首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxyhemoglobin (OxyHb) can suppress voltage-dependent K(+) channel (K(V)) currents through protein tyrosine kinase activation, which may contribute to cerebral vasospasm following subarachnoid hemorrhage. Here we have tested the hypothesis that shedding of heparin-binding EGF-like growth factor (HB-EGF) and the resulting activation of the tyrosine kinase EGF receptor (EGFR) underlie OxyHb-induced K(V) channel suppression in the cerebral vasculature. With the use of the conventional whole cell patch-clamp technique, two EGFR ligands, EGF and HB-EGF, were found to mimic OxyHb-induced K(V) suppression in rabbit cerebral artery myocytes. K(V) current suppression by OxyHb or EGF ligands was eliminated by a specific EGFR inhibitor, AG-1478, but was unaffected by PKC inhibition. Compounds (heparin and CRM-197) that specifically interfere with HB-EGF signaling eliminated OxyHb-induced K(V) suppression, suggesting that HB-EGF is the EGFR ligand involved in this pathway. HB-EGF exists as a precursor protein that, when cleaved by matrix metalloproteases (MMPs), causes EGFR activation. MMP activation was detected in OxyHb-treated arteries by gelatin zymography. Furthermore, the MMP inhibitor (GM-6001) abolished OxyHb-induced K(V) current suppression. We also observed K(V) current suppression due to EGFR activation in human cerebral artery myocytes. In conclusion, these data demonstrate that OxyHb induces MMP activation, causing HB-EGF shedding and enhanced EGFR activity, ultimately leading to K(V) channel suppression. We propose that EGFR-mediated K(V) suppression contributes to vascular pathologies, such as cerebral vasospasm, and may play a more widespread role in the regulation of regional blood flow and peripheral resistance.  相似文献   

2.
There is increasing evidence that the conversion of big endothelin-1 (big ET-1) to endothelin-1 (ET-1) is specifically inhibited by the metalloproteinase inhibitor phosphoramidon. We investigated the effect of phosphoramidon on delayed cerebral vasospasm from subarachnoid hemorrhage (SAH) using a two-hemorrhage canine model. The magnitude of the vasospasm and the drug effect were determined angiographically. On SAH Day 7, diameter of the basilar artery decreased to about 55% of the control value obtained before SAH (on Day 0). Immunoreactive ET (IR-ET) in the cerebrospinal fluid (CSF) significantly increased after SAH (on Day 7). The intracisternal pretreatment of phosphoramidon potently suppressed the decrease in diameter of the basilar artery after SAH, i.e., observed decrease was only about 20%, compared with the value before SAH. In the phosphoramidon group, IR-ET in CSF markedly increased (on SAH Day 2), but the increased levels of IR-ET significantly declined on SAH Day 7. These results clearly indicate that phosphoramidon effectively prevents delayed cerebral vasospasm. Whether the prevention is due to the inhibition of conversion of big ET-1 to ET-1 is now under study.  相似文献   

3.
Endothelin-1 (ET-1) and oxyhemoglobin (OxyHb) have been implicated in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage. However, the contribution of ET-1 to this condition has not been definitely established. In this study, we investigated whether threshold concentration of ET-1 enhances cerebrovascular smooth muscle (CVSM) contraction to OxyHb by activating the RhoA/Rho kinase and protein kinase C (PKC) pathways. CVSM contraction was measured in endothelium-denuded rabbit basilar arteries. Cytosolic and particulate fractions of CVSM cells were examined for RhoA and PKC reactivity with specific antibodies using immunoblotting procedures. ET-1 (0.1 nM) alone did not produce any significant contraction, but it markedly potentiated the magnitude (223% of control) and rate (149% of control) of contraction in response to OxyHb, which was attenuated by the inhibitors of Rho kinase Y-27632 and HA-1077. ET-1-mediated potentiation of the contraction was also inhibited by inhibitors of PKC, Ro-32-0432, and GF-109203X. BQ-123 prevented potentiation of vasoconstriction mediated by ET-1, indicating that the action of ET-1 was mediated by the endothelin type A receptor. Pretreatment with ET-1 significantly enhanced OxyHb-mediated RhoA translocation in CVSM cells and intact basilar arteries. ET-1 also caused potentiation of PKC-epsilon expression in membranes of CVSM cells exposed to OxyHb for 10 and 60 min but did not markedly change the distribution of PKC-alpha. Thus, in CVSM, threshold concentration of ET-1 potentiates contraction induced by OxyHb via RhoA/Rho kinase- and PKC-epsilon-dependent mechanisms. This process may contribute to the pathological contraction of cerebral arteries observed after subarachnoid hemorrhage.  相似文献   

4.
Role of MAPK in chronic cerebral vasospasm   总被引:7,自引:0,他引:7  
Aoki K  Zubkov AY  Tibbs RE  Zhang JH 《Life sciences》2002,70(16):1901-1908
This study was undertaken to investigate the role of p44/42 MAPK in a dog double hemorrhage model of subarachnoid hemorrhage (SAH), and whether MEK inhibitors can alter the degree of SAH-induced vasoconstriction. The diameter of the basilar artery, which was compared with day 0 angiogram, decreased gradually in a time-dependent manner from day 3 (80%), day 5 (68%) through day 7 (53.5%). The level of MAPK (p44/42) immunoprecipitation peaked on day 3 and remained enhanced through day 7 (P < 0.05). MEK inhibitor PD98059 significantly reduced p44/42 MAPK immunoprecipitation and significantly reversed vasospasm and increased residual diameter to 79.0% on day 7. These results demonstrated that p44/42 MAPK kinase is involved in the pathogenesis of cerebral vasospasm. The MEK inhibitor PD98059 might be useful in the treatment of vasospasm.  相似文献   

5.
p21(Waf1/Cip1) (hereafter referred to as p21) is up-regulated in differentiating and DNA-damaged cells, but it is also up-regulated by serum and growth factors. We show here that fibroblast growth factor-2 (FGF-2), platelet-derived growth factor (PDGF), and transforming growth factor-beta1 (TGF-beta1) all induce p21 expression in mouse fibroblasts, but with markedly different kinetics. We link their effect on p21 to Ras and mitogen-activated protein kinase kinase-1(/2) [MEK1(/2)]-regulated pathways using either a specific MEK1(/2) inhibitor (PD 098059) or cells expressing conditionally activated Ras or dominant negative Ras. We demonstrate that p21 induction by PDGF and TGF-beta1 requires MEK1(/2) and, additionally, that the TGF-beta1 effect on p21 depends on Ras, whereas the PDGF effect does not. In contrast, FGF-2 regulation of p21 is largely independent of MEK and Ras. However, PD 098059 efficiently inhibited S-phase entry of quiescent cells induced by either FGF-2 or PDGF, suggesting separate signaling pathways for FGF-2 in induction of p21 and in S-phase entry. The results suggest different but partly overlapping signaling pathways in growth factor regulation of p21.  相似文献   

6.
7.
Vasospasm after subarachnoid hemorrhage (SAH) is associated with lipid peroxidation. However, lipid peroxides increase in a delayed fashion after SAH and may be a byproduct of but not a cause of vasospasm. This study correlated vasospasm with hydroxyl free radical and lipid peroxide levels. 24 dogs had baseline cerebral angiography and induction of SAH by 2 injections of blood into the cisterna magna at baseline and 2 days later. Angiography was repeated 4, 7, 10, 14 or 21 days after the first injection (n = 4 per group) and a microdialysis catheter was inserted into the premedullary cistern. Control dogs (n = 4) underwent angiography and microdialysis but not SAH. Salicylic acid, 100 mg/kg, was administered intravenously, and microdialysis fluid was collected and analyzed by high pressure liquid chromatography for 2,3- and 2,5-dihydroxybenzoic acids (DHBA). Malondialdehyde was measured in subarachnoid clot removed from the prepontine cistern and in the basilar artery itself at the time of euthanasia. Significant vasospasm developed 4 to 14 days after SAH. Malondialdehyde levels were significantly elevated in the basilar artery and subarachnoid clot 4 days after SAH (p < 0.0001, ANOVA) but not at other times. 2,5-DHBA levels were significantly greater than control at 4 to 14 days and they peaked at 4 days (p < 0.05, ANOVA). 2,3-DHBA was significantly increased at 4 days after SAH (p < 0.05, ANOVA). There were significant correlations between basilar artery malondialdehyde levels and vasospasm and cerebrospinal fluid 2,5-DHBA levels and vasospasm. These results suggest the presence of hydroxyl free radical after SAH and demonstrate a correlation between such production, as measured by trapping with salicylate, and the early phase of vasospasm. The correlation with vasospasm implicates free radicals and lipid peroxidation in this phase of vasospasm.  相似文献   

8.
Ferrous Hb contributes to cerebral vasospasm after subarachnoid hemorrhage, although the mechanisms involved are uncertain. The hypothesis that cytotoxic effects of ferrous Hb on smooth muscle cells contribute to vasospasm was assessed. Cultured rat basilar artery smooth muscle cells were exposed to pure Hb, dog erythrocyte hemolysate, or Hb breakdown products; and heme oxygenase (HO-1 and HO-2) and ferritin mRNA and protein were measured. Cytotoxicity was assessed by lactate dehydrogenase release and fluorescence assays. Pure Hb or hemolysate caused dose- and time-dependent increases in HO-1 mRNA and protein. Hemin was the component of Hb that increased HO-1 mRNA. Cycloheximide inhibited the increase in HO-1 mRNA in response to hemin. Ferritin protein heavy chain but not mRNA increased upon exposure of cells to Hb. Hemin and ferric but not ferrous Hb were toxic to smooth muscle cells. Toxicity was increased by exposure to Hb plus tin protoporphyrin IX. In conclusion, exposure of smooth muscle cells to Hb induces HO-1 mRNA and protein through pathways that involve new protein synthesis. Hemin is the component of Hb that induces HO-1. Hemin and ferric but not ferrous Hb are toxic.  相似文献   

9.
10.
实验性兔蛛网膜下腔出血后,基底动脉壁丙二醛(MDA)含量及超氧化物峻化酶(SOD)、过氧化氢酶(CAT)活性发生改变,基底动脉出现痉挛,应用SOD后上述变化减轻。离体采用生物检定法发现,基底动脉受自由基损伤后,去甲肾上腺素(NE)诱导的血管收缩效应增强,而ACh诱导的血管舒张效应减弱。用SOD防止了ACh诱导的血管舒张效应的减弱。结果表明,氧自由基参与了脑血管痉挛的发生,而脑血管受自由基损伤后,其内皮舒张因子释放减少是脑血管痉挛发病的重要因素。  相似文献   

11.
Objective: To characterize and establish a reproducible model that demonstrates delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) in rats, in order to identify the initiating events, pathophysiological changes and potential targets for treatment.Methods: Twenty-eight male Sprague-Dawley rats (250 - 300 g) were arbitrarily assigned to one of two groups - SAH or saline control. Rat subarachnoid hemorrhage in the SAH group (n=15) was induced by double injection of autologous blood, 48 hr apart, into the cisterna magna. Similarly, normal saline (n=13) was injected into the cisterna magna of the saline control group. Rats were sacrificed on day five after the second blood injection and the brains were preserved for histological analysis. The degree of vasospasm was measured using sections of the basilar artery, by measuring the internal luminal cross sectional area using NIH Image-J software. The significance was tested using Tukey/Kramer''s statistical analysis.Results: After analysis of histological sections, basilar artery luminal cross sectional area were smaller in the SAH than in the saline group, consistent with cerebral vasospasm in the former group. In the SAH group, basilar artery internal area (.056 μm ± 3) were significantly smaller from vasospasm five days after the second blood injection (seven days after the initial blood injection), compared to the saline control group with internal area (.069 ± 3; p=0.004). There were no mortalities from cerebral vasospasm.Conclusion: The rat double SAH model induces a mild, survivable, basilar artery vasospasm that can be used to study the pathophysiological mechanisms of cerebral vasospasm in a small animal model. A low and acceptable mortality rate is a significant criterion to be satisfied for an ideal SAH animal model so that the mechanisms of vasospasm can be elucidated 7, 8. Further modifications of the model can be made to adjust for increased severity of vasospasm and neurological exams.  相似文献   

12.
Because it has been argued that active myogenic tone prolongs cerebral vasospasm for >2 wk after subarachnoid hemorrhage (SAH), we attempted to identify the mechanism that plays the main role in sustaining the prolonged cerebral vasospasm. We especially focused on the roles of biomechanical and phenotypic changes in the cerebral arteries in the mechanisms of prolonged vasospasm after SAH. We used the basilar arteries from a "two-hemorrhage" canine model to make serial measurements of maximal contraction capacity and arterial stiffness (papaverine-insensitive tone) until day 28. We also examined hematoxylin-eosin-stained vasospastic canine basilar arteries for histological changes and immunohistochemically examined them for expression of myosin heavy chain isoforms (SMemb, SM1, and SM2), which are markers of smooth muscle phenotypic changes. Changes in collagen concentration in canine basilar arteries were also measured. Angiographic cerebral vasospasm persisted until day 14 and then gradually diminished; artery diameter returned to the control diameters on day 28. Maximal contraction capacity decreased until day 21 and showed some recovery by day 28. Arterial stiffness, on the other hand, progressed until day 28. Histological examination revealed medial thickening and increased connective tissue until day 21 and a return to control findings by day 28. The increased connective tissue was not accompanied by changes in collagen concentration, suggesting a role of some other protein in the increase in connective tissue. Immunohistochemical studies with anti-SMemb, anti-SM1, and anti-SM2 antibodies showed enhanced expression of SMemb from day 7 to day 21 and disappearance of SM1 and SM2 on days 14 and 21. The changes in myosin heavy chain isoform expression returned to normal on day 28. The above results indicate that biomechanical and phenotypic changes may play a pivotal role in sustaining cerebral vasospasm for >2 wk after SAH, with minimal changes in active myogenic arterial tone.  相似文献   

13.
Delayed cerebral vasospasm after subarachnoid hemorrhage (SAH) may be due, in part, to altered regulation of arterial smooth muscle contraction. Contraction of cerebral arteries to serotonin is augmented after experimental SAH. We hypothesized that activation of Rho-associated kinase (Rho kinase) contributes to augmented contraction of cerebral arteries to serotonin after SAH. Autologous arterial blood (SAH) or artificial cerebrospinal fluid (control) was injected into the cisterna magna of anesthetized rabbits. At 2 days after injection, the basilar artery was excised and isometric contraction of arterial rings was recorded. Maximum contraction of the basilar artery to serotonin was augmented about fourfold in SAH compared with control rabbits (P < 0.01). Contraction to histamine was similar in the two groups. Fasudil hydrochloride (3 mumol/l), an inhibitor of Rho kinase, markedly attenuated serotonin-induced contraction. Fasudil had little effect on contractions induced by histamine or phorbol 12,13-dibutyrate. In addition, phosphorylation of myosin phosphatase, a major target of Rho kinase in regulation of smooth muscle contraction, in the basilar artery was examined by Western blotting. In basilar arteries of SAH, but not control, rabbits, serotonin increased phosphorylation of myosin phosphatase about twofold at Thr(853) of the myosin-targeting subunit. These results suggest that enhanced activation of Rho kinase contributes to augmented contraction of the basilar artery to serotonin after SAH.  相似文献   

14.
The cellular events leading to cerebral vasospasm after subarachnoid haemorrhage are poorly understood, although an increase in smooth muscle myosin light chain phosphorylation has been observed. This study set out to determine if phosphatase inhibition may be involved in the pathological maintenance of tension observed during vasospasm. We found that 1 nM okadaic acid, a type 2A protein phosphatase inhibitor, elicited an increase in rate of O(2) consumption in the porcine carotid artery similar to that by cerebrospinal fluid (CSF) from vasospastic patients (CSF(V), n=5) (control 0.23+/-0.03, CSF(V) 0.84+/-0.16 and okadaic acid 0.85+/-0.02 micromol min(-1) g dwt(-1)). It was also observed that phosphatase inhibition with 1 nM okadaic acid significantly slowed relaxation after a stretch in a similar fashion to CSF(V) haemorrhage. CSF from vasospastic subarachnoid haemorrhage patients, but not from those without vasospasm, contains an extractable substance which modulates myosin light chain phosphorylation in vitro. A phosphatase preparation obtained from the porcine carotid artery dephosphorylated 63+/-2% of the phosphorylated (MLC(20)) substrate in vitro, and non-vasospastic CSF treated enzyme dephosphorylated 60+/-2.6%. Okadaic acid inhibited phosphatase dephosphorylated only 7.5+/-1% of the substrate where CSF(V) treated enzyme dephosphorylated 22+/-2.8% of the substrate. We conclude that inhibition of smooth muscle phosphatase may be involved in the mechanisms associated with cerebral vasospasm after subarachnoid haemorrhage.  相似文献   

15.
This study was undertaken to demonstrate the role of the RhoA/Rho kinase pathway in endothelin-1 (ET-1)-induced contraction of the rabbit basilar artery. Isometric tension and Western blot were used to examine ET-1-induced contraction and RhoA activation. The upstream effect on ET-1-induced RhoA activity was determined by using ET(A) and ET(B) receptor antagonists, protein kinase C (PKC), tyrosine kinase, and phosphatidylinositol-3 kinase inhibitors. The downstream effect of ET-1-induced contraction and RhoA activity was studied in the presence of the Rho kinase inhibitor Y-27632. The effect of Rho kinase inhibitor on ET-1-induced myosin light chain (MLC) phosphorylation was investigated by using urea-glycerol-PAGE immunoblotting. We found 1) ET-1 increased RhoA activity (membrane binding RhoA) in a concentration-dependent manner; 2) ET(A), but not ET(B), receptor antagonist abolished the effect of ET-1 on RhoA activation; 3) phosphodylinositol-3 kinase inhibitor, but not PKC and tyrosine kinase inhibitors, reduced ET-1-induced RhoA activation; 4) Rho kinase inhibitor Y-27632 (10 microM) inhibited ET-1-induced contraction; and 5) ET-1 increased the level of MLC phosphorylation. Rho kinase inhibitor Y-27632 reduced the effect of ET-1 on MLC phosphorylation. This study demonstrated that RhoA/Rho kinase activation is involved in ET-1-induced contraction in the rabbit basilar artery. Phosphodylinositol-3 kinase and MLC might be the upstream and downstream factors of RhoA activation.  相似文献   

16.
Using vascular heat-exchange controller implemented mild hypothermia treatment, the authors established the cerebral vasospasm model in which blood was injected twice into dog’s foramen magnum; and it was discussed the influence of the concentration of endothelin-1 and NO in blood plasma and cerebrospinal fluid through continuing treatment of mild hypothermia at different times in secondary brain vasospasm model after subarachnoid hemorrhage. Thirty healthy mongrel dogs were randomly divided into five groups; artificial cerebrospinal fluid group (group A), normal temperature control group (group C), mild hypothermia 8 h group (group H1), mild hypothermia 16 h group (group H2), and mild hypothermia 32 h group (group H3). The authors injected the artificial CSF into dog’s foramen magnum in group A while the other four groups were injected with autologous arterial blood. The normal group’s temperature maintained 38.5°C. The authors set the temperature at 33.5°C in mild hypothermia groups and this was maintained for 8, 16, and 32 h, respectively. ET-1 and NO levels in the cerebrospinal fluid and plasma were assayed in each group on days 0, 7, 14, and 21. Then the changes of the diameter of blood vessels of cerebral basilar artery and overall performance categories score in each group through application of CT angiography were recorded. In the cerebral vasospasm model which was constructed by injecting the blood to dog twice, mild hypothermia treatment, through the application of vascular heat-exchange controller, could reduce cerebral vasospasm. It was observed that the duration of the mild hypothermia is directly proportional to the longer duration of the relieving of cerebral vasospasm. The reciprocal changes observed in the levels of ET-1 and NO in cerebrospinal fluid and plasma revealed that it might be possible to reduce the cerebral vasospasm by regulating the rising amplitude of ET-1 and the decrease in NO in CSF and plasma.  相似文献   

17.
Aim of the study was to quantify cerebral vasospasm in rats after subarachnoid hemorrhage (SAH) by morphometric examination of basilar artery and to evaluate the influence of endothelin receptor blocker BQ-123 on basilar artery constriction. The rat cisterna magna (CM) was cannulated and after 7 days SAH was developed by administration of 100 microl autologic, non-heparinized blood to the CM. The sham subarachnoid hemorrhage was developed by intracisternal administration of 100 microl of artificial cerebrospinal fluid. Endothelin receptor blocker BQ-123 was injected into the CM in a dose of 40 nmol diluted in 50 microl of cerebrospinal fluid 20 min. before SAH, and 24h and 48 h after SAH. After perfusion fixation the brains were removed from the skull and histological preparations of basilar artery were done. The internal diameter and wall thickness of basilar arteries was measured by interactive morphometric method. The most severe vasospasm was found in rats after SAH. The presence of numerous infiltrations composed of neutrophils and macrophages correlated with advanced vasospasm (index of constriction 5 times lower than in normal), suggesting the role of other factors participating in the late phase of vasospasms after SAH. Administration of BQ-123 in the late phase after SAH caused the dilatation of basilar artery. Following the administration of BQ-123 in the late phase (48 h after SAH) the basilar artery dilated, its wall became thinner, and the number of leukocyte infiltrations in the subarachnoid space decreased compared to the values after SAH alone.  相似文献   

18.
Suppression of PKC activity can selectively induce apoptosis in cells expressing a constitutively activated p21Ras protein. We demonstrate that continued expression of p21Ras activity is required in PKC-mediated apoptosis because farnesyltransferase inhibitors abrogated the loss of viability in p21Ras-transformed cells occurring following PKC inhibition. Studies utilizing gene transfer or viral vectors demonstrate that transient expression of oncogenic p21Ras activity is sufficient for induction of apoptosis by PKC inhibition, whereas physiologic activation of p21Ras by growth factor is not sufficient to induce apoptosis. Mechanistically, the p21Ras-mediated apoptosis induced by PKC inhibition is dependent upon mitochondrial dysregulation, with a concurrent loss of mitochondrial membrane potential (psim). Cyclosporine A, which prevented the loss of psim, also inhibited HMG-induced DNA fragmentation in cells expressing an activated p21Ras. Induction of apoptosis by PKC inhibition in human tumors with oncogenic p21Ras mutations was demonstrated. Inhibition of PKC caused increased apoptosis in MIA-PaCa-2, a human pancreatic tumor line containing a mutated Ki-ras allele, when compared to HS766T, a human pancreatic tumor line with normal Ki-ras alleles. Furthermore, PKC inhibition induced apoptosis in HCT116, a human colorectal tumor line containing an oncogenic Ki-ras allele but not in a subline (Hke3) in which the mutated Ki-ras allele had been disrupted. The PKC inhibitor 1-O-hexadecyl-2-O-methyl-rac-glycerol (HMG), significantly reduced p21Ras-mediated tumor growth in vivo in a nude mouse MIA-PaCa-2 xenograft model. Collectively these studies suggest the therapeutic feasibility of targeting PKC activity in tumors expressing an activated p21Ras oncoprotein.  相似文献   

19.
20.
Overexpression of calcitonin gene-related peptide (CGRP), an extremely potent vasodilator, to blood vessels is a possible strategy for prevention of vasospasm. We constructed an adenoviral vector that encodes prepro-CGRP (Adprepro-CGRP) and examined the effects of gene transfer on cultured cells and cerebral arteries. Transfection of Adprepro-CGRP to Cos-7 and NIH-3T3 cells increased CGRP-like immunoreactivity in media and produced an increase in cAMP in recipient cells. Five days after injection of Adprepro-CGRP into the cisterna magna of rabbits, the concentration of CGRP-like immunoreactivity increased by 93-fold in cerebrospinal fluid. In basilar artery, cAMP increased by 2.3-fold after Adprepro-CGRP compared with a control adenovirus. After transfection of Adprepro-CGRP, contraction of basilar artery in vitro to histamine and serotonin was attenuated, and relaxation to an inhibitor of cyclic nucleotide phosphodiesterase 3-isobutyl-1-methylxanthine was augmented compared with nontransduced arteries or arteries transfected with a control gene. Altered vascular responses were restored to normal by pretreatment with a CGRP(1) receptor antagonist CGRP-(8-37). Thus gene transfer of prepro-CGRP in vivo overexpresses CGRP in cerebrospinal fluid and perivascular tissues and modulates vascular tone. We speculate that this approach may be useful in prevention of vasospasm after subarachnoid hemorrhage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号