首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytic and regulatory domains of the Rel/Spo homolog of Streptococcus equisimilis affecting (p)ppGpp synthesis and degradation activities have been defined, and opposing activities of the purified protein and its fragments have been compared. Two major domains of the 739-residue Rel(Seq) protein are defined by limited proteolytic digestion. In vitro assays of the purified N-terminal half-protein reveal synthesis of (p)ppGpp by an ATP-GTP 3'-pyrophosphotransferase as well as an ability to degrade (p)ppGpp by a Mn(2+)-dependent 3'-pyrophosphohydrolase. Removal of the C-terminal half-protein has reciprocal regulatory effects on the activities of the N-terminal half-protein. Compared to the full-length protein, deletion activates (p)ppGpp synthesis specific activity about 12-fold and simultaneously inhibits (p)ppGpp degradation specific activity about 150-fold to shift the balance of the two activities in favor of synthesis. Cellular (p)ppGpp accumulation behavior is consistent with these changes. The bifunctional N-terminal half-protein can be further dissected into overlapping monofunctional subdomains, since purified peptides display either degradation activity (residues 1 to 224) or synthetic activity (residues 79 to 385) in vitro. These assignments can also apply to RelA and SpoT. The ability of Rel(Seq) to mediate (p)ppGpp accumulation during amino acid starvation in S. equisimilis is absent when the protein is expressed ectopically in Escherichia coli. Fusing the N-terminal half of Rel(Seq) with the C-terminal domain of RelA creates a chimeric protein that restores the stringent response in E. coli by inhibiting unregulated degradation and restoring regulated synthetic activity. Reciprocal intramolecular regulation of the dual activities may be a general intrinsic feature of Rel/Spo homolog proteins.  相似文献   

2.
Bacteria respond to nutritional stresses by producing an intracellular alarmone, guanosine 5'-(tri)diphosphate, 3'-diphosphate [(p)ppGpp], which triggers the stringent response resulting in growth arrest and expression of resistance genes. In Escherichia coli, upon fatty acid or carbon starvation, SpoT enzyme activity switches from (p)ppGpp degradation to (p)ppGpp synthesis, but the signal and mechanism for this response remain totally unknown. Here, we characterize for the first time a physical interaction between SpoT and acyl carrier protein (ACP) using affinity co-purifications and two-hybrid in E. coli. ACP, as a central cofactor in fatty acid synthesis, may be an ideal candidate as a mediator signalling starvation to SpoT. Accordingly, we show that the ACP/SpoT interaction is specific of SpoT and ACP functions because ACP does not interact with the homologous RelA protein and because SpoT does not interact with a non-functional ACP. Using truncated SpoT fusion proteins, we demonstrate further that ACP binds the central TGS domain of SpoT, consistent with a role in regulation. The behaviours of SpoT point mutants that do not interact with ACP reveal modifications of the balance between the two opposite SpoT catalytic activities thereby changing (p)ppGpp levels. More importantly, these mutants fail to trigger (p)ppGpp accumulation in response to fatty acid synthesis inhibition, supporting the hypothesis that the ACP/SpoT interaction may be involved in SpoT-dependent stress response. This leads us to propose a model in which ACP carries information describing the status of cellular fatty acid metabolism, which in turn can trigger the conformational switch in SpoT leading to (p)ppGpp accumulation.  相似文献   

3.
In a wild-type strain (relA+) of Escherichia coli, starvation of amino acid led to an immediate cessation of the synthesis of stable ribonucleic acids, together with the accumulation of an unusual nucleotide, guanosine 5'-diphosphate 3'-diphosphate, commonly known as ppGpp. This compound also accumulated during heat shock. When temperature-sensitive protein synthesis elongation factor G (EF-G) was introduced into E. coli NF859, a relA+ strain, the synthesis of ppGpp was reduced to approximately one-half that of wild-type EF-G+ cells at a nonpermissive temperature of 40 degrees C. Furthermore, fusidic acid, an inhibitor of protein synthesis which specifically inactivates EF-G, prevented any accumulation of ppGpp during the heat shock. We suggest that a functional EF-G protein is necessary for ppGpp accumulation under temperature shift conditions, possibly by mediating changes in the function of another protein, the relA gene product. However, EF-G is probably not required for the synthesis of ppGpp during the stringent response, since its inactivation did not prevent ppGpp accumulation during amino acid starvation.  相似文献   

4.
Guanosine 3'-diphosphate 5'-diphosphate (ppGpp) selectively reduces the synthesis of su+III tRNA from omega 80 psu+III DNA relative to the synthesis of omega 80 RNA in a system in vitro containing DNA and Escherichia coli RNA polymerase holoenzyme as the sole macromolecular components. The response of su+III tRNA synthesis to increasing salt and to temperature in the presence of ppGpp suggests that the nucleotide may reduce the affinity of the enzyme for su+III promoters. The Ki for the selective inhibition of tRNA synthesis by ppGpp is 4 muM in contrast to the value of 150 muM for the inhibition of rRNA synthesis.  相似文献   

5.
The effect of polyamines on the in vitro and in vivo synthesis and degradation on guanosine 5'-diphosphate 3'-diphosphate (ppGpp) has been studied in Escherichia coli. The presence of 2 mM spermidine lowered the optimal Mg2+ concentration for ppGpp formation from 17 mM to 11 mM. The formation of ppGpp in the presence of 2 mM spermidine and 11 mM Mg2+ was about 15% greater than that in the presence of 17 mM Mg2+. At a concentration of less than 11 mM Mg2+, spermidine was found to stimulate ppGpp formation greatly. Putrescine did not cause any effect. When a polyamine-requiring mutant of E. coli (EWH319) was starved for an amino acid by the addition of valine, spermidine stimulated ppGpp formation. The degradation of ppGpp was not influenced significantly by polyamines.  相似文献   

6.
Guanosine 3'-diphosphate 5'-diphosphate (ppGpp) is rapidly degraded to guanosine 5'-diphosphate (ppG) and probably pyrophosphate by an enzyme present in the ribosomal fraction prepared from spoT+ strains of Escherichia coli. The ppGpp-degrading enzyme was released from the ribosomes during dissociation at low ionic strength. Ribosomes are not essential for degradation of ppGpp, and decay of ppGpp is strictly dependent on manganese ions. The reaction is sensitive to inhibition by tetracycline, which can be reversed by MnCl2, indicating that the inhibitory effect is due to the previously described chelating properties of the antibiotic. When the ppGpp-degrading enzyme was complemented with adenosine 5'-triphosphate (pppA) and a nucleoside diphosphate kinase, decay of ppGpp was accelerated yielding pppG and ppG as major products. In the absence of pppA we have been unable to detect the ppGpp-degrading enzyme in various spoT- mutant strains indicating that this enzyme is the spoT gene product.  相似文献   

7.
8.
E A Heinemeyer  D Richter 《Biochemistry》1978,17(25):5368-5372
Guanosine 5'-triphosphate 3'-diphosphate (pppGpp) and guanosine 5'-diphosphate 3'-diphosphate (ppGpp) are specifically degraded by a manganese-dependent pyrophosphorylase present in spoT+ but not in spoT- strains of Escherichia coli, indicating that the enzyme is the spoT gene product. The enzyme catalyzes the release of pyrophosphate from the 3' position of ppGpp or pppGpp, yielding ppG and pppG, respectively; pppGpp could not be detected as an intermediate in the decay reaction. Degradation of (p)ppGpp is optimal in the presence of 200 to 300 mM potassium or sodium acetate, at a pH of 7.5 to 8 and a temperature of 37 degrees C.  相似文献   

9.
Through the use of a new nucleotide extraction procedure, we had previously shown that relaxed mutants of Escherichia coli exhibit a unique response to amino acid starvation (Lagosky, P. A., and Chang, F. N. (1980) J. Bacteriol. 144, 499-508). The basal level amounts of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in both relA and phenotypically relaxed relA+ rplK (relC) strains were shown to decrease at the onset of amino acid limitation and to remain severely depressed throughout the course of the starvation. Upon resupplementation of amino acid-starved relaxed mutants, the production of ppGpp resumes and results in the temporary overaccumulation of this nucleotide beyond its original basal level amount. We now show that the basal level ppGpp content of relaxed bacteria, as well as its subsequent fluctuations in response to amino acid starvation, is inversely correlated with the initial rates of RNA synthesis in these strains. The ability of ppGpp to control the rate of protein synthesis in relA mutants was also examined. It was observed that ppGpp had no apparent direct effect on the initial rates of protein synthesis in relA mutants. The constant inverse correlation which exists between ppGpp content in relA mutants, and their rates of RNa synthesis provide evidence which indicates that basal level ppGpp synthesis has definite physiological significance. It also suggests that the synthesis of basal level ppGpp might be an absolute requirement needed for normal bacterial growth.  相似文献   

10.
We have previously described a mutant strain of Escherichia coli (2S142) which shows a specific inhibition of stable RNA synthesis at 42 degrees C. The temperature-sensitive lesion mimics a carbon source downshift (diauxie lag). We therefore measured RNA synthesis and levels of ppGpp (guanosine 5'-diphosphate 3'-diphosphate) on a number of different carbon sources. There is a 6-fold variation in ppGpp levels at 42 degrees C, depending on the carbon source present. Much of the variation in ppGpp levels at 42 degrees C can be explained by variations in the decay rate of ppGpp at 42 degrees C. The rates of ribosomal RNA and total RNA synthesis also vary with the carbon source at 42 degrees C. Linear regression analysis shows only a moderately good correlation (correlation coefficient = 0.62, P = 0.0001) between the ppGpp level at 42 degrees C and the rate of rRNA synthesis at 42 degrees C. In fact, ppGpp levels are a slightly better predictor of the rate of total RNA synthesis (correlation coefficient = 0.69, P = 0.0001) at 42 degrees C. Other variables such as rate of carbon source uptake appear to have very little, if any, relationship to the rate of rRNA synthesis on the different carbon sources. Segmented linear regression analysis indicates that ppGpp levels and rates of RNA synthesis correlate best when the carbon sources are divided into two groups: 6- and 12-carbon sugars and other carbon sources. The rate of rRNA synthesis in 2S142 at 42 degrees C appears to be relatively insensitive to ppGpp levels with 6- and 12-carbon sugars as the carbon source. These data raise the possibility that carbon source may affect rRNA synthesis in a manner that is at least partially unrelated to ppGpp levels.  相似文献   

11.
A radioimmunoassay for guanosine-5'-diphosphate-3'-diphosphate (ppGpp) and adenosine-5'-triphosphate-3'-diphosphate (pppApp) has been developed. The assay method is based on competition of an unlabeled highly phosphorylated nucleotide with 3H-labeled highly phosphorylated nucleotide for binding sites on a specific antibody. Antibodies to ppGpp and pppApp were obtained by immunizing rabbits with the antigen prepared by conjugating ppGpp with human serum albumin using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, and with the antigen prepared by conjugating 8-(6-aminohexyl)amino-adenosine-5'-triphosphate-3'-diphosphate with human serum albumin using glutaraldehyde, respectively. Antibody-bound 3H-labeled highly phosphorylated nucleotides were separated from the free 3H-labeled highly phosphorylated nucleotides by selective adsorption on dextran-coated charcoal. Displacement plots were linear over a concentration range of 5-1,000 pmol/assay tube in a log-probit percentage plot. Application of this method to biological systems offers improved accuracy and convenience compared with the previous 32PO4-labeling technique.  相似文献   

12.
Derepression of nitrogen fixation (nif) genes in Klebsiella pneumoniae following transfer from NH+4-sufficiency to N-free medium was preceded by rapid expansion of the guanosine 5'-diphosphate 3'-diphosphate (ppGpp) pool. When derepressed in N-free medium supplemented with glutamine (600 micrograms ml-1), expression from the nifH and nifL promoters, determined as beta-galactosidase activity in nif::lac merodiploid strains, was stimulated 7-fold and nitrogenase activity 26-fold; ppGpp did not accumulate, remaining at the levels found in NH+4-repressed populations. The relaxed mutant K. pneumoniae relA40, which accumulates only very low levels of ppGpp, showed partial derepression of nitrogenase activity in the presence of glutamine, thus ppGpp is unlikely to be an effector of nif expression. ATP and GTP levels were elevated under conditions where nif expression was enhanced, consistent with previous data suggesting that maintenance of ATP levels is a prerequisite for the expression of nif genes in K. pneumoniae.  相似文献   

13.
The guanine dissociation inhibitors RhoGDI and D4GDI inhibit guanosine 5'-diphosphate dissociation from Rho GTPases, keeping these small GTPases in an inactive state. The GDIs are made up of two domains: a flexible N-terminal domain of about 70 amino acid residues and a folded 134-residue C-terminal domain. Here, we characterize the conformation of the N-terminal regions of both RhoGDI and D4GDI using a series of NMR experiments which include (15)N relaxation and amide solvent accessibility measurements. In each protein, two regions with tendencies to form helices are identified: residues 36 to 58 and 9 to 20 in RhoGDI, and residues 36 to 57 and 20 to 25 in D4GDI. To examine the functional roles of the N-terminal domain of RhoGDI, in vitro and in vivo functional assays have been carried out with N-terminally truncated proteins. These studies show that the first 30 amino acid residues are not required for inhibition of GDP dissociation but appear to be important for GTP hydrolysis, whilst removal of the first 41 residues completely abolish the ability of RhoGDI to inhibit GDP dissociation. The combination of structural and functional studies allows us to explain why RhoGDI and D4GDI are able to interact in similar ways with the guanosine 5'-diphosphate-bound GTPase, but differ in their ability to regulate GTP-bound forms; these functional differences are attributed to the conformational differences of the N-terminal domains of the guanosine 5'-diphosphate dissociation inhibitors. Therefore, the two transient helices, appear to be associated with different biological effects of RhoGDI, providing a clear example of structure-activity relationships in a flexible protein domain.  相似文献   

14.
Addition of divalent ion chelating agents picolinic acid, 1,10-phenanthroline, or quinoline-2-carboxylic acid to wild type, relA, or relX, but not spoT strains of Escherichia coli increases the levels of guanosine 5'-diphosphate 3'-diphosphate (ppGpp). Poorly chelating analogs of these agents and a larger and more highly charged chelating agent, ethylene glycol bis(beta-amino-ethyl ether) N,N,N',N'-tetraacetic acid are ineffective. Mn2+ reverses the increase in ppGpp. The increase in ppGpp in wild type cells can be explained by an inhibition of degradation. In spoT cells the response is more complex; ppGpp does not increase although degradation is completely inhibited. The lack of increase in spoT cells suggests a role for spoT in synthesis of ppGpp in addition to its known role in degradation. Growth of both spoT+ and spoT cells is inhibited following chelator addition. This suggests that growth inhibition is through a mechanism not directly involving ppGpp. The results of this study provide evidence in intact cells for a role for Mn2+ and the spoT gene product in ppGpp degradation, and provide further evidence for an involvement of spoT and possibly divalent ions in ppGpp synthesis.  相似文献   

15.
Amino acid substitutions were introduced into a structurally flexible and highly conserved region of Escherichia coli SpoT protein. SpoT protein changed from Asp to Ala at the 293rd position did not restore cell growth of E. coli CF8295 (delta relA, delta spoT) and did not accumulate ppGpp in the cell, suggesting that the Asp293 is indispensable for ppGpp synthesis of the protein.  相似文献   

16.
Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) were identified in the vegative mycelium of Streptomyces griseus. Adenosine 5'-diphosphate 3'-diphosphate (ppApp) and adenosine 5'-triphosphate 3'-diphosphate (pppApp) were not present but several other phosphorus-containing compounds which may have been inorganic polyphosphates were detected. During exponential growth of S. griseus the concentrations of ppGpp and pppGpp were several times higher than in the stationary stage. They fell sharply when exponential growth ended and then remained at an almost constant basal level. For the tetraphosphate the maximum concentration was about 50, and for the basal level about 10, pmol per millilitre of a culture with an optical density of 1.0. Production of streptomycin started several hours after exponential growth had ended and the concentrations of ppGpp and pppGpp had fallen. Streptomycin synthesis was delayed if the cells were resuspended just before production started in fresh medium lacking phosphate, but it was not delayed by glucose starvation. Both cultures, as well as cultures transferred to nitrogen-free medium, showed an immediate increase in ppGpp content to about four-fold the basal level. The results suggest that the guanosine polyphosphates do not directly control initiation of streptomycin production in S. griseus. Twelve additional species of Streptomyces examined all contained ppGpp and pppGpp.  相似文献   

17.
A Kumar  S H Wilson 《Biochemistry》1990,29(48):10717-10722
A1 is a major core protein of the mammalian hnRNP complex, and as a purified protein of approximately 34 kDa, A1 is a strong single-stranded nucleic acid binding protein. Several lines of evidence suggest that the protein is organized in discrete domains consisting of an N-terminal segment of approximately 22 kDa and a C-terminal segment of approximately 12 kDa. Each of these domains as a purified fragment is capable of binding to both ssDNA and RNA. We report here that A1 and its C-terminal domain fragment are capable of potent strand-annealing activity for base-pair complementary single-stranded polynucleotides of both RNA and DNA. This effect is not stimulated by ATP. Compared with A1 and the C-terminal fragment, the N-terminal domain fragment has negligible annealing activity. These results indicate that A1 has biochemical activity consistent with a strand-annealing role in relevant reactions, such as pre-mRNA splicing.  相似文献   

18.
Arthrofactin is a biosurfactant produced by Pseudomonas sp. MIS38. We have reported that transposon insertion into spoT (spoT::Tn5) causes moderate accumulation of guanosine 3',5'-bispyrophosphate (ppGpp) and abrogates arthrofactin production. To analyze the linkage of SpoT function and ablation of arthrofactin production, we examined the spoT::Tn5 mutation. The results showed that spoT::Tn5 is not a null mutation, but encodes separate segments of SpoT. Deletion of the 3' region of spoT increased the level of arthrofactin production, suggesting that the C-terminal region of SpoT plays a suppressive role. We evaluated the expression of a distinct segment of SpoT. Forced expression of the C-terminal region that contains the ACT domain resulted in the accumulation of ppGpp and abrogated arthrofactin production. Expression of the C-terminal segment also reduced MIS38 swarming and resulted in extensive biofilm formation, which constitutes the phenocopy of the spoT::Tn5 mutant.  相似文献   

19.
The spoT gene of Escherichia coli encodes a guanosine 3′,5′-bis(diphosphate) 3′-pyrophosphohydrolase (ppGppase) as well as an apparent guanosine 3′,5′-bis(diphosphate) synthetase (designated PSII). To determine the regions of the SpoT protein that are required for these two competing activities, we analysed plasmid-borne deletion mutations for their ability to complement chromosomal mutations defective in each activity. We found that a region containing the first 203 amino acids of the 702-amino-acid SpoT protein was sufficient for ppGppase activity while an overlapping region containing residues 67–374 was sufficient for PSII activity. These data indicate that the catalytic sites involved in the two activities are separate but closely linked in the primary sequence of the SpoT protein. A ppGppase-defective Δ1–58 deletion mutant strain failed to synthesize ppGpp in response to nutrient limitation, also supporting the notion that PSII activity from wild-type SpoT does not increase in response to nutrient limitation. Using a strain lacking PSII activity but retaining ppGppase activity, we determined the contribution of the RelA protein (ppGpp synthetase I, PSI) to ppGpp synthesis following glucose starvation. We found that the RelA protein activity accounts for the initial burst of ppGpp synthesis at the onset of glucose starvation but that this source of synthesis is absent when amino acids are present during glucose starvation.  相似文献   

20.
Under conditions where nM level of calmodulin was able to show full activation of myosin light chain kinase and cyclic-nucleotide phosphodiesterase, the fragments of calmodulin at concentrations as high as 20 microM failed to activate these enzymes in the presence of Ca2+. The fragments tested were Ala1-Lys75 (F12), Ala1-Arg74 (F12'), Lys75-Lys148 (F34'), Met76-Lys148 (F34'), Asp78-Lys148 (F34), Ala1-Arg106 (F123), and His107-Lys148 (F4). Purification of the proteolytic fragments through HPLC was necessary to remove contaminant calmodulin. Among the fragments, that corresponding to the C-terminal half domain inhibited myosin light chain kinase activity with the inhibition constant of 13 microM. The integrated structure of calmodulin consisting of N-terminal half domain, C-terminal half domain, and the linker peptide was indispensable for the enzyme activation. We discuss the functions of the two structural domains (N-domain and C-domain) in the activation of various enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号