首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post-translational modifications (PTMs) play a vital, yet often overlooked role in the living cells through modulation of protein properties, such as localization and affinity towards their interactors, thereby enabling quick adaptation to changing environmental conditions. We have previously benchmarked a computational framework for the prediction of PTMs’ effects on the stability of protein-protein interactions, which has molecular dynamics simulations followed by free energy calculations at its core. In the present work, we apply this framework to publicly available data on Saccharomyces cerevisiae protein structures and PTM sites, identified in both normal and stress conditions. We predict proteome-wide effects of acetylations and phosphorylations on protein-protein interactions and find that acetylations more frequently have locally stabilizing roles in protein interactions, while the opposite is true for phosphorylations. However, the overall impact of PTMs on protein-protein interactions is more complex than a simple sum of local changes caused by the introduction of PTMs and adds to our understanding of PTM cross-talk. We further use the obtained data to calculate the conformational changes brought about by PTMs. Finally, conservation of the analyzed PTM residues in orthologues shows that some predictions for yeast proteins will be mirrored to other organisms, including human. This work, therefore, contributes to our overall understanding of the modulation of the cellular protein interaction networks in yeast and beyond.  相似文献   

2.
Proteins often undergo several post-translational modification steps in parallel to protein folding. These modifications can be transient or of a more permanent nature. Most modifications are, however, susceptible to alteration during the lifespan of proteins. Post-translational modifications thus generate variability in proteins that are far beyond that provided by the genetic code. Co- and post-translational modifications can convert the 20 specific codon-encoded amino acids into more than 100 variant amino acids with new properties. These, and a number of other modifications, can considerably increase the information content and functional repertoire of proteins, thus making their analysis of paramount importance for diagnostic and basic research purposes. Various methods used in proteomics, such as 2D gel electrophoresis, 2D liquid chromatography, mass spectrometry, affinity-based analytical methods, interaction analyses, ligand blotting techniques, protein crystallography and structure–function predictions, are all applicable for the analysis of these numerous secondary modifications. In this review, examples of some of these techniques in studying the heterogeneity of proteins are highlighted. In the future, these methods will become increasingly useful in biomarker searches and in clinical diagnostics.  相似文献   

3.
Proteins often undergo several post-translational modification steps in parallel to protein folding. These modifications can be transient or of a more permanent nature. Most modifications are, however, susceptible to alteration during the lifespan of proteins. Post-translational modifications thus generate variability in proteins that are far beyond that provided by the genetic code. Co- and post-translational modifications can convert the 20 specific codon-encoded amino acids into more than 100 variant amino acids with new properties. These, and a number of other modifications, can considerably increase the information content and functional repertoire of proteins, thus making their analysis of paramount importance for diagnostic and basic research purposes. Various methods used in proteomics, such as 2D gel electrophoresis, 2D liquid chromatography, mass spectrometry, affinity-based analytical methods, interaction analyses, ligand blotting techniques, protein crystallography and structure-function predictions, are all applicable for the analysis of these numerous secondary modifications. In this review, examples of some of these techniques in studying the heterogeneity of proteins are highlighted. In the future, these methods will become increasingly useful in biomarker searches and in clinical diagnostics.  相似文献   

4.
Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.  相似文献   

5.
A complex prediction: three-dimensional model of the yeast exosome   总被引:4,自引:0,他引:4       下载免费PDF全文
We present a model of the yeast exosome based on the bacterial degradosome component polynucleotide phosphorylase (PNPase). Electron microscopy shows the exosome to resemble PNPase but with key differences likely related to the position of RNA binding domains, and to the location of domains unique to the exosome. We use various techniques to reduce the many possible models of exosome subunits based on PNPase to just one. The model suggests numerous experiments to probe exosome function, particularly with respect to subunits making direct atomic contacts and conserved, possibly functional residues within the predicted central pore of the complex.  相似文献   

6.
p53 mediates cell cycle arrest or apoptosis in response to DNA damage. Its activity is subject to a tight regulation involving a multitude of post-translational modifications. The plethora of functional protein interactions of p53 at present precludes a clear understanding of regulatory principles in the p53 signaling network. To circumvent this complexity, we studied here the minimal requirements for functionally relevant p53 post-translational modifications by expressing human p53 together with its best characterized modifier Mdm2 in budding yeast. We find that expression of the human p53-Mdm2 module in yeast is sufficient to faithfully recapitulate key aspects of p53 regulation in higher eukaryotes, such as Mdm2-dependent targeting of p53 for degradation, sumoylation at lysine 386 and further regulation of this process by p14(ARF). Interestingly, sumoylation is necessary for the recruitment of p53-Mdm2 complexes to yeast nuclear bodies morphologically akin to human PML bodies. These results suggest a novel role for Mdm2 as well as for p53 sumoylation in the recruitment of p53 to nuclear bodies. The reductionist yeast model that was established and validated in this study will now allow to incrementally study simplified parts of the intricate p53 network, thus helping elucidate the core mechanisms of p53 regulation as well as test novel strategies to counteract p53 malfunctions.  相似文献   

7.
Wilkinson CW 《Peptides》2006,27(2):453-471
Phylogenetic, developmental, anatomic, and stimulus-specific variations in post-translational processing of POMC are well established. For melanocortins, the role of alpha-N-acetylation and the selective activities of alpha, beta, and gamma forms are of special interest. Acetylation may shift the predominant activity of POMC products between endorphinergic and melanocortinergic actions-which are often in opposition. This review addresses: (1) variations in POMC processing; (2) the influence of acetylation on the functional activity of alpha-MSH; (3) state- and stimulus-dependent effects on the proportional distribution of forms of melanocortins and endorphins; (4) divergent effects of alpha-MSH and beta-endorphin administration; (5) potential roles of beta- and gamma-MSH.  相似文献   

8.
表观遗传和蛋白质翻译后修饰在细菌耐药中的作用   总被引:1,自引:0,他引:1  
日益严重的细菌耐药性有可能使人类重回前抗生素时代。细菌的耐药机理多样,深入研究细菌的耐药性形成机理有助于开发控制耐药细菌感染的新措施。表观遗传和蛋白质翻译后修饰在细胞代谢、信号转导、蛋白质降解、调控DNA复制、应激反应等方面都具有重要作用。近年来研究表明表观遗传和蛋白质翻译后修饰在细菌耐药中也扮演着重要的角色。本文总结了DNA甲基化、调控型RNAs等表观遗传因素和磷酸化、琥珀酰基化等蛋白质翻译后修饰因素在细菌耐药性中的调控作用,以期为抗生素靶标选择和抗生素开发设计提供新思路。  相似文献   

9.
Plewczynski D  Basu S  Saha I 《Amino acids》2012,43(2):573-582
We present here the 2011 update of the AutoMotif Service (AMS 4.0) that predicts the wide selection of 88 different types of the single amino acid post-translational modifications (PTM) in protein sequences. The selection of experimentally confirmed modifications is acquired from the latest UniProt and Phospho.ELM databases for training. The sequence vicinity of each modified residue is represented using amino acids physico-chemical features encoded using high quality indices (HQI) obtaining by automatic clustering of known indices extracted from AAindex database. For each type of the numerical representation, the method builds the ensemble of Multi-Layer Perceptron (MLP) pattern classifiers, each optimising different objectives during the training (for example the recall, precision or area under the ROC curve (AUC)). The consensus is built using brainstorming technology, which combines multi-objective instances of machine learning algorithm, and the data fusion of different training objects representations, in order to boost the overall prediction accuracy of conserved short sequence motifs. The performance of AMS 4.0 is compared with the accuracy of previous versions, which were constructed using single machine learning methods (artificial neural networks, support vector machine). Our software improves the average AUC score of the earlier version by close to 7 % as calculated on the test datasets of all 88 PTM types. Moreover, for the selected most-difficult sequence motifs types it is able to improve the prediction performance by almost 32 %, when compared with previously used single machine learning methods. Summarising, the brainstorming consensus meta-learning methodology on the average boosts the AUC score up to around 89 %, averaged over all 88 PTM types. Detailed results for single machine learning methods and the consensus methodology are also provided, together with the comparison to previously published methods and state-of-the-art software tools. The source code and precompiled binaries of brainstorming tool are available at http://code.google.com/p/automotifserver/ under Apache 2.0 licensing.  相似文献   

10.
The proteome of any system is a dynamic entity dependent on the intracellular concentration of the entire set of expressed proteins. In turn, this whole protein concentration will be reliant on the stability/turnover of each protein as dictated by their relative rates of synthesis and degradation. In this study, we have investigated the dynamics of the stromal proteome in the model organism Chlamydomonas reinhardtii by characterizing the half-life of the whole set of proteins. 2-DE stromal proteins profiling was set up and coupled with MS analyses. These identifications featuring an average of 26% sequence coverage and eight non-redundant peptides per protein have been obtained for 600 independent samples related to 253 distinct spots. An interactive map of the global stromal proteome, of 274 distinct protein variants is now available on-line at http://www.isv.cnrs-gif.fr/gel2dv2/. N-α-terminal-Acetylation (NTA) was noticed to be the most frequently detectable post-translational modification, and new experimental data related to the chloroplastic transit peptide cleavage site was obtained. Using this data set supplemented with series of pulse-chase experiments, elements directing the relationship between half-life and N-termini were analyzed. Positive correlation between NTA and protein half-life suggests that NTA could contribute to protein stabilization in the stroma.  相似文献   

11.
A protein's function depends on its localization to the right cellular compartment. A number of proteins require lipidation to associate with membranes. Protein palmitoylation is a reversible lipid modification and has been shown to mediate both membrane localization and control protein function. At the yeast vacuole, several palmitoylated proteins have been identified that are required for vacuole biogenesis, including the fusion factor Vac8, the SNARE Ykt6 and the casein kinase Yck3. Moreover, both the DHHC-CRD acyltransferase Pfa3 and Ykt6 are involved in palmitoylation at the vacuole Here, we present and discuss methods to probe for protein palmitoylation at vacuoles.  相似文献   

12.
We have developed an entirely sequence-based method that identifies and integrates relevant features that can be used to assign proteins of unknown function to functional classes, and enzyme categories for enzymes. We show that strategies for the elucidation of protein function may benefit from a number of functional attributes that are more directly related to the linear sequence of amino acids, and hence easier to predict, than protein structure. These attributes include features associated with post-translational modifications and protein sorting, but also much simpler aspects such as the length, isoelectric point and composition of the polypeptide chain.  相似文献   

13.
14.
A major challenge in proteomics is to fully identify and characterize the post-translational modification (PTM) patterns present at any given time in cells, tissues, and organisms. Here we present a fast and reliable method ("ModifiComb") for mapping hundreds types of PTMs at a time, including novel and unexpected PTMs. The high mass accuracy of Fourier transform mass spectrometry provides in many cases unique elemental composition of the PTM through the difference DeltaM between the molecular masses of the modified and unmodified peptides, whereas the retention time difference DeltaRT between their elution in reversed-phase liquid chromatography provides an additional dimension for PTM identification. Abundant sequence information obtained with complementary fragmentation techniques using ion-neutral collisions and electron capture often locates the modification to a single residue. The (DeltaM, DeltaRT) maps are representative of the proteome and its overall modification state and may be used for database-independent organism identification, comparative proteomic studies, and biomarker discovery. Examples of newly found modifications include +12.000 Da (+C atom) incorporation into proline residues of peptides from proline-rich proteins found in human saliva. This modification is hypothesized to increase the known activity of the peptide.  相似文献   

15.
16.
Previously, we demonstrated that antibodies printed on a solid support were able to detect protein-protein interaction in mammalian cells. Here we further developed the antibody array system for detecting proteins with various post-translational modifications in mammalian cells. In this novel approach, immunoprecipitated proteins were labeled with fluorescent dye followed by incubation over antibody arrays. Targeted proteins, captured by the antibodies immobilized on PVDF membrane or glass slide, were detected by means of near infrared fluorescent scanner or fluorescent microscopy. To demonstrate the application of the antibody arrays in protein post-translational modifications, we profiled protein tyrosine phosphorylation, ubiquitination, and acetylation in mammalian cells under different conditions. Our results indicate that antibody array technology can provide a powerful means of profiling a large number of proteins with different post-translational modifications in cells.  相似文献   

17.
Proteolytic activation of zymogens or controlled degradation of inhibitory factors is part of a major regulatory system on the post-translational level to regulate treatment induced cellular stress responses. The identification of differential activity based substrates is thus of high interest to prioritize and validate candidate targets for drug discovery. Here we present a novel subtractive substrate phage display screening method for the selection of treatment induced post-translational peptide modifications in complex proteomes. We investigated this approach with tumor cells in response to a protease activating anticancer treatment modality using subtractive and iterative screening of cellular extracts derived from control and treated cells. Specific phage were identified that served as substrates for proteolytic activities in response to treatment related activity changes and could be distinguished from substrates for unspecific proteolytic background activities. Novel, selected peptide substrates were investigated in vitro and in vivo and showed high substrate specificity and functional biological significance.  相似文献   

18.
19.
Mussel adhesive proteins (MAPs) have been suggested as promising bioadhesives for diverse application fields, including medical uses. Previously, we successfully constructed and produced a new type of functional recombinant MAP, fp-151, in a prokaryotic Escherichia coli expression system. Even though the E. coli-derived MAP showed several excellent features, such as high production yield and efficient purification, in vitro enzymatic modification is required to convert tyrosine residues to l-3,4-dihydroxyphenyl alanine (dopa) molecules for its adhesive ability, due to the intrinsic inability of E. coli to undergo post-translational modification. In this work, we produced a soluble recombinant MAP in insect Sf9 cells, which are widely used as an effective and convenient eukaryotic expression system for eukaryotic foreign proteins. Importantly, we found that insect-derived MAP contained converted dopa residues by in vivo post-translational modification. In addition, insect-derived MAP also had other post-translational modifications including phosphorylation of serine and hydroxylation of proline that originally occurred in some natural MAPs. To our knowledge, this is the first report on in vivo post-translational modifications of MAP containing dopa and other modified amino acid residues.  相似文献   

20.
Store-operated Ca2+ entry (SOCE) is a widespread mechanism to elevate the intracellular Ca2+ concentrations and stimulate downstream signaling pathways affecting proliferation, secretion, differentiation and death in different cell types. In immune cells, immune receptor stimulation induces intracellular Ca2+ store depletion that subsequently activates Ca2+-release-activated-Ca2+ (CRAC) channels, a prototype of store-operated Ca2+ (SOC) channels. CRAC channel opening leads to activation of diverse downstream signaling pathways affecting proliferation, differentiation, cytokine production and cell death. Recent identification of STIM1 as the endoplasmic reticulum Ca2+ sensor and Orai1 as the pore subunit of CRAC channels has provided the much-needed molecular tools to dissect the mechanism of activation and regulation of CRAC channels. In this review, we discuss the recent advances in understanding the associating partners and posttranslational modifications of Orai1 and STIM1 proteins that regulate diverse aspects of CRAC channel function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号