首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Researchers have shown renewed interest in the study of manual lateralization in chimpanzees. Currently there is no consensus confirming the presence or absence of manual dominance at a species level, mainly for populations in the wild and in semicaptivity. We aimed to evaluate the manual laterality in a group of chimpanzees in an intermediate setting (semicaptivity) via 2 tasks: one simple and unimanual (simple reaching) and the other complex and bimanual (tube task). We replicated the same experiments from Hopkins in a new and different sample of chimpanzees. In simple reaching, the hand is used to gather food and the type of grip and the posture are evaluated. The tube task assesses the hand used to extract food from the tube and the method of extraction (digital or instrumental). Through the handedness index we observed that the subjects show clear and strong individual preferences for both tasks (100% lateralized subjects in the tube task; 86% in simple reaching), although we did not detect population preferences for any of the tasks. However, considering both tasks jointly (multiple evaluation), it was possible to detect, for the first time, skilled manual dominance at a group level in semicaptive chimpanzees in one multitask index and borderline significance in a second multitask index.  相似文献   

2.
We assessed the manual preferences of 12 De Brazza's monkeys ( Cercopithecus neglectus ) in spontaneous feeding situations and in two different coordinated bimanual tasks that were not visually guided. We recorded the hand used by each subject for 22 spontaneous activities, hand and digits use while extracting peanut butter from a hollow tube (tube task) and the hand used to extract candies from hanging plastic balls (ball task). Spontaneous activities revealed individual manual preferences but no population-level biases. For both experimental tasks, all subjects were lateralized in their hand use. We found a left bias at the group level for the tube task, but no group-level asymmetry for the ball task. Experimental tasks induced greater strength of laterality than did spontaneous activities. Although the size of our sample did not allow us to draw any conclusions concerning manual preference at the population level, this study stresses the importance of coordinated bimanual tasks to reveal manual laterality in non-human primates.  相似文献   

3.
Different primate species have developed extensive capacities for grasping and manipulating objects. However, the manual abilities of primates remain poorly known from a dynamic point of view. The aim of the present study was to quantify the functional and behavioral strategies used by captive bonobos (Pan paniscus) during tool use tasks. The study was conducted on eight captive bonobos which we observed during two tool use tasks: food extraction from a large piece of wood and food recovery from a maze. We focused on grasping postures, in‐hand movements, the sequences of grasp postures used that have not been studied in bonobos, and the kind of tools selected. Bonobos used a great variety of grasping postures during both tool use tasks. They were capable of in‐hand movement, demonstrated complex sequences of contacts, and showed more dynamic manipulation during the maze task than during the extraction task. They arrived on the location of the task with the tool already modified and used different kinds of tools according to the task. We also observed individual manual strategies. Bonobos were thus able to develop in‐hand movements similar to humans and chimpanzees, demonstrated dynamic manipulation, and they responded to task constraints by selecting and modifying tools appropriately, usually before they started the tasks. These results show the necessity to quantify object manipulation in different species to better understand their real manual specificities, which is essential to reconstruct the evolution of primate manual abilities.  相似文献   

4.
We examined hand preferences in 25 tufted capuchins (Cebus apella) in three tasks. The hole task involved a single action of reaching for food in a hole. The horizontal panel and the vertical panel tasks required the alignment of two apertures, by moving or lifting a panel, to reach for food in a hole. We found a significant group-level right-hand preference for reaching actions in the hole and in the horizontal panel tasks, but not in the vertical panel task, in which the food retrieval implied the complementary use of both hands. No significant hand bias emerged for moving or lifting actions with high visuospatial components. There is a stronger hand preference in more complex manual activity—coordinated bimanual hand use for food retrieval—than in other unimanual measures. We discuss the results in the context of previous reports on primate laterality.  相似文献   

5.
Numerous studies investigating behavioral lateralization in capuchins have been published. Although some research groups have reported a population-level hand preference, other researchers have argued that capuchins do not show hand preference at the population level. As task complexity influences the expression of handedness in other primate species, the purpose of this study was to collect hand preference data across a variety of high- and low-level tasks to evaluate how task complexity influences the expression of hand preference in capuchins. We tested eleven captive brown capuchin monkeys (Cebus apella) to determine if they show consistent hand preferences across multiple high- and low-level tasks. Capuchins were expected to display high intertask consistency across the high-level tasks but not the low-level tasks. Although most individuals showed significant hand preferences for each task, only two of the high-level tasks that involved similar hand motions were significantly positively correlated, indicating consistency of hand preference across these tasks only. None of the tasks elicited a group-level hand preference. High-level tasks elicited a greater strength of hand preference than did low-level tasks. No sex differences were found for the direction or strength of hand preference for any task. These results contribute to the growing database of primate laterality and provide additional evidence that capuchins do not display group-level hand preferences.  相似文献   

6.
Handedness is a defining feature of human manual skill and understanding the origin of manual specialization remains a central topic of inquiry in anthropology and other sciences. In this study, we examined hand preference in a sample of wild primates on a task that requires bimanual coordinated actions (tube task) that has been widely used in captive primates. The Sichuan snub-nosed monkey (Rhinopithecus roxellana) is an arboreal Old World monkey species that is endemic to China, and 24 adult individuals from the Qinling Mountains of China were included for the analysis of hand preference in the tube task. All subjects showed strong individual hand preferences and significant group-level left-handedness was found. There were no significant differences between males and females for either direction or strength of hand preference. Strength of hand preferences of adults was significantly greater than juveniles. Use of the index finger to extract the food was the dominant extractive-act. Our findings represent the first evidence of population-level left-handedness in wild Old World monkeys and broaden our knowledge on evaluating primate hand preference via experimental manipulation in natural conditions.  相似文献   

7.
We examined hand preferences in 23 tufted capuchins (Cebus apella) in 2 tasks requiring the lid of a box to be lifted before taking out a peanut. The first task, Box 1, could entail either 2 or 3 problem-solving acts, with the 3-act solution involving bimanual coordination for food retrieval. The second task, Box 2, involved only the 3-act solution. The results indicated that the types of solution employed to perform the task influenced capuchin hand preferences. In the 2-act solution, capuchins exhibited a significant right-hand bias for the final one-handed reaching action, but not for the initial lid lifting action. In contrast, in the 3-act solution, no significant asymmetry emerged for any act. We noted a significant effect of subject's sex on the strength of laterality, with males being more strongly lateralized than females. We discuss results in the light of recent models of primate laterality.  相似文献   

8.
Hand preference in 11 captive red-capped mangabeys (Cercocebus torquatus torquatus) was examined under different conditions: a free situation during spontaneous food processing, three different postural conditions (brachiating, and bipedal and tripedal standing), and a situation involving bimanual processing. Generally, individual laterality was found regardless of the task and behavior involved. However, the number of monkeys with hand preferences and the strength of the preference increased with the complexity of the tasks. The monkeys exhibited a significantly higher and positive mean manual preference index (HI) when they were hanging than when they were quadrupedal or sitting. The strength of manual preference (ABS-HI) was in turn higher when the monkeys were hanging or bipedal than when they were quadrupedal. The strength of manual preference was higher for both the bimanual and experimental tasks than for unimanual tasks and spontaneous activities. Although our sample was too small to allow us to make any generalizations concerning lateral preferences in red-capped mangabeys, we propose some hypotheses about the influence of posture stability and task complexity.  相似文献   

9.
A practical approach to understanding lateral asymmetries in body, brain, and cognition would be to examine the performance advantages/disadvantages associated with the corresponding functions and behavior. In the present study, we examined whether the division of labor in hand usage, marked by the preferential usage of the two hands across manual operations requiring maneuvering in three-dimensional space (e.g., reaching for food, grooming, and hitting an opponent) and those requiring physical strength (e.g., climbing), is associated with higher hand performance in free-ranging bonnet macaques, Macaca radiata. We determined the extent to which the macaques exhibit laterality in hand usage in an experimental unimanual and a bimanual food-reaching task, and the extent to which manual laterality is associated with hand performance in an experimental hand-performance-differentiation task. We observed negative relationships between (a) the latency in food extraction by the preferred hand in the hand-performance-differentiation task (wherein, lower latency implies higher performance), the preferred hand determined using the bimanual food-reaching task, and the normalized difference between the performance of the two hands, and (b) the normalized difference between the performance of the two hands and the absolute difference between the laterality in hand usage in the unimanual and the bimanual food-reaching tasks (wherein, lesser difference implies higher manual specialization). Collectively, these observations demonstrate that the division of labor between the two hands is associated with higher hand performance.  相似文献   

10.
Right-hand dominance is widely considered to be a uniquely human trait. Whether nonhuman primates exhibit similar population-level hand preferences remains a topic of considerable debate. Despite extensive research focusing on laterality in nonhuman primates, our interpretation of these studies is limited due to methodological issues including the lack of a common measure of hand preference and the use of tasks that may not be reliable indicators of handedness. The use of consistent methods between studies is necessary to enable comparisons within and between species and allow for more general conclusions to be drawn from these results. The present study replicates methods used in recent research reporting population-level right-handedness in captive gorillas (Meguerditchian et al.,2010). Observational data were collected on hand preference for unimanual and bimanual feeding in 14 captive western lowland gorillas (Gorilla gorilla gorilla). Individual-level preferences were found, primarily for bimanual feeding; however, the data reveal no group-level directional bias (contra Meguerditchian et al.). Like the study by Meguerditchian et al. (2010), though, bimanual feeding revealed significantly stronger hand preferences than unimanual reaching, and age, sex, group membership, or rearing history had no effect on hand preference. Finally, variations in diet and corresponding grip type between studies suggest that hand preferences may vary across bimanual tasks depending on grip morphology. This study aims to contribute to our existing knowledge of primate laterality by increasing the number of individuals investigated using methods that allow for comparisons with similar research.  相似文献   

11.
We tested the effects of a haptic search task on hand preferences in capuchins(Cebus apella) and compare this situation to a visual by guided reaching task. In the haptic task, 21 monkeys searched for sunflower seeds on the top or side surfaces of 12 objects. A left-hand preference emerged at the group level, suggesting a greater involvement of the right hemisphere. The percentage of preferred hand usage and the direction of the preference were influenced by both sex and age of the subjects: adult males tended to be less lateralized than the other groups of subjects were. Shape had an insignificant effect on the direction of hand preferences or on the percentage of preferred hand use. No lateral bias emerge in the visually guided reaching task, and the percentage of left-hand usage fell significantly across tasks, demonstrating that the haptic demands of the task enhance the use of the left hand at the group level. We discuss these results with regard to current theories on manual lateralization in nonhuman primates.  相似文献   

12.
The dominant use of one hand is a striking feature of humans, but manual lateralization can be found in a variety of other species as well. In primates, the lateralization in hand use varies among species and several theories such as the “postural origin,” “task complexity,” or “development theory” have been suggested to explain this variation. In order to contribute comparative data on this phenomenon from a basal primate, we studied manual lateralization in wild redfronted lemurs (Eulemur rufifrons). Data were collected on four groups at Kirindy Forest, western Madagascar, during spontaneous actions and by confronting them with artificial feeding boxes. The lemurs did not exhibit manual lateralization on a group level in either condition. More individuals showed a hand preference in the experimental task, and the preferences were stronger compared to spontaneous actions. The direction of individual hand preferences was not consistent across the two conditions. The results of this study show that measuring manual laterality in different contexts can yield different results. Manual lateralization in wild redfronted lemurs therefore seems to be flexible and situation dependent and probably not ecologically relevant in their natural habitat. Am J Phys Anthropol 153:61–67, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
In humans, 90% of the population is right handed. Although population hand preference has been found in some primate species, the evolution of manual lateralization in primates is not yet clear. To gain insight into manual lateralization of ancestral primates, we studied hand usage in unspecialized quadrupedal, nocturnal lemurs, using a large sample size. We compared two closely related mouse lemur species to explore the variation of hand preference within the same genus. We tested 44 gray mouse lemurs and 19 Goodman's mouse lemurs in a forced food grasping task. The tests were videotaped. Measures of hand preference (i.e. the hand that is spontaneously chosen for a specific task) and successful hand usage (i.e. the hand that is successful in completing a specific task) were taken to explore manual lateralization. Both species showed manual lateralization at an individual, but not at a population level. Goodman's mouse lemurs showed stronger individual hand preferences than gray mouse lemurs. This suggests that strength in hand preference is variable within the same genus. No sex and age effects were found. The hand preference of offspring was negatively correlated to that of their mothers, but not correlated to that of their fathers. Thus, no clear genetic effect can be derived from these results. In the Goodman's mouse lemurs, hand preference increased with increasing task experience. However, successful hand usage was not affected by task experience, suggesting that successful hand usage is a more stable measurement for manual lateralization than hand preference.  相似文献   

14.
Recently, many studies have been conducted on manual laterality in chimpanzees. Nevertheless, whether nonhuman primates exhibit population-level handedness remains a topic of considerable debate. One of the behaviors studied has been bimanual coordinated actions. Although recent studies have highlighted that captive chimpanzees show handedness at population level for these tasks, some authors have questioned the validity and consistency of these results. The first reason has been the humanization of the samples. The second one has been that the results refer to animals in American biomedical centers and the studies were conducted by the same team [WD Hopkins et al.]. This article aims to assess the laterality in bimanual coordination (tube task) activities in animals housed in an intermediate environment (Chimfunshi, Zambia). This has been conducted by replicating previous studies on similar samples (Mona Foundation, Spain), and then by extending the results to chimpanzees housed in intermediate settings. Individuals were evaluated through four experimental sessions (tests). Results indicated that 86% of the Chimfunshi sample was lateralized (48% RH, 38% LH). Furthermore, the sample showed population-level right-handedness in the mean handedness index, in Test 1, Test 2, and the first half of the study (Test 112). Rearing experience did not have an influence on handpreference. Taken together, the two sample (intermediate settings: Chimfunshi and Mona) results indicate a clear right-handedness. In conclusion, this replication and extension shows that (1) the Mona and Chimfunshi chimpanzees are right-handed in certain conditions, (2) the results are consistent with those obtained by Hopkins in captive settings, (3) the humanization of the samples does not affect manual laterality, (4) females are right-handed at population-level, but not males, and (5) these results reinforce the fact that the complexity of the task plays a dominant role in the expression of hand laterality among chimpanzees.  相似文献   

15.
Studies of hand use in nonhuman primates suggest that several species exhibit hand preferences for a variety of tasks. The majority of studies, however, focus on the lateralized hand use of captive nonhuman primate populations. Although captive settings offer a more controlled environment for assessing hand preferences, studies of wild populations provide important insights into how handedness is affected by natural environmental conditions and thus potential insights into the evolution of handedness. To investigate handedness in a population of wild nonhuman primates, we studied patterns of lateralized hand use during feeding in four simakobu monkeys (Simias concolor), an arboreal species inhabiting the Mentawai Islands, Indonesia. Our data show that individual variation in hand preferences for feeding existed among our study animals. In addition, each simakobu expressed a significant hand preference for supporting itself on a branch during feeding, an uncoordinated bimanual task. This bias was most prevalent when the branch used for support was a main branch rather than a terminal branch. When both hands were employed in a coordinated bimanual feeding activity (bimanual manipulation), only two subjects showed a significant bias for feeding. Our data suggest that these individuals are more likely to express significant hand preferences when feeding from stable, rather than precarious, positions within the canopy.  相似文献   

16.
Whether or not nonhuman primates exhibit population-level handedness remains a topic of considerable scientific debate. Here, we examined handedness for coordinated bimanual actions in a sample of 777 great apes including chimpanzees, bonobos, gorillas, and orangutans. We found population-level right-handedness in chimpanzees, bonobos and gorillas, but left-handedness in orangutans. Directional biases in handedness were consistent across independent samples of apes within each genus. We suggest that, contrary to previous claims, population-level handedness is evident in great apes but differs among species as a result of ecological adaptations associated with posture and locomotion. We further suggest that historical views of nonhuman primate handedness have been too anthropocentric, and we advocate for a larger evolutionary framework for the consideration of handedness and other aspects of hemispheric specialization among primates.  相似文献   

17.
This is the first study to examine hand preferences in Tonkean macaques on a bimanual task. One of our objectives was to continue the move toward greater task standardization, in order to facilitate comparisons between species and studies on handedness. The main aim was to test and determine task robustness, by varying intra‐task complexity. To this end, we administered several different tasks to the subjects: two unimanual tasks (grasping task featuring items of different sizes) and three coordinated bimanual tasks (tube task involving different materials, weights, and diameters). Although we found no significant hand preference in either task at the group level, the macaques were more strongly lateralized for small items than for large ones in the unimanual grasping task. Moreover, the absence of a correlation between these two versions of the unimanual task confirmed the weakness of this grasping task for assessing handedness. Regarding the bimanual tube task, no difference was found between the three versions in either the direction or the strength of hand preference. Moreover, the highly correlated hand preferences between these three versions suggest that the tube task provides a more robust means of measuring manual preferences. Am J Phys Anthropol 152:315–321, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The postural origin hypothesis and the task complexity hypothesis propose that hand preference in non-human primates evolved in association with body posture and task complexity, respectively. The results of previous studies testing these two hypotheses, however, vary greatly with the different primate species and methods used. To investigate the effect of body posture and task complexity on hand preference, we recorded bouts of hand usage in nine captive northern white-cheeked gibbons (Nomascus leucogenys) housed at Beijing Zoo as they reached for food items in a ground-reaching task, a box task, and a tube task. The results showed that four to seven of the nine gibbons displayed a hand preference at the individual level in different tasks, and that hand preference in individuals was task-specific; there was no group-level hand preference in any task. The box task seemed to elicit a greater strength of hand preference than the ground-reaching task at the individual level. Although the small sample size rules out drawing any strong conclusions concerning hand preference at the group level, our results suggest that the suspensory reaching posture might increase the expression of hand preference at the individual level. This study provides preliminary information on hand preference in captive northern white-cheeked gibbons, and will be helpful for future studies addressing the origin and evolution of hand preference in small apes.  相似文献   

19.
Homo sapiens sapiens displays a species wide lateralised hand preference, with 85% of individuals in all populations being right-handed for most manual actions. In contrast, no other great ape species shows such strong and consistent population level biases, indicating that extremes of both direction and strength of manual laterality (i.e., species-wide right-handedness) may have emerged after divergence from the last common ancestor. To reconstruct the hand use patterns of early hominins, laterality is assessed in prehistoric artefacts. Group right side biases are well established from the Neanderthals onward, while patchy evidence from older fossils and artefacts indicates a preponderance of right-handed individuals. Individual hand preferences and group level biases can occur in chimpanzees and other apes for skilled tool use and food processing. Comparing these findings with human ethological data on spontaneous hand use reveals that the great ape clade (including humans) probably has a common effect at the individual level, such that a person can vary from ambidextrous to completely lateralised depending on the action. However, there is currently no theoretical model to explain this result. The degree of task complexity and bimanual complementarity have been proposed as factors affecting lateralisation strength. When primatology meets palaeoanthropology, the evidence suggests species-level right-handedness may have emerged through the social transmission of increasingly complex, bimanually differentiated, tool using activities.  相似文献   

20.
Predominance of right‐handedness has historically been considered as a hallmark of human evolution. Whether nonhuman primates exhibit population‐level manual bias remains a controversial topic. Here, we investigated the hypothesis that bimanual coordinated activities may be a key‐behavior in our ancestors for the emergence and evolution of human population‐level right‐handedness. To this end, we collected data on hand preferences in 35 captive gorillas (Gorilla gorilla) during simple unimanual reaching and for bimanual coordinated feeding. Unimanual reaching consisted of grasping food on the ground, while bimanual feeding consisted of using one hand for holding a food and processing the food item by the opposite hand. No population‐level manual bias was found for unimanual actions but, in contrast, gorillas exhibited a significant population‐level right‐handedness for the bimanual actions. Moreover, the degree of right‐handedness for bimanual feeding exceeds any other known reports of hand use in primates, suggesting that lateralization for bimanual feeding is robust in captive gorillas. The collective evidence is discussed in the context of potential continuity of handedness between human and nonhuman primates. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号