首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite numerous reports on isometric force depression, few reports have quantified force depression during active muscle shortening (dynamic force depression). The purpose of this investigation was to determine the influence of shortening history on isometric force following active shortening, force during isokinetic shortening, and velocity during isotonic shortening. The soleus muscles of four cats were subjected to a series of isokinetic contractions at three shortening velocities and isotonic contractions under three loads. Muscle excursions initiated from three different muscle lengths but terminated at a constant length. Isometric force produced subsequent to active shortening, and force or shortening velocity produced at a specific muscle length during shortening, were compared across all three conditions. Results indicated that shortening history altered isometric force by up to 5%, force during isokinetic shortening up to 30% and shortening velocity during isotonic contractions by up to 63%. Furthermore, there was a load by excursion interaction during isotonic contractions such that excursion had the most influence on shortening velocity when the loads were the greatest. There was not a velocity by excursion interaction during isokinetic contractions. Isokinetic and isotonic power–velocity relationships displayed a downward shift in power as excursions increased. Thus, to discuss force depression based on differences in isometric force subsequent to active shortening may underestimate its importance during dynamic contractions. The presence of dynamic force depression should be realized in sport performance, motor control modeling and when controlling paralyzed limbs through artificial stimulation.  相似文献   

2.
For static and dynamic conditions muscle geometry of the musculus gastrocnemius medialis of the rat was compared at different muscle lengths. The dynamic conditions differed with respect to isokinetic shortening velocity (25, 50 and 75 mm/s) of the muscle-tendon complex and in constancy of force (isotonic) and velocity (isokinetic) during shortening. Muscle geometry was characterized by fibre length and angle as well as aponeurosis length and angle. At high isokinetic shortening velocities (50 and 75 mm/s) small differences in geometry were found with respect to isometric conditions: aponeurosis lengths differed maximally by -2%, fibre length only showed a significant increase (+3.2%) at the highest shortening velocity. The isotonic condition only yielded significant differences of fibre angle (-4.5%) in comparison with isometric conditions. No significant differences of muscle geometry were found when comparing isotonic with isokinetic conditions of similar shortening velocity. The small differences of geometry between isometric and dynamic conditions are presumably due to the lower muscle force in the dynamic condition and the elastic behaviour of the aponeurosis. It is concluded that, unless very high velocities of shortening are used, the relationship between muscle geometry and muscle length in the isometric condition may be used to describe muscle geometry in the dynamic condition.  相似文献   

3.
The present study examined the effect of theophylline on the shortening velocity of submaximally activated diaphragmatic muscle (i.e., muscles were activated by the use of a level of stimulation, 50 Hz, within the range of phrenic neural firing frequencies achieved during breathing, whereas maximum activation is achieved at 300 Hz). Experiments were performed in vitro on strips of diaphragmatic muscle obtained from 21 Syrian hamsters. Muscle shortening velocity was assessed during isotonic contractions against a range of afterloads, and Hill's characteristic equation was used to calculate velocity at zero load. In addition, unloaded shortening velocity was also measured by the slack test, i.e., from the time required for muscles to take up slack after a sudden reduction in muscle length. Theophylline (160 mg/l) increased the velocity of muscle shortening against a wide range of external loads (0-14 N/cm2) and increased the extrapolated unloaded velocity of shortening from 6.4 +/- 0.9 to 7.9 +/- 1.1 (SE) lengths/s (P less than 0.01). Theophylline reduced the time required to take up slack for any given step change in muscle length, increasing the unloaded velocity of shortening assessed by the slack test from 7.6 +/- 0.9 to 9.3 +/- 1.1 lengths/s (P less than 0.002). The effect of theophylline on diaphragmatic shortening velocity was evident at concentrations as low as 40 mg/l and increased progressively as theophylline concentrations were increased to 320 mg/l. Theophylline increased the shortening velocity of fatigued as well as fresh muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of shortening on contractile activity was studied in experiments in which shortening during the rising phase of an isotonic contraction was suddenly stopped. At the same muscle length and the same time after stimulation the rise in tension was much faster, if preceded by shortening, than during an isometric contraction, demonstrating an increase in contractile activity. In this experiment the rate of tension rise determined in various phases of contraction was proportional to the rate of isotonic shortening at the same time after stimulation. Therefore, the time course of the isotonic rising phase could be derived from the tension rise after shortening. The rate of isotonic shortening was found to be unrelated to the tension generated at various lengths and to correspond closely to the activation process induced by shortening. The length response explains differences between isotonic and isometric contractions with regard to energy release (Fenn effect) and time relations. These results extend previous work which showed that shortening during later phases of a twitch prolongs, while lengthening abbreviates contraction. Thus the length responses, which have been called shortening activation and lengthening deactivation, control activity throughout an isotonic twitch.  相似文献   

5.
The in vitro mechanical properties of smooth muscle strips from 10 human main stem bronchi obtained immediately after pneumonectomy were evaluated. Maximal active isometric and isotonic responses were obtained at varying lengths by use of electrical field stimulation (EFS). At the length (Lmax) producing maximal force (Pmax), resting tension was very high (60.0 +/- 8.8% Pmax). Maximal fractional muscle shortening was 25.0 +/- 9.0% at a length of 75% Lmax, whereas less shortening occurred at Lmax (12.2 +/- 2.7%). The addition of increasing elastic loads produced an exponential decrease in the shortening and velocity of shortening but increased tension generation of muscle strips stimulated by EFS. Morphometric analysis revealed that muscle accounted for 8.7 +/- 1.5% of the total cross-sectional tissue area. Evaluation of two human tracheal smooth muscle preparations revealed mechanics similar to the bronchial preparations. Passive tension at Lmax was 10-fold greater and maximal active shortening was threefold less than that previously demonstrated for porcine trachealis by us of the same apparatus. We attribute the limited shortening of human bronchial and tracheal smooth muscle to the larger load presumably provided by a connective tissue parallel elastic component within the evaluated tissues, which must be overcome for shortening to occur. We suggest that a decrease in airway wall elastance could increase smooth muscle shortening, leading to excessive responses to contractile agonists, as seen in airway hyperresponsiveness.  相似文献   

6.
Contraction of smooth muscle tissue involves interactions between active and passive structures within the cells and in the extracellular matrix. This study focused on a defined mechanical behavior (shortening-dependent stiffness) of canine tracheal smooth muscle tissues to evaluate active and passive contributions to tissue behavior. Two approaches were used. In one, mechanical measurements were made over a range of temperatures to identify those functions whose temperature sensitivity (Q(10)) identified them as either active or passive. Isotonic shortening velocity and rate of isometric force development had high Q(10) values (2.54 and 2.13, respectively); isometric stiffness showed Q(10) values near unity. The shape of the curve relating stiffness to isotonic shortening lengths was unchanged by temperature. In the other approach, muscle contractility was reduced by applying a sudden shortening step during the rise of isometric tension. Control contractions began with the muscle at the stepped length so that properties were measured over comparable length ranges. Under isometric conditions, redeveloped isometric force was reduced, but the ratio between force and stiffness did not change. Under isotonic conditions beginning during force redevelopment at the stepped length, initial shortening velocity and the extent of shortening were reduced, whereas the rate of relaxation was increased. The shape of the curve relating stiffness to isotonic shortening lengths was unchanged, despite the step-induced changes in muscle contractility. Both sets of findings were analyzed in the context of a quasi-structural model describing the shortening-dependent stiffness of lightly loaded tracheal muscle strips.  相似文献   

7.
Airway hyperresponsiveness (AHR) is a characteristic feature of asthma. It has been proposed that an increase in the shortening velocity of airway smooth muscle (ASM) could contribute to AHR. To address this possibility, we tested whether an increase in the isotonic shortening velocity of ASM is associated with an increase in the rate and total amount of shortening when ASM is subjected to an oscillating load, as occurs during breathing. Experiments were performed in vitro using 27 rat tracheal ASM strips supramaximally stimulated with methacholine. Isotonic velocity at 20% isometric force (Fiso) was measured, and then the load on the muscle was varied sinusoidally (0.33 ± 0.25 Fiso, 1.2 Hz) for 20 min, while muscle length was measured. A large amplitude oscillation was applied every 4 min to simulate a deep breath. We found that: 1) ASM strips with a higher isotonic velocity shortened more quickly during the force oscillations, both initially (P < 0.001) and after the simulated deep breaths (P = 0.002); 2) ASM strips with a higher isotonic velocity exhibited a greater total shortening during the force oscillation protocol (P < 0.005); and 3) the effect of an increase in isotonic velocity was at least comparable in magnitude to the effect of a proportional increase in ASM force-generating capacity. A cross-bridge model showed that an increase in the total amount of shortening with increased isotonic velocity could be explained by a change in either the cycling rate of phosphorylated cross bridges or the rate of myosin light chain phosphorylation. We conclude that, if asthma involves an increase in ASM velocity, this could be an important factor in the associated AHR.  相似文献   

8.
In single smooth muscle cells, shortening velocity slows continuously during the course of an isotonic (fixed force) contraction (Warshaw, D.M. 1987. J. Gen. Physiol. 89:771-789). To distinguish among several possible explanations for this slowing, single smooth muscle cells were isolated from the gastric muscularis of the toad (Bufo marinus) and attached to an ultrasensitive force transducer and a length displacement device. Cells were stimulated electrically and produced maximum stress of 144 mN/mm2. Cell force was then reduced to and maintained at preset fractions of maximum, and cell shortening was allowed to occur. Cell stiffness, a measure of relative numbers of attached crossbridges, was measured during isotonic shortening by imposing 50-Hz sinusoidal force oscillations. Continuous slowing of shortening velocity was observed during isotonic shortening at all force levels. This slowing was not related to the time after the onset of stimulation or due to reduced isometric force generating capacity. Stiffness did not change significantly over the course of an isotonic shortening response, suggesting that the observed slowing was not the result of reduced numbers of cycling crossbridges. Furthermore, isotonic shortening velocity was better described as a function of the extent of shortening than as a function of the time after the onset of the release. Therefore, we propose that slowing during isotonic shortening in single isolated smooth muscle cells is the result of an internal load that opposes shortening and increases as cell length decreases.  相似文献   

9.
Maximal trachealis muscle shortening in vivo was compared with that in vitro in seven anesthetized dogs. In addition, the effect of graded elastic loads on the muscle was evaluated in vitro. In vivo trachealis muscle shortening, as measured using sonomicrometry, revealed maximal active shortening to be 28.8 +/- 11.7% (SD) of initial length. Trachealis muscle preparations from the same animals were studied in vitro to evaluate isometric force generation, isotonic shortening, and the effect of applying linear elastic loads to the trachealis muscle during contraction from optimal length. Maximal isotonic shortening was 66.8 +/- 8.4% of optimal length in vitro. Increasing elastic loads decreased active shortening and velocity of shortening in vitro in a hyperbolic manner. The elastic load required to decrease in vitro shortening to the extent of the shortening observed in vivo was similar to the estimated load provided by the tracheal cartilage. We conclude that decreased active shortening in vivo is primarily due to the elastic afterload provided by cartilage.  相似文献   

10.
To study the mechanical output of skeletal muscle, four adult cats were trained to run on a treadmill and then implanted under sterile conditions and anesthesia with a force transducer on the soleus tendon and EMG electrodes in the muscle belly. After a two-week recovery period, five consecutive step cycles were filmed at treadmill speeds of 0.8, 1.3 and 2.2 m s-1. Locomotion data in vivo included individual muscle force, length and velocity changes and EMG during each step cycle. Data for an average step cycle at each speed were compared to the force-velocity properties obtained on the same muscle under maximal nerve stimulation and isotonic loading conditions in situ. Results indicate that the force and power generated at a given velocity of shortening during late stance in vivo were greater at the higher speeds of locomotion than the force and power generated at the same shortening velocity in situ. Strain energy stored in the muscle-tendon unit during the yield phase in early stance is felt to be a major contributor to the muscle's enhanced mechanical output during muscle shortening in late stance.  相似文献   

11.
1. Within the range of the given conditions of measuring static and dynamic properties of the rabbit gastrocnemius muscle the following results were obtained: a) the dependence of the maxima of isotonic shortening upon the relative length of the muscle at constant load is linear; b) the parameters of the non-linear dependence of the passive elastic force of the muscle upon its relative length (measured in series) were identified using asymptotic regression; c) the time course of isotonic contractions (at an interval from 0 to 0.3 s after the beginning of stimulation) could be satisfactorily approximated by responses of a linear system to a step-function; d) the time course of isometric contractions (at an interval from 0 to 0.3 s after the beginning of stimulation) could be closely approximated by responses of a linear system to a step-function. 2. The time constants of isotonic and isometric contractions were determined as the parameters of the corresponding linear systems. 3. The maximum rates of the isometric and isotonic contractions were determined as maxima of the first derivatives of the responses of the corresponding models. 4. The experimental set-up made it possible to compare the values of the parameters concomitantly followed at various muscle lengths and at various loads.  相似文献   

12.
Contractile properties of the shortening rat diaphragm in vitro   总被引:1,自引:0,他引:1  
Diaphragmatic fatigue has been defined in terms of the failure of the muscle to continue to generate a given level of tension. Appropriate shortening of the diaphragm is, however, just as important for adequate ventilation. In this study we have examined in vitro the contractile properties of the rat diaphragm under afterloaded isotonic conditions and the effect of fatigue on the ability of the diaphragm to shorten. Shortening of the muscle strips was found to depend on size of afterload, frequency of stimulation, duration of stimulation, and initial length of the muscle. The afterloaded isotonic length-tension relationship coincided with the relationship between length and active isometric tension only for relatively small afterloads. Fatigue of the muscle strips, induced by isometric or afterloaded isotonic contractions, was associated with a decline in the extent of shortening as well as a decrease in active isometric tension. Ability to shorten and ability to develop isometric tension did not decrease to the same extent under all conditions. We conclude that active shortening, as well as active isometric tension, is decreased by muscular fatigue and that changes in these properties can be different depending on experimental conditions. The results suggest that the definition of diaphragmatic fatigue should be expanded to include the ability of the muscle to shorten by an appropriate amount. The results also suggest that measurement of isometric performance may not provide a complete estimate of the overall performance of the fatigued diaphragm.  相似文献   

13.
Effects of elastic loading on porcine trachealis muscle mechanics   总被引:1,自引:0,他引:1  
To shorten in vivo, airway smooth muscle must overcome an elastic load provided by cartilage and lung parenchyma. We examined the effects of linear elastic loads (0.2-80 g/cm) on the active changes in porcine trachealis muscle length and tension in response to electrical field stimulation in vitro. Increasing elastic loads produced an exponential decrease in the shortening and velocity of shortening while causing an increase in tension generation of muscle strips stimulated by electrical field stimulation. Shortening was decreased by 50% at a load of 8 g/cm. At small elastic loads (less than or equal to 1 g/cm) contractile responses approximated isotonic responses (shortening approximately 60% of starting length), whereas at large loads (20 g/cm) responses approximated isometric responses with minimal shortening (20%). We conclude that elastic loading significantly alters the mechanical properties of airway smooth muscle in vitro, effects that are likely relevant to the loads against which the smooth muscle must contract in vivo.  相似文献   

14.
Muscle Volume Changes   总被引:2,自引:0,他引:2       下载免费PDF全文
Measurements have been made of the volume changes accompanying single isometric and isotonic twitches of frog sartorius muscle. The volume change consists of a rapid increase, a subsequent decrease, and a return to the initial volume; the order of magnitude of increase and decrease is 10-5 cc/g of muscle. This volume change is length-dependent: the initial increase becomes more pronounced as the initial length of the muscle is decreased, while the volume decrease is greatest at reference length and is diminished for longer and shorter initial lengths. Muscle volume changes are also dependent upon temperature and amount of shortening: the return phase is prolonged as the temperature is lowered; and, in an isotonic twitch, a volume increase accompanying muscle shortening is superimposed upon the volume change described for an isometric twitch. These "shortening volume changes" may correspond to the volume decrease observed in frog muscle under a passive stretch. If the active state is prolonged by the use of a frog Ringer solution in which iodide ions have been substituted for chloride ions, the time course of the volume decrease is likewise prolonged; this suggests a relationship between the volume decrease and the active state of the muscle.  相似文献   

15.
Smooth muscle relaxation has most often been studied in isometric mode. However, this only tells us about the stiffness properties of the bronchial wall and thus only about wall capacitative properties. It tells us little about airflow. To study the latter, which of course is the meaningful parameter in regulation of ventilation and in asthma, we studied isotonic shortening of bronchial smooth muscle (BSM) strips. Failure of BSM to relax could be another important factor in maintaining high airway resistance. To analyze relaxation curves, we developed an index of isotonic relaxation, t1/2(P, lCE), which is the half-time for relaxation that is independent of muscle load (P) and of initial contractile element length (lCE). This index was measured in curves of relaxation initiated at 2 s (normally cycling crossbridges) and at 10 s (latch-bridges). At 10 s no difference was seen for adjusted t1/2(P, lCE) between curves obtained from control and sensitized BSM, (8.38 +/- 0.92 s vs. 7.78 +/- 0.93 s, respectively). At 2 s the half-time was almost doubled in the sensitized BSM (6.98 +/- 0.01 s (control) vs. 12.74 +/- 2.5 s (sensitized)). Thus, changes in isotonic relaxation are only seen during early contraction. Using zero load clamps, we monitored the time course of velocity during relaxation and noted that it varied according to 3 phases. The first phase (phase i) immediately followed cessation of electrical field stimulation (EFS) at 10 s and showed almost the same velocity as during the latter 1/3 of shortening; the second phase (phase ii) was linear in shape and is associated with zero load velocity, we speculate it could stem from elastic recoil of the cells' internal resistor; and the third phase (phase iii) was convex downwards. The zero load velocities in phase iii showed a surprising spontaneous increase suggesting reactivation of the muscle. Measurements of intracellular calcium (Fura-2 study) and of phosphorylation of the 20 kDa myosin light chain showed simultaneous increments, indicating phase iii represented an active process. Studies are under way to determine what changes occur in these 3 phases in a sensitized muscle. And of course, in the context of this conference, just what role the plastic properties of the muscle play in relaxation requires serious consideration.  相似文献   

16.
We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (P<0.001, dependent t-test). At longer muscle lengths this recruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.  相似文献   

17.
Glycerol-extracted rabbit psoas muscle fibers were examined by electron microscopy both before and after ATP-induced isotonic shortening. Ultrastructural changes were correlated with the initial sarcomere length and the degree of shortening. The ultrastructural appearance of the resting fiber at rest length was identical with that described by H. E. Huxley and Hanson. At sarcomere lengths greater than 3.7 to 3.8 µ, the A and I filaments were detached and separated by a gap. The presence of "gap" filaments was confirmed, and evidence is presented which indicates that these filaments form connections between the ends of the A and I filaments. Shortening from initial sarcomere lengths at which the filaments overlapped took place through sliding of the filaments. If shortening was initiated from sarcomere lengths at which there was a gap, a narrowing of the I band was brought about by a curling of the I filaments at the boundary between the A and I bands. No evidence could be found that the I filaments moved into the A band.  相似文献   

18.
Considerable attention has been directed to the characteristic force-velocity relation discovered by A. V. Hill in the study of muscle kinematics. Models of contractile process were tested on the basis of their compatibility with the Hill equation. However, almost all the isotonic data have been restricted to one length, l0, the maximum length with almost no resting tension; the velocities measured are those initial values when the load begins to move. The force-velocity curve extrapolates to zero velocity for isometric tension, but only for the tension at that one length. Very few efforts have been made to study the profiles of the curves throughout the range of lengths over which shortening takes place. In examining the length region, ll0, for an isotonically contracting muscle, not only is the force-velocity relation valid for the initial reference length, l0, but also for any other length. The analysis in this report indicates that the constants a/P0 and b/l0 remain fixed throughout the length change of afterloaded isotonic shortening in the Rana pipiens sartorius muscles.  相似文献   

19.
The force-velocity (F-V) relationships of canine gastrocnemius-plantaris muscles at optimal muscle length in situ were studied before and after 10 min of repetitive isometric or isotonic tetanic contractions induced by electrical stimulation of the sciatic nerve (200-ms trains, 50 impulses/s, 1 contraction/s). F-V relationships and maximal velocity of shortening (Vmax) were determined by curve fitting with the Hill equation. Mean Vmax before fatigue was 3.8 +/- 0.2 (SE) average fiber lengths/s; mean maximal isometric tension (Po) was 508 +/- 15 g/g. With a significant decrease of force development during isometric contractions (-27 +/- 4%, P < 0.01, n = 5), Vmax was unchanged. However, with repetitive isotonic contractions at a low load (P/Po = 0.25, n = 5), a significant decrease in Vmax was observed (-21 +/- 2%, P < 0.01), whereas Po was unchanged. Isotonic contractions at an intermediate load (P/Po = 0.5, n = 4) resulted in significant decreases in both Vmax (-26 +/- 6%, P < 0.05) and Po (-12 +/- 2%, P < 0.01). These results show that repeated contractions of canine skeletal muscle produce specific changes in the F-V relationship that are dependent on the type of contractions being performed and indicate that decreases in other contractile properties, such as velocity development and shortening, can occur independently of changes in isometric tension.  相似文献   

20.
H Iwamoto 《Biophysical journal》1998,74(3):1452-1464
The mechanism underlying the calcium sensitivity of the velocity of shortening of skeletal muscle fibers was investigated using a multiple shortening protocol: within a single contraction, skinned rabbit psoas fibers were made to shorten repetitively under a light load by briefly stretching back to their initial length at regular intervals. At saturating [Ca2+], the initial fast shortening pattern was repeated reproducibly. At submaximal [Ca2+], the first shortening consisted of fast and slow phases, but only the slow phase was observed in later shortenings. When the fibers were held isometric after the first shortening, the velocity of the second shortening recovered with time. The recovery paralleled tension redevelopment, implying a close relationship between the velocity and the number of the preexisting force-producing cross-bridges. However, this parallelism was lost as [Ca2+] was increased. Thus, the velocity was modified in a manner consistent with the cooperative thin filament activation by strong binding cross-bridges and its modulation by calcium. The present results therefore provide evidence that the thin filament cooperativity is primarily responsible for the calcium sensitivity of velocity. The effect of inorganic phosphate to accelerate the slow phase of shortening is also explained in terms of the cooperative activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号