首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nature reserve Botshol (Utrecht, The Netherlands), consisting of two shallow lakes, ditches and reedland, originated from excavation of peat by man in the 17th century. Up to 1960 Botshol was a clear-water Charophyte lake system. Since the sixties water quality deteriorated and phytoplankton concentrations increased, while the number and dispersion of Chara species decreased. Several restoration measures were attempted to restablish a Charophyte-dominated ecosystem. This paper reports the promising results of this restoration experiment and mentions some complications that arose in restoring the reserve to a less fertile state. The restoration measures have resulted in a sixfold reduction of the external phosphorus load, from 0.6 to 0.1 g m–2.y–1, and in a significant reduction of phosphorus levels at all locations. Moreover, the light climate improved and the phyto- and zooplankton compositions changed considerably Unexpectedly, a bloom ofPrymnesium parvum and a fish kill were observed during the last three months of 1990. Despite this fish kill the restoration of the lake is successful so far.  相似文献   

2.
Retention of nutrients in river basins   总被引:1,自引:0,他引:1  
In Denmark, as in many other European countries, the diffuse losses of nitrogen (N) and phosphorus (P) from the rural landscape are the major causes of surface water eutrophication and groundwater pollution. The export of total N and total P from the Gjern river basin amounted to 18.2 kg ha–1 and 0.63 kg P ha–1 during June 1994 to May 1995. Diffuse losses of N and P from agricultural areas were the main nutrient source in the river basin contributing 76% and 51%, respectively, of the total export.Investigations of nutrient cycling in the Gjern river basin have revealed the importance of permanent nutrient sinks (denitrification and overbank sedimentation) and temporary nutrient storage in watercourses. Temporary retention of N and P in the watercourses thus amounted to 7.2–16.1 g N m–2 yr–1 and 3.7–8.3 g P m–2 yr–1 during low-flow periods. Deposition of P on temporarily flooded riparian areas amounted from 0.16 to 6.50 g P m–2 during single irrigation and overbank flood events, whereas denitrification of nitrate amounted on average to 7.96 kg N yr–1 per running metre watercourse in a minerotrophic fen and 1.53 kg N yr–1 per linear metre watercourse in a wet meadow. On average, annual retention of N and P in 18 Danish shallow lakes amounted to 32.5 g N m–2 yr–1 and 0.30 g P m–2 yr–1, respectively, during the period 1989–1995.The results indicate that permanent nutrient sinks and temporary nutrient storage in river systems represent an important component of river basin nutrient budgets. Model estimates of the natural retention potential of the Gjern river basin revealed an increase from 38.8 to 81.4 tonnes yr–1 and that P-retention increased from –0.80 to 0.90 tonnes yr–1 following restoration of the water courses, riparian areas and a shallow lake. Catchment management measures such as nature restoration at the river basin scale can thus help to combat diffuse nutrient pollution.  相似文献   

3.
In 1984 the external phosphorus load of the shallow eutrophic Loosdrecht lakes was reduced from 3.3 to 1.0 mg m–2 d–1. The effect of phosphorus release from the sediment on lake restoration was investigated. Diffusive release under aerobic conditions (20 °C) decreased from 1 mg m–2 d–1 in 1984 to 0.3 mg m–2 d–1 in 1990. The generation of inorganic phosphorus due to mineralization during summer equals 3 mg m–2 d–1, which is much higher than the measured rate of diffusive release. Despite that, the phosphorus release is hardly stimulated by anaerobic conditions, which indicates that only a small amount of phosphorus is adsorbed by ferric iron in the top sediment layer. This apparent discrepancy is probably caused by the uptake of inorganic phosphorus uptake during resuspension and the loss of inorganic phosphorus with downward seepage.The estimated removal of phosphorus due to downward seepage of 0.8 mg m–2 d–1 agrees well with the average phosphorus retention in the lake. This indicates that sediment burial and diagenesis are unimportant mechanisms for withdrawing phosphorus from the nutrient cycle.Between 1982 and 1991 the total phosphorus content of the upper 2 cm of the sediment decreased from 0.94 to 0.60 g kg–1 DW. At present, about 20% of total phosphorus in this layer is potentially bioavailable, but largely incorporated in easily degradable organic matter. This pool is much smaller in deeper layers. Based on the estimated and measured rates and pool sizes, the annual average phosphorus cycle in the lakes was modelled to evaluate the effects of various restoration measures. The main predictions of the model are: 1) further reduction of the external load may cause a gradual decrease of the total phosphorus concentration in the lake water; 2) dredging and iron addition, without reduction of the external load, may give a rapid improvement followed by a slow return to the present situation; and 3) reduction of the external load, combined with a cut off of downward seepage will not improve the water quality.  相似文献   

4.
In the nature reserve Botshol, the process of eutrophication is very successfully stopped and reversed by hydrological separation of the agricultural area from the nature reserve and by dephosphorizing the inlet-water. The external phosphate loading of about 0.6 g Pm–2y–1 decreased 80% to about 0.12 g Pm–2y–1. The Dutch governmental program in relation to eutrophication is focussed on the introduction of detergents without phosphates, dephosphorizing the water at sewage purification plants, reduction of fertilization of farming lands and international measures in relation to the discharge of phosphates in the rivers Rhine, Meuse and Scheldt. The effects of the governmental program on the external phosphate loading of Botshol will be a reduction of only 4%.For the average Dutch fresh waters the effect of the governmental program is a decrease of the external loading of about 6 g Pm–2y–1 to about 3 g Pm–2y–1, a phosphate loading still much to high to push back eutrophication noticeably.As an example also for a number of Dutch fresh waters, sensitive to eutrophication, the effects of the governmental program are calculated. For none of these waters the program will lead to an external phosphate loading that even comes close to the recent phosphate loading of Botshol.  相似文献   

5.
Chemical composition and physical parameters of waters from the Loire estuary were examined in 1981–1982 in order to assess water quality. It appears that riverflow is of first importance on suspended matter load, dissolved nutrient concentrations and oxygenation. The annual hydrological cycle is made of two periods. During the first one low riverflow, low nutrient concentrations, high suspended matter load and oxygen depletion are noticed. During the second one higher riverflows occur accompanied with increasing nutrient concentrations, decreasing turbidity and restoration of dissolved oxygen. Results indicate that annual inputs of dissolved nutrients attain 60 000 t a–1 for nitrogen, 2 400 t a–1 for phosphorus and 100 000 t a–1 for silica. It is suggested that the high suspended matter loading (1 million t a–1) is a significant factor disturbing oxygenation and by the way limiting water quality within the estuary.
  相似文献   

6.
The phosphorus cycle in the ecosystem of the shallow, hypertrophic Loosdrecht lakes (The Netherlands) was simulated by means of the dynamic eutrophication model PCLOOS. The model comprises three algal groups, zooplankton, fish, detritus, zoobenthos, sediment detritus and some inorganic phosphorus fractions. All organic compartments are modelled in two elements, carbon and phosphorus. Within the model system, the phosphorus cycle is considered as completely closed. Carbon and phosphorus are described independently, so that the dynamics of the P/C ratios can be modelled. The model has been partly calibrated by a method based on Bayesian statistics combined with a Range Check procedure.Simulations were carried out for Lake Loosdrecht for the periods before and after the restoration measures in 1984, which reduced the external phosphorus loading to the lake from ca. 2 mgP m–2 d–1 to 1 mgP m–2 d–1. The model outcome was largely comparable withthe measured data. Total phosphorus has slowly decreased from an average 130 µgP l–1 to ca. 80 µgP l–1, but chlorophyll-a (ca. 150 µg 1–1, summer-averaged) and seston concentrations (8–15 mgC 1–1) hardly changed since the restoration measures. About two-thirds of the seston consisted of detritus, while the phytoplankton remained dominated by filamentous cyanobacteria. The P/C ratio of the seston decreased from ca. 1.0% to 0.7%, while the P/C ratios of zooplankton, zoobenthos and fish have remained constant and are much higher. The system showed a delayed response to the decreased phosphorus loading until a new equilibrium was reached in ca. five years. Major reasons for the observed resilience of the lake in responding to the load reduction are the high phosphorus assimilation efficiency of the cyanobacteria and the high internal recycling of phosphorus. A further reduction of nutrient loading, perhaps in combination with additional measures like biomanipulation, will be the most fruitful additional restoration measure.  相似文献   

7.
Manny  B. A.  Johnson  W. C.  Wetzel  R. G. 《Hydrobiologia》1994,279(1):121-132
Lakes and reservoirs provide water for human needs and habitat for aquatic birds. Managers of such waters may ask whether nutrients added by waterfowl degrade water quality. For lakes and reservoirs where primary productivity is limited by phosphorus (P), we developed a procedure that integrates annual P loads from waterfowl and other external sources, applies a nutrient load-response model, and determines whether waterfowl that used the lake or reservoir degraded water quality. Annual P loading by waterfowl can be derived from a figure in this report, using the days per year that each kind spent on any lake or reservoir. In our example, over 6500 Canada geese (Branta canadensis) and 4200 ducks (mostly mallards, Anas platyrhynchos) added 4462 kg of carbon (C), 280 kg of nitrogen (N), and 88 kg of P y–1 to Wintergreen Lake in southwestern Michigan, mostly during their migration. These amounts were 69% of all C, 27% of all N, and 70% of all P that entered the lake from external sources. Loads from all external sources totaled 840 mg P m–2 y–1. Application of a nutrient load-response model to this concentration, the hydraulic load (0.25 m y–1), and the water residence time (9.7 y) of Wintergreen Lake yielded an average annual concentration of total P in the lake of 818 mg m–3 that classified the lake as hypertrophic. This trophic classification agreed with independent measures of primary productivity, chlorophyll-a, total P, total N, and Secchi disk transparency made in Wintergreen Lake. Our procedure showed that waterfowl caused low water quality in Wintergreen Lake.Contribution 824 of the National Fisheries Research Center-Great Lakes, 1451 Green Road, Ann Arbor, Michigan 48105, U.S.A. and 722 of the Kellogg Biological Station, Michigan State University.  相似文献   

8.
Human activity has been the cause of continuing decline of water quality in most Dutch lakes. Development of lake restoration programmes must take into account the lake functions. Major reduction of the nutrient and pollutant loading is the primary step in lake restoration. Still, the recovery of eutrophic lakes is retarded frequently because of internal phosphorus loading by the lakes' sediments. Sediment dredging, as an additional tool for water quality management to accelerate accomplishing the desired water quality, is studied. In this paper we evaluate the preliminary results of eight lake restoration projects in the Netherlands. The lakes are compared in order to estimate the magnitude of the internal phosphorus loading. Dredging as an additional measure was carried out twice in the peatlake Geerplas. In the Nieuwkoop Lakes only the external phosphorus loading was substantially reduced from 0.9 to 0.2 g P m–2 y–1. Provisional results of these two shallow peatlake restoration projects focussed on eutrophication abatement with and without dredging, are presented. Both show a decrease in phosphorus concentration in the lakes. The necessity to dredge the lakes is discussed.  相似文献   

9.
Reduction of the external phosphorus load in 1984 did not lead to recovery of Loosdrecht lakes. Therefore the Provincial Water Authorities of the Province of Utrecht proposed, after consulting the research group Water Quality Research Loosdrecht lakes (WQL), measures to reduce the present external phosphorus loading from 0.35 to 0.1 g Pm–2y–1. Mathematical modelling suggested that such a reduction would benefit the water quality of the lakes. The results of the WQL investigation did not lead to additional measures (dredging, biomanipulation, chemomanipulation).  相似文献   

10.
Governmental programmes and international agreements to counteract eutrophication have largely not attained agreed objectives (e.g. reduction by half of the anthropogenic nitrogen load on Swedish coastal waters). Important components of such programmes are improved removal of nitrogen in municipal treatment plants and changed agricultural practices. In addition, increased N-removal during runoff, i.e. restoration of ponds and wetlands, is an important strategy. One explanation of the fact that the objectives have yet not been achieved might be that the most effective step to counteract diffuse pollution has not been fully implemented. It is therefore important to stress the potential of effective measures and find ways to fully implement them at the watershed level. It is important to avoid excessive applications of fertilizers because this leads to an exponential increase in leaching. Field experiments indicate that the use of winter crops or an undersown catch crop outside the main cropping season has reduced nitrate losses by up to 75% in single years, and by nearly 50% over successive years. In southern Sweden, the area of wetlands has been reduced considerably (more than 90%) by melioration activities. In a recent project, budget studies with restored ponds verified the importance of ponds and wetlands in nitrogen retention. Per unit area, increased nitrogen loading implied increased nitrogen retention, but often a decrease in the percent retained. Ponds with depths of 0.4–2.0 m and hydrological loads of 0.14–5.2 m3 m−2 day−1 were created. One hundred and fifty to seven thousand kg N ha−1 year−1 was removed in ponds loaded by streams dominated by agricultural run off. A pond receiving pre-treated municipal wastewater removed 8000 kg N ha−1 year−1. The upper limit for N-removal is set by the hydrological conditions. Sedimentation of organic material must be favoured in order to obtain adequate conditions for denitrification. To achieve the governmental objective in nitrogen load reduction changed cultivation practices within the agricultural sector must be combined with restoration of ponds/wetlands.  相似文献   

11.
As a result of high nutrient loading Lake Veluwe suffered from an almost permanent bloom of the blue-green algaOscillatoria agardhii Gomont. In 1979, the phosphorus loading of the lake was reduced from approx. 3 to 1 g P.m–2.a–1. Moreover, since then the lake has been flushed during winter periods with water low in phosphorus. This measure aimed primarily at interrupting the continuous algal bloom. The results of these measures show a sharp decline of total-phosphorus values from 0.40–0.60 mg P.l–1 (before 1980) to 0.10–0.20 mg P.l–1 (after 1980). Summer values for chlorophylla dropped from 200–400 mg.m–3 to 50–150 mg.m–3.The increase in transparency of the lake water was relatively small, from summer values of 15–25 cm before the implementation of the measures to 25–45 cm afterwards. The disappointing transparency values may be explained by the decreasing chlorophylla and phosphorus content of the algae per unit biovolume. Blue-green algae are gradually loosing ground. In the summer of 1985 green algae and diatoms dominated the phytoplankton for the first time since almost 20 years. To achieve the ultimate water quality objectives (transparency values of more than 100 cm in summer), the phosphorus loading has to be reduced further.  相似文献   

12.
A one year physicochemical survey was conducted on the Tongue River Reservoir, a run of the river impoundment in southeastern Montana. The Tongue River was the only significant inflow and supplied 93, 96 and 97% of the nutrient, major ion and water inputs to the impoundment. Heat advected from inflowing water accounted for 17% of the energy gained during the summer heating cycle. The annual nutrient load to the reservoir from the river was 20.2 g m–2 total nitrogen (TN) and 3.8 g m–2 total phosphorus (TP). Due to the absence of reducing conditions at depth and the complex seasonal pattern of water movement through the reservoir, 99% of the TN load was discharged but 49% of the TP load was retained in the reservoir.  相似文献   

13.
Andreas Krug 《Hydrobiologia》1993,251(1-3):285-296
During the 19th and the first half of the 20th century, approximately 300 km2 of lakes and wetlands, representing 29% of the River Kavlingean catchment in Southern Sweden, were drained to make land available for agriculture. Published accounts of nutrient loads from the catchment indicated that until the mid 20th century, factories and urban point sources were the major contributors of both nitrogen and phosphorus. By the middle of the 20th century, the construction of sewage treatment plants had effectively reduced phosphorus pollution. Concurrently, the land drained in the previous century underwent a more intense cultivation, with productivity being maintained by commercial fertilizers. Subsequently, net nutrient loads from agriculture continued to increase, reaching an annual load of 2652 tons total-nitrogen and 70 tons total-phosphorus for the River Kävlingeån. Whilst high nutrient leakage from agricultural watersheds may be a problem which is only recently recognized, it had its origins in nearly a hundred years of commonly accepted agricultural policy.To assess the importance of agriculture as the major source of nutrients to the River Kävlingeån system, three tributary catchment areas, differing in terms of their land use patterns (high, medium and low intensity of agricultural use), were studied and compared with literature figures. Results indicated that agricultural nutrient loss areal coefficients were substantially higher than the literature figures, demonstrating the role of agriculture as source of nutrients to the River Kävlingeån system. The agricultural land use policies of the last fifty years were revealed to be most important with regard to this role. Of such land use policies, the cultivation of the last 10–15% of land employed for agricultural use (primarily riparian ecotones) may be of most significance. The literature indicates that intense agricultural use of this final 10–15% may account for a ca. 50% increase in nitrogen loss. This suggests that one solution to the problem of agricultural diffuse pollution may lie in the restoration and sustainable management of riparian ecotones of agricultural streams.  相似文献   

14.
The transportation of nitrogen and phosphorus from agricultural fields and river basins was analysed. Evaluation and long-term (17 years) prediction of the nutrient transport from agricultural fields under corresponding soil, landscape, and climate conditions were carried out by numerical experiment (EPIC model). Due to the spatial variability of soils and precipitation the most vulnerable region is determined in Western Lithuania where annual amount of precipitation is the highest one (800–900 mm): the annual load of nitrogen up to four times higher than that in Middle Lithuania. The lowest values for both nutrients (N=15 kg ha−1, P=0.15 kg ha−1) have been estimated in Middle Lithuania. Contrary to the field scale estimations, the largest amount of nutrients is carried by small rivers in Middle Lithuania due to heavy mechanical constitution of soils and specific features of landscape. In the period from 1952 to the late 1980s, due to the intensive agricultural activity, increased load of nutrients is fixed. In small Lithuanian rivers, after an unprecedented decrease in the application of the mineral fertilisers and manure since 1991 (in connection with the economical situation of Lithuania), the nutrient load decreasing phase started, but due to the substantial inertia of terrestrial and aquatic ecosystems, a decreasing trend is within the accuracy limits.  相似文献   

15.
The main trend in land-use changes in the Porijõgi River catchment, south Estonia, is a significant increase in abandoned lands (from 1.7% in 1987 to 10.5% in 1997), and a decrease in arable lands (from 41.8 to 23.9%). Significant climatic fluctuations occurred during the last decades. Milder winters (increase of air temperature in February from −7.9 to −5.5°C during the period 1950–1997) and a change in the precipitation pattern have influenced the mean annual water discharge. This results in more intensive material flow during colder seasons and decreased water runoff in summer. During the period 1987–1997 the runoff of total-N, total-P, SO4, and organic material (after BOD5) decreased from 25.9 to 5.1, from 0.32 to 0.13, from 78 to 48, and from 7.4 to 3.5 kg ha−1 year−1, respectively. Most significant was a 4–20-fold decrease in agricultural subcatchments while in the forested upper-course catchment the changes were insignificant. Variations of total-N, and total-P runoff in both the entire catchment and its agricultural subcatchments are well described by the change of land use (including fertilization intensity), soil parameters and water discharge. In small agricultural subcatchments the rate of fertilization was found to be the most important factor affecting nitrogen runoff, while land-use pattern plays the main role in larger mosaic catchments. Ecotechnological measures (e.g. riparian buffer zones and buffer strips, constructed wetlands) to control nutrient flows from agricultural catchments are very important.  相似文献   

16.
Turbid water, high phosphorus (P)-loading and disappearing Chara communities forced local water authorities to carry out restoration measures in the lakes and marshes of the Botshol The Netherlands. The reduction of the external-P input could be reached by chemical treatment of the brackish suppletion water and by separating the area from nearby agricultural areas. A side effect of these measures was an increase of chloride from 400 mg l−1 to 1000 mg l−1 in the surface water of Botshol. Internal biogeochemical processes were investigated with phytometers and direct measurements of soil nutrient availability in greenhouse experiments. The increased chloride levels were assumed to increase soil pore water P. The first experiment showed higher P in the peat-soils treated with the highest Cl-concentration and an increased leaching of PO4 from the lake-bottom peat-soils. No reaction of the phytometer Epilobium hirsutum was found. In the second experiment the 800 mg l−1 Cl-treatment resulted in significantly higher biomass of Carex acutiformis grown on treated bank soil. N-uptake by the phytometer Carex acutiformis was significantly higher. The available-P and total-P in the bank soil did not show a treatment effect. The two studies showed under similar ‘standardized’ conditions a treatment effect of chloride on the P-availability, resulting in higher PO4 leaching and increased plant nutrient concentrations and biomass. The field study showed higher available-P concentrations in the shore zone than in remote areas. The high chloride levels after restoration impact internal nutrient availability in the Botshol wetlands, on soil loaded with P in recent and historic times.  相似文献   

17.
Lake Sempach, located in the central part of Switzerland, has a surface area of 14 km2, a maximum depth of 87 m and a water residence time of 15 years. Restoration measures to correct historic eutrophication, including artificial mixing and oxygenation of the hypolimnion, were implemented in 1984. By means of the combination of external and internal load reductions, total phosphorus concentrations decreased in the period 1984–2000 from 160 to 42 mg P m–3. Starting from 1997, hypolimnion oxygenation with pure oxygen was replaced by aeration with fine air bubbles. The reaction of the plankton has been investigated as part of a long-term monitoring program. Taxa numbers, evenness and biodiversity of phytoplankton increased significantly during the last 15 years, concomitant with a marked decline of phosphorus concentration in the lake. Seasonal development of phytoplankton seems to be strongly influenced by the artificial mixing during winter and spring and by changes of the trophic state. Dominance of nitrogen fixing cyanobacteria (Aphanizomenon sp.), causing a severe fish kill in 1984, has been correlated with lower N/P-ratio in the epilimnion. Buoyant algae such as Planktothrix rubescens (syn. Oscillatoria rubescens) increased in abundance due to enlargement of the trophogenic layer and extended mixing depth during winter. The interactions between zoo- and phytoplankton seemed to be depressed as a result of restoration measures. Zooplankton composition changed to more carnivorous and less herbivorous species. Oxygenation of the hypolimnion induced bioturbation of sediments, mainly by oligochaetae worms, and stimulated germination of spores and cysts and hatching of resting eggs.  相似文献   

18.
Holz  John C.  Hoagland  Kyle D.  Spawn  Rebecca L.  Popp  Arthur  Andersen  John L. 《Hydrobiologia》1997,346(1-3):183-192
The effects of reservoir aging on the phytoplankton community of amidwestern U.S. reservoir constructed in 1965 (Pawnee Reservoir) werestudied by comparing algal biovolume and species composition from April 1992through November 1992 to surveys conducted in 1968–73 and 1990. Meansummer total phosphorus, nitrate-nitrogen, Secchi disk depth, totalsuspended solids, chlorophyll a, and phytoplankton species composition datacharacterized Pawnee Reservoir during 1968–69 as a high nutrient,relatively clear water environment. Phytoplankton biomass was relativelylow, consisting mainly of cyanophytes and non-flagellated chlorophytes.During 1970–73, water clarity was poor, total suspended solids werehigh, and total phosphorus was lower, but was still greater than 100 µgl–1. The 1970–73 phytoplankton biomass was high and wasdominated by cyanophytes. Mean summer total phosphorus remained >100µg l–1, water clarity remained poor, but phytoplanktonbiomass decreased significantly during 1990–92. The dramatic drop inchlorophyll a and low mean volatile suspended solids indicated thatinorganic suspended sediments, rather than phytoplankton, accounted for themajority of the turbidity in 1990-92. In addition to lower phytoplanktonbiomass, community composition shifted away from buoyancy-regulatingcyanophytes toward flagellated chlorophytes. These data suggest that asreservoirs located in agricultural watersheds age, (1) inorganic suspendedsediments have a significant effect on the light environment as well asphytoplankton biomass and species composition, (2) the control ofphytoplankton biomass and species composition shifts away from nutrients tolight and suspended sediments, and (3) there is a 1–2 year lag in theresponse of phytoplankton biomass to maximum nutrient loading during thetrophic upsurge period. Thus, sedimentation has been shown to be a primarydeterminant of plankton and benthic macroinvertebrate community compositionas Pawnee Reservoir aged.  相似文献   

19.
The uptake of nitrate, ammonium and phosphate was examined in vitro in seedlings of the seagrass Amphibolis antarctica ((Labill.) Sonder ex Aschers.). Uptake of all three nutrients was significantly correlated with external concentration up to 800 µ g l–1. The uptake of nitrate (0–200 µ g NO3-N g dry wt–1 h–1) was significantly lower than the uptake of ammonium (0–500 µ g NH4-N g dry wt–1 h–1), suggesting that the seedlings have a higher affinity for this form of nitrogen in the water column.Data were in general agreement with uptake rates recorded for other seagrasses, notably Zostera marina. In comparison to the dominant macroalgae for the same region, seedlings had either similar or higher uptake rates in relation to external concentration, lending support to the hypothesis that seedlings, which do not possess roots, behave like macroalgae in terms of nutrient acquisition from the water column.A comparison with literature data on adult seagrass suggests, however, that seagrasses show lower uptake rates than macroalgae suggesting that the macroalgae, which are totally reliant on the water column for nutrients, are more efficient at uptake than seagrasses which may potentially use the sediment for a nutrient source.  相似文献   

20.
The paper summarizes the results of a ten-year (1981–1991) zooplankton research on the Lake Loosdrecht, a highly eutrophic lake. The main cause of the lake's eutrophication and deteriorating water quality was supply up to mid 1984 of water from the River Vecht. This supply was replaced by dephosphorized water from the Amsterdam-Rhine Canal in 1984. The effects of this and other restoration measures on the lake's ecosystem were studied. Despite a reduction in the external P-load from ca. 1.0 g P m–2 y–1 to ca. 0.35 g m–2 y–1 now, the filamentous prokaryotes, including cyanobacteria and Prochlorothrix, continue to dominate the phytoplankton.Among the crustacean plankton Bosmina spp, Chydorus sp. and three species of cyclopoid copepods and their nauplii are quite common. Though there was no major change in the composition of abundant species, Daphnia cucullata, which is the only daphnid in these lakes, became virtually extinct since 1989. Among about 20 genera and 40 species of rotifers the important ones are: Anuraeopsis fissa, Keratella cochlearis, Filinia longiseta and Polyarthra. The rotifers usually peak in mid-summer following the crustacean peak in spring. The mean annual densities of crustaceans decreased during 1988–1991. Whereas seston (< 150 µm) mean mass in the lake increased since 1983 by 20–60%, zooplankton (> 150 µm) mass decreased by 15–35%.The grazing by crustacean community, which was attributable mainly to Bosmina, had mean rates between 10 and 25% d–1. Between 42 and 47% of the food ingested was assimilated. In spring and early summer when both rotifers and crustaceans have their maximal densities the clearance rates of the rotifers were much higher. Based on C/P ratios, the zooplankton (> 150 µm) mass contained 2.5 times more phosphorus than seston (< 150 µm) mass so that the zooplankton comprised 12.5 % of the total-P in total particulate matter in the open water, compared with only 4.5% of the total particulate C. The mean excretion rates of P by zooplankton varied narrowly between 1.5 and 1.8 µg P 1 d–1, which equalled between 14 and 28% d–1 of the P needed for phytoplankton production.The lack of response to restoration measures cannot be ascribed to one single factor. Apparently, the external P-loading is still not low enough and internal P-loading, though low, may be still high enough to sustain high seston levels. Intensive predation by bream is perhaps more important than food quality (high concentrations of filamentous cyanobacteria) in depressing the development of large-bodied zooplankton grazers, e.g. Daphnia. This may also contribute to resistance of the lake's ecosystem to respond to rehabilitation measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号