were studied. In the rhizosphere the uncontained control strain tended to become established at levels on the order of 105 to 106 CFU/g of soil regardless of the presence of 3-methylbenzoate. In the bulk soil the numbers of bacterial cells were 2 to 3 orders of magnitude lower. In planted soils the contained strain tended to disappear, but this tendency was more pronounced in the absence of 3-methylbenzoate and occurred faster in the summer assay than in the winter assay. We found no evidence of dispersal of the test strains outside the experimental plots.  相似文献   

15.
N,N-diethyl-3-methylbenzamide (DEET) is widely used as an insect repellent; however, little is known about its mode of action. On the other hand, nitric oxide (NO) participates in the olfaction transduction pathway of insects. In this work, nitroso-acetyl-cysteine (SNAC), a nitric oxide donor, or dibutyril-cyclic-GMP (db-cGMP), the cyclic nucleotide analog, were applied on fifth instar nymphs of Rhodnius prolixus before exposing them to DEET, to obtain information about the possible role of NO/cGMP system in the olfaction process. In the first place, we exposed the nymphs to several DEET concentrations (70, 700, 1,750, and 3,500 microg/cm2). All these concentrations produced a repellent effect. A decrease in repellency during the course of the experiment was observed when the nymphs were exposed to high concentrations of DEET (700 and 1,750 microg/cm2), suggesting an adaptation phenomenon. The pre-treatment of the insects with 15 microg /insect of SNAC or 2 microg/insect of db-cGMP produced a reduction of the repellency. An increase in locomotor activity was observed in insects exposed to 350 or 700 microg/cm2 DEET. Although exposure to 70 microg/cm2 DEET produced a high repellency response, it did not modify the insects' locomotor activity. Insects treated with two doses of SNAC before being exposed to 350 microg/cm2 of DEET showed no differences in locomotor activity compared to controls.  相似文献   

16.
The simultaneous use of the repellent DEET, pyridostigmine, and organophosphorus pesticides has been assumed as a potential cause for the Gulf War Illness and combinations have been tested in different animal models. However, human in vitro data on interactions of DEET with other compounds are scarce and provoked the present in vitro study scrutinizing the interactions of DEET, pyridostigmine and pesticides with human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE). DEET showed to be a weak and reversible inhibitor of hAChE and hBChE. The IC(50) of DEET was calculated to be 21.7mM DEET for hAChE and 3.2mM DEET for hBChE. The determination of the inhibition kinetics of pyridostigmine, malaoxon and chlorpyrifos oxon with hAChE in the presence of 5mM DEET resulted in a moderate reduction of the inhibition rate constant k(i). The decarbamoylation velocity of pyridostigmine-inhibited hAChE was not affected by DEET. In conclusion, the in vitro investigation of interactions between human cholinesterases, DEET, pyridostigmine, malaoxon and chlorpyrifos oxon showed a weak inhibition of hAChE and hBChE by DEET. The inhibitory potency of the tested cholinesterase inhibitors was not enhanced by DEET and it did not affect the regeneration velocity of pyridostigmine-inhibited AChE. Hence, this in vitro study does not give any evidence of a synergistic effect of the tested compounds on human cholinesterases.  相似文献   

17.
DEET (N,N-diethyl-3-methylbenzamide) is the active ingredient used in many commonly used insect repellents, but its mode of action remains poorly understood. Efforts to identify properties that could lead to the development of more effective active ingredients have distinguished among DEET’s repellent, deterrent, and insecticidal activities. We used an Aedes albopictus mosquito cell line to evaluate DEET’s toxicological properties in the absence of sensory input mediated by the olfactory system. When cells were treated with DEET and labeled with [35S]methionine/cysteine, a single 25-kDa protein was induced, relative to other proteins, on SDS–polyacrylamide gels. The 25-kDa band from DEET-treated cells was enriched in peptides corresponding to glutathione S-transferase D10 and/or theta in the Aedes aegypti genome. Consistent with the increased expression of the labeled protein, DEET-treated cells had increased glutathione S-transferase activity, and the radiolabeled band bound to Sepharose 4B containing reduced glutathione. By analyzing partial tryptic digests, we established that DEET induces the homolog of A. aegypti glutathione S-transferase, class theta, corresponding to protein XP_001658009.1 in the NCBI database. This specific effect of DEET at the subcellular level suggests that DEET induces physiological responses that extend beyond recognition by the peripheral olfactory system.  相似文献   

18.
This study determined the effects of contact with DEET on guinea pig skin on mortality, probing time, blood feeding rate, engorgement time, and fecundity responses in female Anopheles quadrimaculatus Say. Exposure, in this manner, to 10% DEET (in ethanol) for 5 min, resulted in 98% mortality in mosquitoes after 24h. The median probing time (PT(50)) required by females, when exposed to 0.1%, 1.0%, and 10% DEET, was significantly (P<0.0001) longer (12.5, 12.1, and 19.1s, respectively) than the 6.8s required by females to probe ethanol-treated skin (control). Similarly, mean blood feeding rates in populations of females exposed to 1.0% DEET for < or = 5 min (14.4%) was 6x lower (P<0.001) (85.5%) than in females exposed to ethanol-treated skin, whereas the mean engorgement time on skin treated with 1.0% DEET (66.3s) was significantly shorter (P<0.0001) than for females feeding on the control guinea pigs (105.9s). The mean number of mature o?cytes per female (fecundity) in treatment (1.0% DEET) and control mosquitoes was not significantly different. The responses to DEET observed in this study suggest that repeated exposure of female A. quadrimaculatus populations to this repellent, in laboratory bioassays, could result in confounding of toxicant and repellent effects and inaccurate estimates of DEET repellency.  相似文献   

19.
Subcultures of Pseudomonas putida R5-3 altered their plasmid DNA content in specific ways depending on the particular aromatic hydrocarbon utilized as the sole carbon source. Two indigenous plasmids, 115 and 95 kilobases (kb) in size, were observed in R5-3A, which was derived from R5-3 by growth on minimal medium containing p-methylbenzoate as the sole carbon source. When R5-3A was transferred to medium containing m-xylene or toluene, derivative strains were obtained in which the 95-kb plasmid was lost and a new plasmid of 50 or 60 kb appeared. Reversion to the original plasmid profile of R5-3A was observed when xylene- or toluene-grown cells were returned to medium containing p-methylbenzoate. Restriction enzyme analysis and Southern blot hybridizations of total plasmid DNA indicated deletions and rearrangements of DNA restriction fragments in the derivatives maintained on m-xylene and toluene when compared with the original R5-3A. In the derivatives which retrieved the original plasmid profile, the restriction enzyme fragment pattern was identical to that in the original R5-3A, in that the fragments which were missing after growth on m-xylene or toluene were again present. Southern blot hybridizations revealed that part of the plasmid DNA lost from the original plasmid profile was integrated into the chromosomal DNA of xylene-grown R5-3B and that these plasmid fragments were associated with aromatic hydrocarbon metabolism. Hybridization with pathway-specific DNA fragments from the TOL plasmid pWWO indicated that this 95-kb plasmid contains DNA homologous to the meta-fission pathway genes.  相似文献   

20.
Topical application of DEET for schistosomiasis   总被引:1,自引:0,他引:1  
N, N-diethyl-m-toluamide (also known as DEET) is a broad-spectrum insect repellent that is used extensively against both human and animal pests, worldwide. Recent studies show that topical lipid formulations of DEET, such as LipoDEET, are highly effective in killing schistosome cercariae in the skin. Minimal systemic absorption, low manufacturing cost, and a wide range of activity against insects and schistosomes potentially makes compounds such as LipoDEET an excellent prophylactic agent against human and animal schistosomiasis in endemic areas, especially for travelers, until an effective vaccine is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号